kernel_optimize_test/drivers/mtd/chips/jedec_probe.c
Pavel Machek a63ec1b7b7 [PATCH] Add chip used in collie to jedec_probe
This adds flash chip used in Sharp Zaurus sl5500 (collie) to jedec_probe.
Values work for read-only access, but I have not figured out how to do
read-write.

Signed-off-by: Pavel Machek <pavel@suse.cz>
Cc: Richard Purdie <rpurdie@rpsys.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Acked-by: David Woodhouse <dwmw2@infradead.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-31 12:18:49 -08:00

2171 lines
52 KiB
C

/*
Common Flash Interface probe code.
(C) 2000 Red Hat. GPL'd.
$Id: jedec_probe.c,v 1.66 2005/11/07 11:14:23 gleixner Exp $
See JEDEC (http://www.jedec.org/) standard JESD21C (section 3.5)
for the standard this probe goes back to.
Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <asm/io.h>
#include <asm/byteorder.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/map.h>
#include <linux/mtd/cfi.h>
#include <linux/mtd/gen_probe.h>
/* Manufacturers */
#define MANUFACTURER_AMD 0x0001
#define MANUFACTURER_ATMEL 0x001f
#define MANUFACTURER_FUJITSU 0x0004
#define MANUFACTURER_HYUNDAI 0x00AD
#define MANUFACTURER_INTEL 0x0089
#define MANUFACTURER_MACRONIX 0x00C2
#define MANUFACTURER_NEC 0x0010
#define MANUFACTURER_PMC 0x009D
#define MANUFACTURER_SHARP 0x00b0
#define MANUFACTURER_SST 0x00BF
#define MANUFACTURER_ST 0x0020
#define MANUFACTURER_TOSHIBA 0x0098
#define MANUFACTURER_WINBOND 0x00da
/* AMD */
#define AM29DL800BB 0x22C8
#define AM29DL800BT 0x224A
#define AM29F800BB 0x2258
#define AM29F800BT 0x22D6
#define AM29LV400BB 0x22BA
#define AM29LV400BT 0x22B9
#define AM29LV800BB 0x225B
#define AM29LV800BT 0x22DA
#define AM29LV160DT 0x22C4
#define AM29LV160DB 0x2249
#define AM29F017D 0x003D
#define AM29F016D 0x00AD
#define AM29F080 0x00D5
#define AM29F040 0x00A4
#define AM29LV040B 0x004F
#define AM29F032B 0x0041
#define AM29F002T 0x00B0
/* Atmel */
#define AT49BV512 0x0003
#define AT29LV512 0x003d
#define AT49BV16X 0x00C0
#define AT49BV16XT 0x00C2
#define AT49BV32X 0x00C8
#define AT49BV32XT 0x00C9
/* Fujitsu */
#define MBM29F040C 0x00A4
#define MBM29LV650UE 0x22D7
#define MBM29LV320TE 0x22F6
#define MBM29LV320BE 0x22F9
#define MBM29LV160TE 0x22C4
#define MBM29LV160BE 0x2249
#define MBM29LV800BA 0x225B
#define MBM29LV800TA 0x22DA
#define MBM29LV400TC 0x22B9
#define MBM29LV400BC 0x22BA
/* Hyundai */
#define HY29F002T 0x00B0
/* Intel */
#define I28F004B3T 0x00d4
#define I28F004B3B 0x00d5
#define I28F400B3T 0x8894
#define I28F400B3B 0x8895
#define I28F008S5 0x00a6
#define I28F016S5 0x00a0
#define I28F008SA 0x00a2
#define I28F008B3T 0x00d2
#define I28F008B3B 0x00d3
#define I28F800B3T 0x8892
#define I28F800B3B 0x8893
#define I28F016S3 0x00aa
#define I28F016B3T 0x00d0
#define I28F016B3B 0x00d1
#define I28F160B3T 0x8890
#define I28F160B3B 0x8891
#define I28F320B3T 0x8896
#define I28F320B3B 0x8897
#define I28F640B3T 0x8898
#define I28F640B3B 0x8899
#define I82802AB 0x00ad
#define I82802AC 0x00ac
/* Macronix */
#define MX29LV040C 0x004F
#define MX29LV160T 0x22C4
#define MX29LV160B 0x2249
#define MX29F016 0x00AD
#define MX29F002T 0x00B0
#define MX29F004T 0x0045
#define MX29F004B 0x0046
/* NEC */
#define UPD29F064115 0x221C
/* PMC */
#define PM49FL002 0x006D
#define PM49FL004 0x006E
#define PM49FL008 0x006A
/* Sharp */
#define LH28F640BF 0x00b0
/* ST - www.st.com */
#define M29W800DT 0x00D7
#define M29W800DB 0x005B
#define M29W160DT 0x22C4
#define M29W160DB 0x2249
#define M29W040B 0x00E3
#define M50FW040 0x002C
#define M50FW080 0x002D
#define M50FW016 0x002E
#define M50LPW080 0x002F
/* SST */
#define SST29EE020 0x0010
#define SST29LE020 0x0012
#define SST29EE512 0x005d
#define SST29LE512 0x003d
#define SST39LF800 0x2781
#define SST39LF160 0x2782
#define SST39VF1601 0x234b
#define SST39LF512 0x00D4
#define SST39LF010 0x00D5
#define SST39LF020 0x00D6
#define SST39LF040 0x00D7
#define SST39SF010A 0x00B5
#define SST39SF020A 0x00B6
#define SST49LF004B 0x0060
#define SST49LF008A 0x005a
#define SST49LF030A 0x001C
#define SST49LF040A 0x0051
#define SST49LF080A 0x005B
/* Toshiba */
#define TC58FVT160 0x00C2
#define TC58FVB160 0x0043
#define TC58FVT321 0x009A
#define TC58FVB321 0x009C
#define TC58FVT641 0x0093
#define TC58FVB641 0x0095
/* Winbond */
#define W49V002A 0x00b0
/*
* Unlock address sets for AMD command sets.
* Intel command sets use the MTD_UADDR_UNNECESSARY.
* Each identifier, except MTD_UADDR_UNNECESSARY, and
* MTD_UADDR_NO_SUPPORT must be defined below in unlock_addrs[].
* MTD_UADDR_NOT_SUPPORTED must be 0 so that structure
* initialization need not require initializing all of the
* unlock addresses for all bit widths.
*/
enum uaddr {
MTD_UADDR_NOT_SUPPORTED = 0, /* data width not supported */
MTD_UADDR_0x0555_0x02AA,
MTD_UADDR_0x0555_0x0AAA,
MTD_UADDR_0x5555_0x2AAA,
MTD_UADDR_0x0AAA_0x0555,
MTD_UADDR_DONT_CARE, /* Requires an arbitrary address */
MTD_UADDR_UNNECESSARY, /* Does not require any address */
};
struct unlock_addr {
u32 addr1;
u32 addr2;
};
/*
* I don't like the fact that the first entry in unlock_addrs[]
* exists, but is for MTD_UADDR_NOT_SUPPORTED - and, therefore,
* should not be used. The problem is that structures with
* initializers have extra fields initialized to 0. It is _very_
* desireable to have the unlock address entries for unsupported
* data widths automatically initialized - that means that
* MTD_UADDR_NOT_SUPPORTED must be 0 and the first entry here
* must go unused.
*/
static const struct unlock_addr unlock_addrs[] = {
[MTD_UADDR_NOT_SUPPORTED] = {
.addr1 = 0xffff,
.addr2 = 0xffff
},
[MTD_UADDR_0x0555_0x02AA] = {
.addr1 = 0x0555,
.addr2 = 0x02aa
},
[MTD_UADDR_0x0555_0x0AAA] = {
.addr1 = 0x0555,
.addr2 = 0x0aaa
},
[MTD_UADDR_0x5555_0x2AAA] = {
.addr1 = 0x5555,
.addr2 = 0x2aaa
},
[MTD_UADDR_0x0AAA_0x0555] = {
.addr1 = 0x0AAA,
.addr2 = 0x0555
},
[MTD_UADDR_DONT_CARE] = {
.addr1 = 0x0000, /* Doesn't matter which address */
.addr2 = 0x0000 /* is used - must be last entry */
},
[MTD_UADDR_UNNECESSARY] = {
.addr1 = 0x0000,
.addr2 = 0x0000
}
};
struct amd_flash_info {
const __u16 mfr_id;
const __u16 dev_id;
const char *name;
const int DevSize;
const int NumEraseRegions;
const int CmdSet;
const __u8 uaddr[4]; /* unlock addrs for 8, 16, 32, 64 */
const ulong regions[6];
};
#define ERASEINFO(size,blocks) (size<<8)|(blocks-1)
#define SIZE_64KiB 16
#define SIZE_128KiB 17
#define SIZE_256KiB 18
#define SIZE_512KiB 19
#define SIZE_1MiB 20
#define SIZE_2MiB 21
#define SIZE_4MiB 22
#define SIZE_8MiB 23
/*
* Please keep this list ordered by manufacturer!
* Fortunately, the list isn't searched often and so a
* slow, linear search isn't so bad.
*/
static const struct amd_flash_info jedec_table[] = {
{
.mfr_id = MANUFACTURER_AMD,
.dev_id = AM29F032B,
.name = "AMD AM29F032B",
.uaddr = {
[0] = MTD_UADDR_0x0555_0x02AA /* x8 */
},
.DevSize = SIZE_4MiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 1,
.regions = {
ERASEINFO(0x10000,64)
}
}, {
.mfr_id = MANUFACTURER_AMD,
.dev_id = AM29LV160DT,
.name = "AMD AM29LV160DT",
.uaddr = {
[0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */
[1] = MTD_UADDR_0x0555_0x02AA /* x16 */
},
.DevSize = SIZE_2MiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 4,
.regions = {
ERASEINFO(0x10000,31),
ERASEINFO(0x08000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x04000,1)
}
}, {
.mfr_id = MANUFACTURER_AMD,
.dev_id = AM29LV160DB,
.name = "AMD AM29LV160DB",
.uaddr = {
[0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */
[1] = MTD_UADDR_0x0555_0x02AA /* x16 */
},
.DevSize = SIZE_2MiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 4,
.regions = {
ERASEINFO(0x04000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x08000,1),
ERASEINFO(0x10000,31)
}
}, {
.mfr_id = MANUFACTURER_AMD,
.dev_id = AM29LV400BB,
.name = "AMD AM29LV400BB",
.uaddr = {
[0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */
[1] = MTD_UADDR_0x0555_0x02AA, /* x16 */
},
.DevSize = SIZE_512KiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 4,
.regions = {
ERASEINFO(0x04000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x08000,1),
ERASEINFO(0x10000,7)
}
}, {
.mfr_id = MANUFACTURER_AMD,
.dev_id = AM29LV400BT,
.name = "AMD AM29LV400BT",
.uaddr = {
[0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */
[1] = MTD_UADDR_0x0555_0x02AA, /* x16 */
},
.DevSize = SIZE_512KiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 4,
.regions = {
ERASEINFO(0x10000,7),
ERASEINFO(0x08000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x04000,1)
}
}, {
.mfr_id = MANUFACTURER_AMD,
.dev_id = AM29LV800BB,
.name = "AMD AM29LV800BB",
.uaddr = {
[0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */
[1] = MTD_UADDR_0x0555_0x02AA, /* x16 */
},
.DevSize = SIZE_1MiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 4,
.regions = {
ERASEINFO(0x04000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x08000,1),
ERASEINFO(0x10000,15),
}
}, {
/* add DL */
.mfr_id = MANUFACTURER_AMD,
.dev_id = AM29DL800BB,
.name = "AMD AM29DL800BB",
.uaddr = {
[0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */
[1] = MTD_UADDR_0x0555_0x02AA, /* x16 */
},
.DevSize = SIZE_1MiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 6,
.regions = {
ERASEINFO(0x04000,1),
ERASEINFO(0x08000,1),
ERASEINFO(0x02000,4),
ERASEINFO(0x08000,1),
ERASEINFO(0x04000,1),
ERASEINFO(0x10000,14)
}
}, {
.mfr_id = MANUFACTURER_AMD,
.dev_id = AM29DL800BT,
.name = "AMD AM29DL800BT",
.uaddr = {
[0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */
[1] = MTD_UADDR_0x0555_0x02AA, /* x16 */
},
.DevSize = SIZE_1MiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 6,
.regions = {
ERASEINFO(0x10000,14),
ERASEINFO(0x04000,1),
ERASEINFO(0x08000,1),
ERASEINFO(0x02000,4),
ERASEINFO(0x08000,1),
ERASEINFO(0x04000,1)
}
}, {
.mfr_id = MANUFACTURER_AMD,
.dev_id = AM29F800BB,
.name = "AMD AM29F800BB",
.uaddr = {
[0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */
[1] = MTD_UADDR_0x0555_0x02AA, /* x16 */
},
.DevSize = SIZE_1MiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 4,
.regions = {
ERASEINFO(0x04000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x08000,1),
ERASEINFO(0x10000,15),
}
}, {
.mfr_id = MANUFACTURER_AMD,
.dev_id = AM29LV800BT,
.name = "AMD AM29LV800BT",
.uaddr = {
[0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */
[1] = MTD_UADDR_0x0555_0x02AA, /* x16 */
},
.DevSize = SIZE_1MiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 4,
.regions = {
ERASEINFO(0x10000,15),
ERASEINFO(0x08000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x04000,1)
}
}, {
.mfr_id = MANUFACTURER_AMD,
.dev_id = AM29F800BT,
.name = "AMD AM29F800BT",
.uaddr = {
[0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */
[1] = MTD_UADDR_0x0555_0x02AA, /* x16 */
},
.DevSize = SIZE_1MiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 4,
.regions = {
ERASEINFO(0x10000,15),
ERASEINFO(0x08000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x04000,1)
}
}, {
.mfr_id = MANUFACTURER_AMD,
.dev_id = AM29F017D,
.name = "AMD AM29F017D",
.uaddr = {
[0] = MTD_UADDR_DONT_CARE /* x8 */
},
.DevSize = SIZE_2MiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 1,
.regions = {
ERASEINFO(0x10000,32),
}
}, {
.mfr_id = MANUFACTURER_AMD,
.dev_id = AM29F016D,
.name = "AMD AM29F016D",
.uaddr = {
[0] = MTD_UADDR_0x0555_0x02AA /* x8 */
},
.DevSize = SIZE_2MiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 1,
.regions = {
ERASEINFO(0x10000,32),
}
}, {
.mfr_id = MANUFACTURER_AMD,
.dev_id = AM29F080,
.name = "AMD AM29F080",
.uaddr = {
[0] = MTD_UADDR_0x0555_0x02AA /* x8 */
},
.DevSize = SIZE_1MiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 1,
.regions = {
ERASEINFO(0x10000,16),
}
}, {
.mfr_id = MANUFACTURER_AMD,
.dev_id = AM29F040,
.name = "AMD AM29F040",
.uaddr = {
[0] = MTD_UADDR_0x0555_0x02AA /* x8 */
},
.DevSize = SIZE_512KiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 1,
.regions = {
ERASEINFO(0x10000,8),
}
}, {
.mfr_id = MANUFACTURER_AMD,
.dev_id = AM29LV040B,
.name = "AMD AM29LV040B",
.uaddr = {
[0] = MTD_UADDR_0x0555_0x02AA /* x8 */
},
.DevSize = SIZE_512KiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 1,
.regions = {
ERASEINFO(0x10000,8),
}
}, {
.mfr_id = MANUFACTURER_AMD,
.dev_id = AM29F002T,
.name = "AMD AM29F002T",
.uaddr = {
[0] = MTD_UADDR_0x0555_0x02AA /* x8 */
},
.DevSize = SIZE_256KiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 4,
.regions = {
ERASEINFO(0x10000,3),
ERASEINFO(0x08000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x04000,1),
}
}, {
.mfr_id = MANUFACTURER_ATMEL,
.dev_id = AT49BV512,
.name = "Atmel AT49BV512",
.uaddr = {
[0] = MTD_UADDR_0x5555_0x2AAA /* x8 */
},
.DevSize = SIZE_64KiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 1,
.regions = {
ERASEINFO(0x10000,1)
}
}, {
.mfr_id = MANUFACTURER_ATMEL,
.dev_id = AT29LV512,
.name = "Atmel AT29LV512",
.uaddr = {
[0] = MTD_UADDR_0x5555_0x2AAA /* x8 */
},
.DevSize = SIZE_64KiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 1,
.regions = {
ERASEINFO(0x80,256),
ERASEINFO(0x80,256)
}
}, {
.mfr_id = MANUFACTURER_ATMEL,
.dev_id = AT49BV16X,
.name = "Atmel AT49BV16X",
.uaddr = {
[0] = MTD_UADDR_0x0555_0x0AAA, /* x8 */
[1] = MTD_UADDR_0x0555_0x0AAA /* x16 */
},
.DevSize = SIZE_2MiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 2,
.regions = {
ERASEINFO(0x02000,8),
ERASEINFO(0x10000,31)
}
}, {
.mfr_id = MANUFACTURER_ATMEL,
.dev_id = AT49BV16XT,
.name = "Atmel AT49BV16XT",
.uaddr = {
[0] = MTD_UADDR_0x0555_0x0AAA, /* x8 */
[1] = MTD_UADDR_0x0555_0x0AAA /* x16 */
},
.DevSize = SIZE_2MiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 2,
.regions = {
ERASEINFO(0x10000,31),
ERASEINFO(0x02000,8)
}
}, {
.mfr_id = MANUFACTURER_ATMEL,
.dev_id = AT49BV32X,
.name = "Atmel AT49BV32X",
.uaddr = {
[0] = MTD_UADDR_0x0555_0x0AAA, /* x8 */
[1] = MTD_UADDR_0x0555_0x0AAA /* x16 */
},
.DevSize = SIZE_4MiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 2,
.regions = {
ERASEINFO(0x02000,8),
ERASEINFO(0x10000,63)
}
}, {
.mfr_id = MANUFACTURER_ATMEL,
.dev_id = AT49BV32XT,
.name = "Atmel AT49BV32XT",
.uaddr = {
[0] = MTD_UADDR_0x0555_0x0AAA, /* x8 */
[1] = MTD_UADDR_0x0555_0x0AAA /* x16 */
},
.DevSize = SIZE_4MiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 2,
.regions = {
ERASEINFO(0x10000,63),
ERASEINFO(0x02000,8)
}
}, {
.mfr_id = MANUFACTURER_FUJITSU,
.dev_id = MBM29F040C,
.name = "Fujitsu MBM29F040C",
.uaddr = {
[0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */
},
.DevSize = SIZE_512KiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 1,
.regions = {
ERASEINFO(0x10000,8)
}
}, {
.mfr_id = MANUFACTURER_FUJITSU,
.dev_id = MBM29LV650UE,
.name = "Fujitsu MBM29LV650UE",
.uaddr = {
[0] = MTD_UADDR_DONT_CARE /* x16 */
},
.DevSize = SIZE_8MiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 1,
.regions = {
ERASEINFO(0x10000,128)
}
}, {
.mfr_id = MANUFACTURER_FUJITSU,
.dev_id = MBM29LV320TE,
.name = "Fujitsu MBM29LV320TE",
.uaddr = {
[0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */
[1] = MTD_UADDR_0x0555_0x02AA, /* x16 */
},
.DevSize = SIZE_4MiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 2,
.regions = {
ERASEINFO(0x10000,63),
ERASEINFO(0x02000,8)
}
}, {
.mfr_id = MANUFACTURER_FUJITSU,
.dev_id = MBM29LV320BE,
.name = "Fujitsu MBM29LV320BE",
.uaddr = {
[0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */
[1] = MTD_UADDR_0x0555_0x02AA, /* x16 */
},
.DevSize = SIZE_4MiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 2,
.regions = {
ERASEINFO(0x02000,8),
ERASEINFO(0x10000,63)
}
}, {
.mfr_id = MANUFACTURER_FUJITSU,
.dev_id = MBM29LV160TE,
.name = "Fujitsu MBM29LV160TE",
.uaddr = {
[0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */
[1] = MTD_UADDR_0x0555_0x02AA, /* x16 */
},
.DevSize = SIZE_2MiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 4,
.regions = {
ERASEINFO(0x10000,31),
ERASEINFO(0x08000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x04000,1)
}
}, {
.mfr_id = MANUFACTURER_FUJITSU,
.dev_id = MBM29LV160BE,
.name = "Fujitsu MBM29LV160BE",
.uaddr = {
[0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */
[1] = MTD_UADDR_0x0555_0x02AA, /* x16 */
},
.DevSize = SIZE_2MiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 4,
.regions = {
ERASEINFO(0x04000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x08000,1),
ERASEINFO(0x10000,31)
}
}, {
.mfr_id = MANUFACTURER_FUJITSU,
.dev_id = MBM29LV800BA,
.name = "Fujitsu MBM29LV800BA",
.uaddr = {
[0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */
[1] = MTD_UADDR_0x0555_0x02AA, /* x16 */
},
.DevSize = SIZE_1MiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 4,
.regions = {
ERASEINFO(0x04000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x08000,1),
ERASEINFO(0x10000,15)
}
}, {
.mfr_id = MANUFACTURER_FUJITSU,
.dev_id = MBM29LV800TA,
.name = "Fujitsu MBM29LV800TA",
.uaddr = {
[0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */
[1] = MTD_UADDR_0x0555_0x02AA, /* x16 */
},
.DevSize = SIZE_1MiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 4,
.regions = {
ERASEINFO(0x10000,15),
ERASEINFO(0x08000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x04000,1)
}
}, {
.mfr_id = MANUFACTURER_FUJITSU,
.dev_id = MBM29LV400BC,
.name = "Fujitsu MBM29LV400BC",
.uaddr = {
[0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */
[1] = MTD_UADDR_0x0555_0x02AA, /* x16 */
},
.DevSize = SIZE_512KiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 4,
.regions = {
ERASEINFO(0x04000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x08000,1),
ERASEINFO(0x10000,7)
}
}, {
.mfr_id = MANUFACTURER_FUJITSU,
.dev_id = MBM29LV400TC,
.name = "Fujitsu MBM29LV400TC",
.uaddr = {
[0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */
[1] = MTD_UADDR_0x0555_0x02AA, /* x16 */
},
.DevSize = SIZE_512KiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 4,
.regions = {
ERASEINFO(0x10000,7),
ERASEINFO(0x08000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x04000,1)
}
}, {
.mfr_id = MANUFACTURER_HYUNDAI,
.dev_id = HY29F002T,
.name = "Hyundai HY29F002T",
.uaddr = {
[0] = MTD_UADDR_0x0555_0x02AA /* x8 */
},
.DevSize = SIZE_256KiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 4,
.regions = {
ERASEINFO(0x10000,3),
ERASEINFO(0x08000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x04000,1),
}
}, {
.mfr_id = MANUFACTURER_INTEL,
.dev_id = I28F004B3B,
.name = "Intel 28F004B3B",
.uaddr = {
[0] = MTD_UADDR_UNNECESSARY, /* x8 */
},
.DevSize = SIZE_512KiB,
.CmdSet = P_ID_INTEL_STD,
.NumEraseRegions= 2,
.regions = {
ERASEINFO(0x02000, 8),
ERASEINFO(0x10000, 7),
}
}, {
.mfr_id = MANUFACTURER_INTEL,
.dev_id = I28F004B3T,
.name = "Intel 28F004B3T",
.uaddr = {
[0] = MTD_UADDR_UNNECESSARY, /* x8 */
},
.DevSize = SIZE_512KiB,
.CmdSet = P_ID_INTEL_STD,
.NumEraseRegions= 2,
.regions = {
ERASEINFO(0x10000, 7),
ERASEINFO(0x02000, 8),
}
}, {
.mfr_id = MANUFACTURER_INTEL,
.dev_id = I28F400B3B,
.name = "Intel 28F400B3B",
.uaddr = {
[0] = MTD_UADDR_UNNECESSARY, /* x8 */
[1] = MTD_UADDR_UNNECESSARY, /* x16 */
},
.DevSize = SIZE_512KiB,
.CmdSet = P_ID_INTEL_STD,
.NumEraseRegions= 2,
.regions = {
ERASEINFO(0x02000, 8),
ERASEINFO(0x10000, 7),
}
}, {
.mfr_id = MANUFACTURER_INTEL,
.dev_id = I28F400B3T,
.name = "Intel 28F400B3T",
.uaddr = {
[0] = MTD_UADDR_UNNECESSARY, /* x8 */
[1] = MTD_UADDR_UNNECESSARY, /* x16 */
},
.DevSize = SIZE_512KiB,
.CmdSet = P_ID_INTEL_STD,
.NumEraseRegions= 2,
.regions = {
ERASEINFO(0x10000, 7),
ERASEINFO(0x02000, 8),
}
}, {
.mfr_id = MANUFACTURER_INTEL,
.dev_id = I28F008B3B,
.name = "Intel 28F008B3B",
.uaddr = {
[0] = MTD_UADDR_UNNECESSARY, /* x8 */
},
.DevSize = SIZE_1MiB,
.CmdSet = P_ID_INTEL_STD,
.NumEraseRegions= 2,
.regions = {
ERASEINFO(0x02000, 8),
ERASEINFO(0x10000, 15),
}
}, {
.mfr_id = MANUFACTURER_INTEL,
.dev_id = I28F008B3T,
.name = "Intel 28F008B3T",
.uaddr = {
[0] = MTD_UADDR_UNNECESSARY, /* x8 */
},
.DevSize = SIZE_1MiB,
.CmdSet = P_ID_INTEL_STD,
.NumEraseRegions= 2,
.regions = {
ERASEINFO(0x10000, 15),
ERASEINFO(0x02000, 8),
}
}, {
.mfr_id = MANUFACTURER_INTEL,
.dev_id = I28F008S5,
.name = "Intel 28F008S5",
.uaddr = {
[0] = MTD_UADDR_UNNECESSARY, /* x8 */
},
.DevSize = SIZE_1MiB,
.CmdSet = P_ID_INTEL_EXT,
.NumEraseRegions= 1,
.regions = {
ERASEINFO(0x10000,16),
}
}, {
.mfr_id = MANUFACTURER_INTEL,
.dev_id = I28F016S5,
.name = "Intel 28F016S5",
.uaddr = {
[0] = MTD_UADDR_UNNECESSARY, /* x8 */
},
.DevSize = SIZE_2MiB,
.CmdSet = P_ID_INTEL_EXT,
.NumEraseRegions= 1,
.regions = {
ERASEINFO(0x10000,32),
}
}, {
.mfr_id = MANUFACTURER_INTEL,
.dev_id = I28F008SA,
.name = "Intel 28F008SA",
.uaddr = {
[0] = MTD_UADDR_UNNECESSARY, /* x8 */
},
.DevSize = SIZE_1MiB,
.CmdSet = P_ID_INTEL_STD,
.NumEraseRegions= 1,
.regions = {
ERASEINFO(0x10000, 16),
}
}, {
.mfr_id = MANUFACTURER_INTEL,
.dev_id = I28F800B3B,
.name = "Intel 28F800B3B",
.uaddr = {
[1] = MTD_UADDR_UNNECESSARY, /* x16 */
},
.DevSize = SIZE_1MiB,
.CmdSet = P_ID_INTEL_STD,
.NumEraseRegions= 2,
.regions = {
ERASEINFO(0x02000, 8),
ERASEINFO(0x10000, 15),
}
}, {
.mfr_id = MANUFACTURER_INTEL,
.dev_id = I28F800B3T,
.name = "Intel 28F800B3T",
.uaddr = {
[1] = MTD_UADDR_UNNECESSARY, /* x16 */
},
.DevSize = SIZE_1MiB,
.CmdSet = P_ID_INTEL_STD,
.NumEraseRegions= 2,
.regions = {
ERASEINFO(0x10000, 15),
ERASEINFO(0x02000, 8),
}
}, {
.mfr_id = MANUFACTURER_INTEL,
.dev_id = I28F016B3B,
.name = "Intel 28F016B3B",
.uaddr = {
[0] = MTD_UADDR_UNNECESSARY, /* x8 */
},
.DevSize = SIZE_2MiB,
.CmdSet = P_ID_INTEL_STD,
.NumEraseRegions= 2,
.regions = {
ERASEINFO(0x02000, 8),
ERASEINFO(0x10000, 31),
}
}, {
.mfr_id = MANUFACTURER_INTEL,
.dev_id = I28F016S3,
.name = "Intel I28F016S3",
.uaddr = {
[0] = MTD_UADDR_UNNECESSARY, /* x8 */
},
.DevSize = SIZE_2MiB,
.CmdSet = P_ID_INTEL_STD,
.NumEraseRegions= 1,
.regions = {
ERASEINFO(0x10000, 32),
}
}, {
.mfr_id = MANUFACTURER_INTEL,
.dev_id = I28F016B3T,
.name = "Intel 28F016B3T",
.uaddr = {
[0] = MTD_UADDR_UNNECESSARY, /* x8 */
},
.DevSize = SIZE_2MiB,
.CmdSet = P_ID_INTEL_STD,
.NumEraseRegions= 2,
.regions = {
ERASEINFO(0x10000, 31),
ERASEINFO(0x02000, 8),
}
}, {
.mfr_id = MANUFACTURER_INTEL,
.dev_id = I28F160B3B,
.name = "Intel 28F160B3B",
.uaddr = {
[1] = MTD_UADDR_UNNECESSARY, /* x16 */
},
.DevSize = SIZE_2MiB,
.CmdSet = P_ID_INTEL_STD,
.NumEraseRegions= 2,
.regions = {
ERASEINFO(0x02000, 8),
ERASEINFO(0x10000, 31),
}
}, {
.mfr_id = MANUFACTURER_INTEL,
.dev_id = I28F160B3T,
.name = "Intel 28F160B3T",
.uaddr = {
[1] = MTD_UADDR_UNNECESSARY, /* x16 */
},
.DevSize = SIZE_2MiB,
.CmdSet = P_ID_INTEL_STD,
.NumEraseRegions= 2,
.regions = {
ERASEINFO(0x10000, 31),
ERASEINFO(0x02000, 8),
}
}, {
.mfr_id = MANUFACTURER_INTEL,
.dev_id = I28F320B3B,
.name = "Intel 28F320B3B",
.uaddr = {
[1] = MTD_UADDR_UNNECESSARY, /* x16 */
},
.DevSize = SIZE_4MiB,
.CmdSet = P_ID_INTEL_STD,
.NumEraseRegions= 2,
.regions = {
ERASEINFO(0x02000, 8),
ERASEINFO(0x10000, 63),
}
}, {
.mfr_id = MANUFACTURER_INTEL,
.dev_id = I28F320B3T,
.name = "Intel 28F320B3T",
.uaddr = {
[1] = MTD_UADDR_UNNECESSARY, /* x16 */
},
.DevSize = SIZE_4MiB,
.CmdSet = P_ID_INTEL_STD,
.NumEraseRegions= 2,
.regions = {
ERASEINFO(0x10000, 63),
ERASEINFO(0x02000, 8),
}
}, {
.mfr_id = MANUFACTURER_INTEL,
.dev_id = I28F640B3B,
.name = "Intel 28F640B3B",
.uaddr = {
[1] = MTD_UADDR_UNNECESSARY, /* x16 */
},
.DevSize = SIZE_8MiB,
.CmdSet = P_ID_INTEL_STD,
.NumEraseRegions= 2,
.regions = {
ERASEINFO(0x02000, 8),
ERASEINFO(0x10000, 127),
}
}, {
.mfr_id = MANUFACTURER_INTEL,
.dev_id = I28F640B3T,
.name = "Intel 28F640B3T",
.uaddr = {
[1] = MTD_UADDR_UNNECESSARY, /* x16 */
},
.DevSize = SIZE_8MiB,
.CmdSet = P_ID_INTEL_STD,
.NumEraseRegions= 2,
.regions = {
ERASEINFO(0x10000, 127),
ERASEINFO(0x02000, 8),
}
}, {
.mfr_id = MANUFACTURER_INTEL,
.dev_id = I82802AB,
.name = "Intel 82802AB",
.uaddr = {
[0] = MTD_UADDR_UNNECESSARY, /* x8 */
},
.DevSize = SIZE_512KiB,
.CmdSet = P_ID_INTEL_EXT,
.NumEraseRegions= 1,
.regions = {
ERASEINFO(0x10000,8),
}
}, {
.mfr_id = MANUFACTURER_INTEL,
.dev_id = I82802AC,
.name = "Intel 82802AC",
.uaddr = {
[0] = MTD_UADDR_UNNECESSARY, /* x8 */
},
.DevSize = SIZE_1MiB,
.CmdSet = P_ID_INTEL_EXT,
.NumEraseRegions= 1,
.regions = {
ERASEINFO(0x10000,16),
}
}, {
.mfr_id = MANUFACTURER_MACRONIX,
.dev_id = MX29LV040C,
.name = "Macronix MX29LV040C",
.uaddr = {
[0] = MTD_UADDR_0x0555_0x02AA, /* x8 */
},
.DevSize = SIZE_512KiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 1,
.regions = {
ERASEINFO(0x10000,8),
}
}, {
.mfr_id = MANUFACTURER_MACRONIX,
.dev_id = MX29LV160T,
.name = "MXIC MX29LV160T",
.uaddr = {
[0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */
[1] = MTD_UADDR_0x0555_0x02AA, /* x16 */
},
.DevSize = SIZE_2MiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 4,
.regions = {
ERASEINFO(0x10000,31),
ERASEINFO(0x08000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x04000,1)
}
}, {
.mfr_id = MANUFACTURER_NEC,
.dev_id = UPD29F064115,
.name = "NEC uPD29F064115",
.uaddr = {
[0] = MTD_UADDR_0x0555_0x02AA, /* x8 */
[1] = MTD_UADDR_0x0555_0x02AA, /* x16 */
},
.DevSize = SIZE_8MiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 3,
.regions = {
ERASEINFO(0x2000,8),
ERASEINFO(0x10000,126),
ERASEINFO(0x2000,8),
}
}, {
.mfr_id = MANUFACTURER_MACRONIX,
.dev_id = MX29LV160B,
.name = "MXIC MX29LV160B",
.uaddr = {
[0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */
[1] = MTD_UADDR_0x0555_0x02AA, /* x16 */
},
.DevSize = SIZE_2MiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 4,
.regions = {
ERASEINFO(0x04000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x08000,1),
ERASEINFO(0x10000,31)
}
}, {
.mfr_id = MANUFACTURER_MACRONIX,
.dev_id = MX29F016,
.name = "Macronix MX29F016",
.uaddr = {
[0] = MTD_UADDR_0x0555_0x02AA /* x8 */
},
.DevSize = SIZE_2MiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 1,
.regions = {
ERASEINFO(0x10000,32),
}
}, {
.mfr_id = MANUFACTURER_MACRONIX,
.dev_id = MX29F004T,
.name = "Macronix MX29F004T",
.uaddr = {
[0] = MTD_UADDR_0x0555_0x02AA /* x8 */
},
.DevSize = SIZE_512KiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 4,
.regions = {
ERASEINFO(0x10000,7),
ERASEINFO(0x08000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x04000,1),
}
}, {
.mfr_id = MANUFACTURER_MACRONIX,
.dev_id = MX29F004B,
.name = "Macronix MX29F004B",
.uaddr = {
[0] = MTD_UADDR_0x0555_0x02AA /* x8 */
},
.DevSize = SIZE_512KiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 4,
.regions = {
ERASEINFO(0x04000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x08000,1),
ERASEINFO(0x10000,7),
}
}, {
.mfr_id = MANUFACTURER_MACRONIX,
.dev_id = MX29F002T,
.name = "Macronix MX29F002T",
.uaddr = {
[0] = MTD_UADDR_0x0555_0x02AA /* x8 */
},
.DevSize = SIZE_256KiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 4,
.regions = {
ERASEINFO(0x10000,3),
ERASEINFO(0x08000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x04000,1),
}
}, {
.mfr_id = MANUFACTURER_PMC,
.dev_id = PM49FL002,
.name = "PMC Pm49FL002",
.uaddr = {
[0] = MTD_UADDR_0x5555_0x2AAA /* x8 */
},
.DevSize = SIZE_256KiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 1,
.regions = {
ERASEINFO( 0x01000, 64 )
}
}, {
.mfr_id = MANUFACTURER_PMC,
.dev_id = PM49FL004,
.name = "PMC Pm49FL004",
.uaddr = {
[0] = MTD_UADDR_0x5555_0x2AAA /* x8 */
},
.DevSize = SIZE_512KiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 1,
.regions = {
ERASEINFO( 0x01000, 128 )
}
}, {
.mfr_id = MANUFACTURER_PMC,
.dev_id = PM49FL008,
.name = "PMC Pm49FL008",
.uaddr = {
[0] = MTD_UADDR_0x5555_0x2AAA /* x8 */
},
.DevSize = SIZE_1MiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 1,
.regions = {
ERASEINFO( 0x01000, 256 )
}
}, {
.mfr_id = MANUFACTURER_SHARP,
.dev_id = LH28F640BF,
.name = "LH28F640BF",
.uaddr = {
[0] = MTD_UADDR_UNNECESSARY, /* x8 */
},
.DevSize = SIZE_4MiB,
.CmdSet = P_ID_INTEL_STD,
.NumEraseRegions= 1,
.regions = {
ERASEINFO(0x40000,16),
}
}, {
.mfr_id = MANUFACTURER_SST,
.dev_id = SST39LF512,
.name = "SST 39LF512",
.uaddr = {
[0] = MTD_UADDR_0x5555_0x2AAA /* x8 */
},
.DevSize = SIZE_64KiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 1,
.regions = {
ERASEINFO(0x01000,16),
}
}, {
.mfr_id = MANUFACTURER_SST,
.dev_id = SST39LF010,
.name = "SST 39LF010",
.uaddr = {
[0] = MTD_UADDR_0x5555_0x2AAA /* x8 */
},
.DevSize = SIZE_128KiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 1,
.regions = {
ERASEINFO(0x01000,32),
}
}, {
.mfr_id = MANUFACTURER_SST,
.dev_id = SST29EE020,
.name = "SST 29EE020",
.uaddr = {
[0] = MTD_UADDR_0x5555_0x2AAA /* x8 */
},
.DevSize = SIZE_256KiB,
.CmdSet = P_ID_SST_PAGE,
.NumEraseRegions= 1,
.regions = {ERASEINFO(0x01000,64),
}
}, {
.mfr_id = MANUFACTURER_SST,
.dev_id = SST29LE020,
.name = "SST 29LE020",
.uaddr = {
[0] = MTD_UADDR_0x5555_0x2AAA /* x8 */
},
.DevSize = SIZE_256KiB,
.CmdSet = P_ID_SST_PAGE,
.NumEraseRegions= 1,
.regions = {ERASEINFO(0x01000,64),
}
}, {
.mfr_id = MANUFACTURER_SST,
.dev_id = SST39LF020,
.name = "SST 39LF020",
.uaddr = {
[0] = MTD_UADDR_0x5555_0x2AAA /* x8 */
},
.DevSize = SIZE_256KiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 1,
.regions = {
ERASEINFO(0x01000,64),
}
}, {
.mfr_id = MANUFACTURER_SST,
.dev_id = SST39LF040,
.name = "SST 39LF040",
.uaddr = {
[0] = MTD_UADDR_0x5555_0x2AAA /* x8 */
},
.DevSize = SIZE_512KiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 1,
.regions = {
ERASEINFO(0x01000,128),
}
}, {
.mfr_id = MANUFACTURER_SST,
.dev_id = SST39SF010A,
.name = "SST 39SF010A",
.uaddr = {
[0] = MTD_UADDR_0x5555_0x2AAA /* x8 */
},
.DevSize = SIZE_128KiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 1,
.regions = {
ERASEINFO(0x01000,32),
}
}, {
.mfr_id = MANUFACTURER_SST,
.dev_id = SST39SF020A,
.name = "SST 39SF020A",
.uaddr = {
[0] = MTD_UADDR_0x5555_0x2AAA /* x8 */
},
.DevSize = SIZE_256KiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 1,
.regions = {
ERASEINFO(0x01000,64),
}
}, {
.mfr_id = MANUFACTURER_SST,
.dev_id = SST49LF004B,
.name = "SST 49LF004B",
.uaddr = {
[0] = MTD_UADDR_0x5555_0x2AAA /* x8 */
},
.DevSize = SIZE_512KiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 1,
.regions = {
ERASEINFO(0x01000,128),
}
}, {
.mfr_id = MANUFACTURER_SST,
.dev_id = SST49LF008A,
.name = "SST 49LF008A",
.uaddr = {
[0] = MTD_UADDR_0x5555_0x2AAA /* x8 */
},
.DevSize = SIZE_1MiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 1,
.regions = {
ERASEINFO(0x01000,256),
}
}, {
.mfr_id = MANUFACTURER_SST,
.dev_id = SST49LF030A,
.name = "SST 49LF030A",
.uaddr = {
[0] = MTD_UADDR_0x5555_0x2AAA /* x8 */
},
.DevSize = SIZE_512KiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 1,
.regions = {
ERASEINFO(0x01000,96),
}
}, {
.mfr_id = MANUFACTURER_SST,
.dev_id = SST49LF040A,
.name = "SST 49LF040A",
.uaddr = {
[0] = MTD_UADDR_0x5555_0x2AAA /* x8 */
},
.DevSize = SIZE_512KiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 1,
.regions = {
ERASEINFO(0x01000,128),
}
}, {
.mfr_id = MANUFACTURER_SST,
.dev_id = SST49LF080A,
.name = "SST 49LF080A",
.uaddr = {
[0] = MTD_UADDR_0x5555_0x2AAA /* x8 */
},
.DevSize = SIZE_1MiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 1,
.regions = {
ERASEINFO(0x01000,256),
}
}, {
.mfr_id = MANUFACTURER_SST, /* should be CFI */
.dev_id = SST39LF160,
.name = "SST 39LF160",
.uaddr = {
[0] = MTD_UADDR_0x5555_0x2AAA, /* x8 */
[1] = MTD_UADDR_0x5555_0x2AAA /* x16 */
},
.DevSize = SIZE_2MiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 2,
.regions = {
ERASEINFO(0x1000,256),
ERASEINFO(0x1000,256)
}
}, {
.mfr_id = MANUFACTURER_SST, /* should be CFI */
.dev_id = SST39VF1601,
.name = "SST 39VF1601",
.uaddr = {
[0] = MTD_UADDR_0x5555_0x2AAA, /* x8 */
[1] = MTD_UADDR_0x5555_0x2AAA /* x16 */
},
.DevSize = SIZE_2MiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 2,
.regions = {
ERASEINFO(0x1000,256),
ERASEINFO(0x1000,256)
}
}, {
.mfr_id = MANUFACTURER_ST, /* FIXME - CFI device? */
.dev_id = M29W800DT,
.name = "ST M29W800DT",
.uaddr = {
[0] = MTD_UADDR_0x5555_0x2AAA, /* x8 */
[1] = MTD_UADDR_0x5555_0x2AAA /* x16 */
},
.DevSize = SIZE_1MiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 4,
.regions = {
ERASEINFO(0x10000,15),
ERASEINFO(0x08000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x04000,1)
}
}, {
.mfr_id = MANUFACTURER_ST, /* FIXME - CFI device? */
.dev_id = M29W800DB,
.name = "ST M29W800DB",
.uaddr = {
[0] = MTD_UADDR_0x5555_0x2AAA, /* x8 */
[1] = MTD_UADDR_0x5555_0x2AAA /* x16 */
},
.DevSize = SIZE_1MiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 4,
.regions = {
ERASEINFO(0x04000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x08000,1),
ERASEINFO(0x10000,15)
}
}, {
.mfr_id = MANUFACTURER_ST, /* FIXME - CFI device? */
.dev_id = M29W160DT,
.name = "ST M29W160DT",
.uaddr = {
[0] = MTD_UADDR_0x0555_0x02AA, /* x8 */
[1] = MTD_UADDR_0x0555_0x02AA, /* x16 */
},
.DevSize = SIZE_2MiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 4,
.regions = {
ERASEINFO(0x10000,31),
ERASEINFO(0x08000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x04000,1)
}
}, {
.mfr_id = MANUFACTURER_ST, /* FIXME - CFI device? */
.dev_id = M29W160DB,
.name = "ST M29W160DB",
.uaddr = {
[0] = MTD_UADDR_0x0555_0x02AA, /* x8 */
[1] = MTD_UADDR_0x0555_0x02AA, /* x16 */
},
.DevSize = SIZE_2MiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 4,
.regions = {
ERASEINFO(0x04000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x08000,1),
ERASEINFO(0x10000,31)
}
}, {
.mfr_id = MANUFACTURER_ST,
.dev_id = M29W040B,
.name = "ST M29W040B",
.uaddr = {
[0] = MTD_UADDR_0x0555_0x02AA /* x8 */
},
.DevSize = SIZE_512KiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 1,
.regions = {
ERASEINFO(0x10000,8),
}
}, {
.mfr_id = MANUFACTURER_ST,
.dev_id = M50FW040,
.name = "ST M50FW040",
.uaddr = {
[0] = MTD_UADDR_UNNECESSARY, /* x8 */
},
.DevSize = SIZE_512KiB,
.CmdSet = P_ID_INTEL_EXT,
.NumEraseRegions= 1,
.regions = {
ERASEINFO(0x10000,8),
}
}, {
.mfr_id = MANUFACTURER_ST,
.dev_id = M50FW080,
.name = "ST M50FW080",
.uaddr = {
[0] = MTD_UADDR_UNNECESSARY, /* x8 */
},
.DevSize = SIZE_1MiB,
.CmdSet = P_ID_INTEL_EXT,
.NumEraseRegions= 1,
.regions = {
ERASEINFO(0x10000,16),
}
}, {
.mfr_id = MANUFACTURER_ST,
.dev_id = M50FW016,
.name = "ST M50FW016",
.uaddr = {
[0] = MTD_UADDR_UNNECESSARY, /* x8 */
},
.DevSize = SIZE_2MiB,
.CmdSet = P_ID_INTEL_EXT,
.NumEraseRegions= 1,
.regions = {
ERASEINFO(0x10000,32),
}
}, {
.mfr_id = MANUFACTURER_ST,
.dev_id = M50LPW080,
.name = "ST M50LPW080",
.uaddr = {
[0] = MTD_UADDR_UNNECESSARY, /* x8 */
},
.DevSize = SIZE_1MiB,
.CmdSet = P_ID_INTEL_EXT,
.NumEraseRegions= 1,
.regions = {
ERASEINFO(0x10000,16),
}
}, {
.mfr_id = MANUFACTURER_TOSHIBA,
.dev_id = TC58FVT160,
.name = "Toshiba TC58FVT160",
.uaddr = {
[0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */
[1] = MTD_UADDR_0x0555_0x02AA /* x16 */
},
.DevSize = SIZE_2MiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 4,
.regions = {
ERASEINFO(0x10000,31),
ERASEINFO(0x08000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x04000,1)
}
}, {
.mfr_id = MANUFACTURER_TOSHIBA,
.dev_id = TC58FVB160,
.name = "Toshiba TC58FVB160",
.uaddr = {
[0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */
[1] = MTD_UADDR_0x0555_0x02AA /* x16 */
},
.DevSize = SIZE_2MiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 4,
.regions = {
ERASEINFO(0x04000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x08000,1),
ERASEINFO(0x10000,31)
}
}, {
.mfr_id = MANUFACTURER_TOSHIBA,
.dev_id = TC58FVB321,
.name = "Toshiba TC58FVB321",
.uaddr = {
[0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */
[1] = MTD_UADDR_0x0555_0x02AA /* x16 */
},
.DevSize = SIZE_4MiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 2,
.regions = {
ERASEINFO(0x02000,8),
ERASEINFO(0x10000,63)
}
}, {
.mfr_id = MANUFACTURER_TOSHIBA,
.dev_id = TC58FVT321,
.name = "Toshiba TC58FVT321",
.uaddr = {
[0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */
[1] = MTD_UADDR_0x0555_0x02AA /* x16 */
},
.DevSize = SIZE_4MiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 2,
.regions = {
ERASEINFO(0x10000,63),
ERASEINFO(0x02000,8)
}
}, {
.mfr_id = MANUFACTURER_TOSHIBA,
.dev_id = TC58FVB641,
.name = "Toshiba TC58FVB641",
.uaddr = {
[0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */
[1] = MTD_UADDR_0x0555_0x02AA, /* x16 */
},
.DevSize = SIZE_8MiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 2,
.regions = {
ERASEINFO(0x02000,8),
ERASEINFO(0x10000,127)
}
}, {
.mfr_id = MANUFACTURER_TOSHIBA,
.dev_id = TC58FVT641,
.name = "Toshiba TC58FVT641",
.uaddr = {
[0] = MTD_UADDR_0x0AAA_0x0555, /* x8 */
[1] = MTD_UADDR_0x0555_0x02AA, /* x16 */
},
.DevSize = SIZE_8MiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 2,
.regions = {
ERASEINFO(0x10000,127),
ERASEINFO(0x02000,8)
}
}, {
.mfr_id = MANUFACTURER_WINBOND,
.dev_id = W49V002A,
.name = "Winbond W49V002A",
.uaddr = {
[0] = MTD_UADDR_0x5555_0x2AAA /* x8 */
},
.DevSize = SIZE_256KiB,
.CmdSet = P_ID_AMD_STD,
.NumEraseRegions= 4,
.regions = {
ERASEINFO(0x10000, 3),
ERASEINFO(0x08000, 1),
ERASEINFO(0x02000, 2),
ERASEINFO(0x04000, 1),
}
}
};
static int cfi_jedec_setup(struct cfi_private *p_cfi, int index);
static int jedec_probe_chip(struct map_info *map, __u32 base,
unsigned long *chip_map, struct cfi_private *cfi);
static struct mtd_info *jedec_probe(struct map_info *map);
static inline u32 jedec_read_mfr(struct map_info *map, __u32 base,
struct cfi_private *cfi)
{
map_word result;
unsigned long mask;
u32 ofs = cfi_build_cmd_addr(0, cfi_interleave(cfi), cfi->device_type);
mask = (1 << (cfi->device_type * 8)) -1;
result = map_read(map, base + ofs);
return result.x[0] & mask;
}
static inline u32 jedec_read_id(struct map_info *map, __u32 base,
struct cfi_private *cfi)
{
map_word result;
unsigned long mask;
u32 ofs = cfi_build_cmd_addr(1, cfi_interleave(cfi), cfi->device_type);
mask = (1 << (cfi->device_type * 8)) -1;
result = map_read(map, base + ofs);
return result.x[0] & mask;
}
static inline void jedec_reset(u32 base, struct map_info *map,
struct cfi_private *cfi)
{
/* Reset */
/* after checking the datasheets for SST, MACRONIX and ATMEL
* (oh and incidentaly the jedec spec - 3.5.3.3) the reset
* sequence is *supposed* to be 0xaa at 0x5555, 0x55 at
* 0x2aaa, 0xF0 at 0x5555 this will not affect the AMD chips
* as they will ignore the writes and dont care what address
* the F0 is written to */
if(cfi->addr_unlock1) {
DEBUG( MTD_DEBUG_LEVEL3,
"reset unlock called %x %x \n",
cfi->addr_unlock1,cfi->addr_unlock2);
cfi_send_gen_cmd(0xaa, cfi->addr_unlock1, base, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, base, map, cfi, cfi->device_type, NULL);
}
cfi_send_gen_cmd(0xF0, cfi->addr_unlock1, base, map, cfi, cfi->device_type, NULL);
/* Some misdesigned intel chips do not respond for 0xF0 for a reset,
* so ensure we're in read mode. Send both the Intel and the AMD command
* for this. Intel uses 0xff for this, AMD uses 0xff for NOP, so
* this should be safe.
*/
cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL);
/* FIXME - should have reset delay before continuing */
}
static inline __u8 finfo_uaddr(const struct amd_flash_info *finfo, int device_type)
{
int uaddr_idx;
__u8 uaddr = MTD_UADDR_NOT_SUPPORTED;
switch ( device_type ) {
case CFI_DEVICETYPE_X8: uaddr_idx = 0; break;
case CFI_DEVICETYPE_X16: uaddr_idx = 1; break;
case CFI_DEVICETYPE_X32: uaddr_idx = 2; break;
default:
printk(KERN_NOTICE "MTD: %s(): unknown device_type %d\n",
__func__, device_type);
goto uaddr_done;
}
uaddr = finfo->uaddr[uaddr_idx];
if (uaddr != MTD_UADDR_NOT_SUPPORTED ) {
/* ASSERT("The unlock addresses for non-8-bit mode
are bollocks. We don't really need an array."); */
uaddr = finfo->uaddr[0];
}
uaddr_done:
return uaddr;
}
static int cfi_jedec_setup(struct cfi_private *p_cfi, int index)
{
int i,num_erase_regions;
__u8 uaddr;
printk("Found: %s\n",jedec_table[index].name);
num_erase_regions = jedec_table[index].NumEraseRegions;
p_cfi->cfiq = kmalloc(sizeof(struct cfi_ident) + num_erase_regions * 4, GFP_KERNEL);
if (!p_cfi->cfiq) {
//xx printk(KERN_WARNING "%s: kmalloc failed for CFI ident structure\n", map->name);
return 0;
}
memset(p_cfi->cfiq,0,sizeof(struct cfi_ident));
p_cfi->cfiq->P_ID = jedec_table[index].CmdSet;
p_cfi->cfiq->NumEraseRegions = jedec_table[index].NumEraseRegions;
p_cfi->cfiq->DevSize = jedec_table[index].DevSize;
p_cfi->cfi_mode = CFI_MODE_JEDEC;
for (i=0; i<num_erase_regions; i++){
p_cfi->cfiq->EraseRegionInfo[i] = jedec_table[index].regions[i];
}
p_cfi->cmdset_priv = NULL;
/* This may be redundant for some cases, but it doesn't hurt */
p_cfi->mfr = jedec_table[index].mfr_id;
p_cfi->id = jedec_table[index].dev_id;
uaddr = finfo_uaddr(&jedec_table[index], p_cfi->device_type);
if ( uaddr == MTD_UADDR_NOT_SUPPORTED ) {
kfree( p_cfi->cfiq );
return 0;
}
p_cfi->addr_unlock1 = unlock_addrs[uaddr].addr1;
p_cfi->addr_unlock2 = unlock_addrs[uaddr].addr2;
return 1; /* ok */
}
/*
* There is a BIG problem properly ID'ing the JEDEC devic and guaranteeing
* the mapped address, unlock addresses, and proper chip ID. This function
* attempts to minimize errors. It is doubtfull that this probe will ever
* be perfect - consequently there should be some module parameters that
* could be manually specified to force the chip info.
*/
static inline int jedec_match( __u32 base,
struct map_info *map,
struct cfi_private *cfi,
const struct amd_flash_info *finfo )
{
int rc = 0; /* failure until all tests pass */
u32 mfr, id;
__u8 uaddr;
/*
* The IDs must match. For X16 and X32 devices operating in
* a lower width ( X8 or X16 ), the device ID's are usually just
* the lower byte(s) of the larger device ID for wider mode. If
* a part is found that doesn't fit this assumption (device id for
* smaller width mode is completely unrealated to full-width mode)
* then the jedec_table[] will have to be augmented with the IDs
* for different widths.
*/
switch (cfi->device_type) {
case CFI_DEVICETYPE_X8:
mfr = (__u8)finfo->mfr_id;
id = (__u8)finfo->dev_id;
/* bjd: it seems that if we do this, we can end up
* detecting 16bit flashes as an 8bit device, even though
* there aren't.
*/
if (finfo->dev_id > 0xff) {
DEBUG( MTD_DEBUG_LEVEL3, "%s(): ID is not 8bit\n",
__func__);
goto match_done;
}
break;
case CFI_DEVICETYPE_X16:
mfr = (__u16)finfo->mfr_id;
id = (__u16)finfo->dev_id;
break;
case CFI_DEVICETYPE_X32:
mfr = (__u16)finfo->mfr_id;
id = (__u32)finfo->dev_id;
break;
default:
printk(KERN_WARNING
"MTD %s(): Unsupported device type %d\n",
__func__, cfi->device_type);
goto match_done;
}
if ( cfi->mfr != mfr || cfi->id != id ) {
goto match_done;
}
/* the part size must fit in the memory window */
DEBUG( MTD_DEBUG_LEVEL3,
"MTD %s(): Check fit 0x%.8x + 0x%.8x = 0x%.8x\n",
__func__, base, 1 << finfo->DevSize, base + (1 << finfo->DevSize) );
if ( base + cfi_interleave(cfi) * ( 1 << finfo->DevSize ) > map->size ) {
DEBUG( MTD_DEBUG_LEVEL3,
"MTD %s(): 0x%.4x 0x%.4x %dKiB doesn't fit\n",
__func__, finfo->mfr_id, finfo->dev_id,
1 << finfo->DevSize );
goto match_done;
}
uaddr = finfo_uaddr(finfo, cfi->device_type);
if ( uaddr == MTD_UADDR_NOT_SUPPORTED ) {
goto match_done;
}
DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): check unlock addrs 0x%.4x 0x%.4x\n",
__func__, cfi->addr_unlock1, cfi->addr_unlock2 );
if ( MTD_UADDR_UNNECESSARY != uaddr && MTD_UADDR_DONT_CARE != uaddr
&& ( unlock_addrs[uaddr].addr1 != cfi->addr_unlock1 ||
unlock_addrs[uaddr].addr2 != cfi->addr_unlock2 ) ) {
DEBUG( MTD_DEBUG_LEVEL3,
"MTD %s(): 0x%.4x 0x%.4x did not match\n",
__func__,
unlock_addrs[uaddr].addr1,
unlock_addrs[uaddr].addr2);
goto match_done;
}
/*
* Make sure the ID's dissappear when the device is taken out of
* ID mode. The only time this should fail when it should succeed
* is when the ID's are written as data to the same
* addresses. For this rare and unfortunate case the chip
* cannot be probed correctly.
* FIXME - write a driver that takes all of the chip info as
* module parameters, doesn't probe but forces a load.
*/
DEBUG( MTD_DEBUG_LEVEL3,
"MTD %s(): check ID's disappear when not in ID mode\n",
__func__ );
jedec_reset( base, map, cfi );
mfr = jedec_read_mfr( map, base, cfi );
id = jedec_read_id( map, base, cfi );
if ( mfr == cfi->mfr && id == cfi->id ) {
DEBUG( MTD_DEBUG_LEVEL3,
"MTD %s(): ID 0x%.2x:0x%.2x did not change after reset:\n"
"You might need to manually specify JEDEC parameters.\n",
__func__, cfi->mfr, cfi->id );
goto match_done;
}
/* all tests passed - mark as success */
rc = 1;
/*
* Put the device back in ID mode - only need to do this if we
* were truly frobbing a real device.
*/
DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): return to ID mode\n", __func__ );
if(cfi->addr_unlock1) {
cfi_send_gen_cmd(0xaa, cfi->addr_unlock1, base, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, base, map, cfi, cfi->device_type, NULL);
}
cfi_send_gen_cmd(0x90, cfi->addr_unlock1, base, map, cfi, cfi->device_type, NULL);
/* FIXME - should have a delay before continuing */
match_done:
return rc;
}
static int jedec_probe_chip(struct map_info *map, __u32 base,
unsigned long *chip_map, struct cfi_private *cfi)
{
int i;
enum uaddr uaddr_idx = MTD_UADDR_NOT_SUPPORTED;
u32 probe_offset1, probe_offset2;
retry:
if (!cfi->numchips) {
uaddr_idx++;
if (MTD_UADDR_UNNECESSARY == uaddr_idx)
return 0;
cfi->addr_unlock1 = unlock_addrs[uaddr_idx].addr1;
cfi->addr_unlock2 = unlock_addrs[uaddr_idx].addr2;
}
/* Make certain we aren't probing past the end of map */
if (base >= map->size) {
printk(KERN_NOTICE
"Probe at base(0x%08x) past the end of the map(0x%08lx)\n",
base, map->size -1);
return 0;
}
/* Ensure the unlock addresses we try stay inside the map */
probe_offset1 = cfi_build_cmd_addr(
cfi->addr_unlock1,
cfi_interleave(cfi),
cfi->device_type);
probe_offset2 = cfi_build_cmd_addr(
cfi->addr_unlock1,
cfi_interleave(cfi),
cfi->device_type);
if ( ((base + probe_offset1 + map_bankwidth(map)) >= map->size) ||
((base + probe_offset2 + map_bankwidth(map)) >= map->size))
{
goto retry;
}
/* Reset */
jedec_reset(base, map, cfi);
/* Autoselect Mode */
if(cfi->addr_unlock1) {
cfi_send_gen_cmd(0xaa, cfi->addr_unlock1, base, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, base, map, cfi, cfi->device_type, NULL);
}
cfi_send_gen_cmd(0x90, cfi->addr_unlock1, base, map, cfi, cfi->device_type, NULL);
/* FIXME - should have a delay before continuing */
if (!cfi->numchips) {
/* This is the first time we're called. Set up the CFI
stuff accordingly and return */
cfi->mfr = jedec_read_mfr(map, base, cfi);
cfi->id = jedec_read_id(map, base, cfi);
DEBUG(MTD_DEBUG_LEVEL3,
"Search for id:(%02x %02x) interleave(%d) type(%d)\n",
cfi->mfr, cfi->id, cfi_interleave(cfi), cfi->device_type);
for (i = 0; i < ARRAY_SIZE(jedec_table); i++) {
if ( jedec_match( base, map, cfi, &jedec_table[i] ) ) {
DEBUG( MTD_DEBUG_LEVEL3,
"MTD %s(): matched device 0x%x,0x%x unlock_addrs: 0x%.4x 0x%.4x\n",
__func__, cfi->mfr, cfi->id,
cfi->addr_unlock1, cfi->addr_unlock2 );
if (!cfi_jedec_setup(cfi, i))
return 0;
goto ok_out;
}
}
goto retry;
} else {
__u16 mfr;
__u16 id;
/* Make sure it is a chip of the same manufacturer and id */
mfr = jedec_read_mfr(map, base, cfi);
id = jedec_read_id(map, base, cfi);
if ((mfr != cfi->mfr) || (id != cfi->id)) {
printk(KERN_DEBUG "%s: Found different chip or no chip at all (mfr 0x%x, id 0x%x) at 0x%x\n",
map->name, mfr, id, base);
jedec_reset(base, map, cfi);
return 0;
}
}
/* Check each previous chip locations to see if it's an alias */
for (i=0; i < (base >> cfi->chipshift); i++) {
unsigned long start;
if(!test_bit(i, chip_map)) {
continue; /* Skip location; no valid chip at this address */
}
start = i << cfi->chipshift;
if (jedec_read_mfr(map, start, cfi) == cfi->mfr &&
jedec_read_id(map, start, cfi) == cfi->id) {
/* Eep. This chip also looks like it's in autoselect mode.
Is it an alias for the new one? */
jedec_reset(start, map, cfi);
/* If the device IDs go away, it's an alias */
if (jedec_read_mfr(map, base, cfi) != cfi->mfr ||
jedec_read_id(map, base, cfi) != cfi->id) {
printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n",
map->name, base, start);
return 0;
}
/* Yes, it's actually got the device IDs as data. Most
* unfortunate. Stick the new chip in read mode
* too and if it's the same, assume it's an alias. */
/* FIXME: Use other modes to do a proper check */
jedec_reset(base, map, cfi);
if (jedec_read_mfr(map, base, cfi) == cfi->mfr &&
jedec_read_id(map, base, cfi) == cfi->id) {
printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n",
map->name, base, start);
return 0;
}
}
}
/* OK, if we got to here, then none of the previous chips appear to
be aliases for the current one. */
set_bit((base >> cfi->chipshift), chip_map); /* Update chip map */
cfi->numchips++;
ok_out:
/* Put it back into Read Mode */
jedec_reset(base, map, cfi);
printk(KERN_INFO "%s: Found %d x%d devices at 0x%x in %d-bit bank\n",
map->name, cfi_interleave(cfi), cfi->device_type*8, base,
map->bankwidth*8);
return 1;
}
static struct chip_probe jedec_chip_probe = {
.name = "JEDEC",
.probe_chip = jedec_probe_chip
};
static struct mtd_info *jedec_probe(struct map_info *map)
{
/*
* Just use the generic probe stuff to call our CFI-specific
* chip_probe routine in all the possible permutations, etc.
*/
return mtd_do_chip_probe(map, &jedec_chip_probe);
}
static struct mtd_chip_driver jedec_chipdrv = {
.probe = jedec_probe,
.name = "jedec_probe",
.module = THIS_MODULE
};
static int __init jedec_probe_init(void)
{
register_mtd_chip_driver(&jedec_chipdrv);
return 0;
}
static void __exit jedec_probe_exit(void)
{
unregister_mtd_chip_driver(&jedec_chipdrv);
}
module_init(jedec_probe_init);
module_exit(jedec_probe_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Erwin Authried <eauth@softsys.co.at> et al.");
MODULE_DESCRIPTION("Probe code for JEDEC-compliant flash chips");