forked from luck/tmp_suning_uos_patched
28e53bddf8
flush_work(wq, work) doesn't need the first parameter, we can use cwq->wq (this was possible from the very beginnig, I missed this). So we can unify flush_work_keventd and flush_work. Also, rename flush_work() to cancel_work_sync() and fix all callers. Perhaps this is not the best name, but "flush_work" is really bad. (akpm: this is why the earlier patches bypassed maintainers) Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru> Cc: Jeff Garzik <jeff@garzik.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Jens Axboe <jens.axboe@oracle.com> Cc: Tejun Heo <htejun@gmail.com> Cc: Auke Kok <auke-jan.h.kok@intel.com>, Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
6914 lines
169 KiB
C
6914 lines
169 KiB
C
/*
|
|
* libata-core.c - helper library for ATA
|
|
*
|
|
* Maintained by: Jeff Garzik <jgarzik@pobox.com>
|
|
* Please ALWAYS copy linux-ide@vger.kernel.org
|
|
* on emails.
|
|
*
|
|
* Copyright 2003-2004 Red Hat, Inc. All rights reserved.
|
|
* Copyright 2003-2004 Jeff Garzik
|
|
*
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; see the file COPYING. If not, write to
|
|
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*
|
|
*
|
|
* libata documentation is available via 'make {ps|pdf}docs',
|
|
* as Documentation/DocBook/libata.*
|
|
*
|
|
* Hardware documentation available from http://www.t13.org/ and
|
|
* http://www.sata-io.org/
|
|
*
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/init.h>
|
|
#include <linux/list.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/suspend.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <scsi/scsi.h>
|
|
#include <scsi/scsi_cmnd.h>
|
|
#include <scsi/scsi_host.h>
|
|
#include <linux/libata.h>
|
|
#include <asm/io.h>
|
|
#include <asm/semaphore.h>
|
|
#include <asm/byteorder.h>
|
|
|
|
#include "libata.h"
|
|
|
|
#define DRV_VERSION "2.20" /* must be exactly four chars */
|
|
|
|
|
|
/* debounce timing parameters in msecs { interval, duration, timeout } */
|
|
const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
|
|
const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
|
|
const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
|
|
|
|
static unsigned int ata_dev_init_params(struct ata_device *dev,
|
|
u16 heads, u16 sectors);
|
|
static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
|
|
static void ata_dev_xfermask(struct ata_device *dev);
|
|
|
|
unsigned int ata_print_id = 1;
|
|
static struct workqueue_struct *ata_wq;
|
|
|
|
struct workqueue_struct *ata_aux_wq;
|
|
|
|
int atapi_enabled = 1;
|
|
module_param(atapi_enabled, int, 0444);
|
|
MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
|
|
|
|
int atapi_dmadir = 0;
|
|
module_param(atapi_dmadir, int, 0444);
|
|
MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
|
|
|
|
int libata_fua = 0;
|
|
module_param_named(fua, libata_fua, int, 0444);
|
|
MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
|
|
|
|
static int ata_ignore_hpa = 0;
|
|
module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
|
|
MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
|
|
|
|
static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
|
|
module_param(ata_probe_timeout, int, 0444);
|
|
MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
|
|
|
|
int libata_noacpi = 1;
|
|
module_param_named(noacpi, libata_noacpi, int, 0444);
|
|
MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
|
|
|
|
MODULE_AUTHOR("Jeff Garzik");
|
|
MODULE_DESCRIPTION("Library module for ATA devices");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_VERSION(DRV_VERSION);
|
|
|
|
|
|
/**
|
|
* ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
|
|
* @tf: Taskfile to convert
|
|
* @fis: Buffer into which data will output
|
|
* @pmp: Port multiplier port
|
|
*
|
|
* Converts a standard ATA taskfile to a Serial ATA
|
|
* FIS structure (Register - Host to Device).
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
|
|
void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
|
|
{
|
|
fis[0] = 0x27; /* Register - Host to Device FIS */
|
|
fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
|
|
bit 7 indicates Command FIS */
|
|
fis[2] = tf->command;
|
|
fis[3] = tf->feature;
|
|
|
|
fis[4] = tf->lbal;
|
|
fis[5] = tf->lbam;
|
|
fis[6] = tf->lbah;
|
|
fis[7] = tf->device;
|
|
|
|
fis[8] = tf->hob_lbal;
|
|
fis[9] = tf->hob_lbam;
|
|
fis[10] = tf->hob_lbah;
|
|
fis[11] = tf->hob_feature;
|
|
|
|
fis[12] = tf->nsect;
|
|
fis[13] = tf->hob_nsect;
|
|
fis[14] = 0;
|
|
fis[15] = tf->ctl;
|
|
|
|
fis[16] = 0;
|
|
fis[17] = 0;
|
|
fis[18] = 0;
|
|
fis[19] = 0;
|
|
}
|
|
|
|
/**
|
|
* ata_tf_from_fis - Convert SATA FIS to ATA taskfile
|
|
* @fis: Buffer from which data will be input
|
|
* @tf: Taskfile to output
|
|
*
|
|
* Converts a serial ATA FIS structure to a standard ATA taskfile.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
|
|
void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
|
|
{
|
|
tf->command = fis[2]; /* status */
|
|
tf->feature = fis[3]; /* error */
|
|
|
|
tf->lbal = fis[4];
|
|
tf->lbam = fis[5];
|
|
tf->lbah = fis[6];
|
|
tf->device = fis[7];
|
|
|
|
tf->hob_lbal = fis[8];
|
|
tf->hob_lbam = fis[9];
|
|
tf->hob_lbah = fis[10];
|
|
|
|
tf->nsect = fis[12];
|
|
tf->hob_nsect = fis[13];
|
|
}
|
|
|
|
static const u8 ata_rw_cmds[] = {
|
|
/* pio multi */
|
|
ATA_CMD_READ_MULTI,
|
|
ATA_CMD_WRITE_MULTI,
|
|
ATA_CMD_READ_MULTI_EXT,
|
|
ATA_CMD_WRITE_MULTI_EXT,
|
|
0,
|
|
0,
|
|
0,
|
|
ATA_CMD_WRITE_MULTI_FUA_EXT,
|
|
/* pio */
|
|
ATA_CMD_PIO_READ,
|
|
ATA_CMD_PIO_WRITE,
|
|
ATA_CMD_PIO_READ_EXT,
|
|
ATA_CMD_PIO_WRITE_EXT,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
/* dma */
|
|
ATA_CMD_READ,
|
|
ATA_CMD_WRITE,
|
|
ATA_CMD_READ_EXT,
|
|
ATA_CMD_WRITE_EXT,
|
|
0,
|
|
0,
|
|
0,
|
|
ATA_CMD_WRITE_FUA_EXT
|
|
};
|
|
|
|
/**
|
|
* ata_rwcmd_protocol - set taskfile r/w commands and protocol
|
|
* @tf: command to examine and configure
|
|
* @dev: device tf belongs to
|
|
*
|
|
* Examine the device configuration and tf->flags to calculate
|
|
* the proper read/write commands and protocol to use.
|
|
*
|
|
* LOCKING:
|
|
* caller.
|
|
*/
|
|
static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
|
|
{
|
|
u8 cmd;
|
|
|
|
int index, fua, lba48, write;
|
|
|
|
fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
|
|
lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
|
|
write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
|
|
|
|
if (dev->flags & ATA_DFLAG_PIO) {
|
|
tf->protocol = ATA_PROT_PIO;
|
|
index = dev->multi_count ? 0 : 8;
|
|
} else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
|
|
/* Unable to use DMA due to host limitation */
|
|
tf->protocol = ATA_PROT_PIO;
|
|
index = dev->multi_count ? 0 : 8;
|
|
} else {
|
|
tf->protocol = ATA_PROT_DMA;
|
|
index = 16;
|
|
}
|
|
|
|
cmd = ata_rw_cmds[index + fua + lba48 + write];
|
|
if (cmd) {
|
|
tf->command = cmd;
|
|
return 0;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/**
|
|
* ata_tf_read_block - Read block address from ATA taskfile
|
|
* @tf: ATA taskfile of interest
|
|
* @dev: ATA device @tf belongs to
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*
|
|
* Read block address from @tf. This function can handle all
|
|
* three address formats - LBA, LBA48 and CHS. tf->protocol and
|
|
* flags select the address format to use.
|
|
*
|
|
* RETURNS:
|
|
* Block address read from @tf.
|
|
*/
|
|
u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
|
|
{
|
|
u64 block = 0;
|
|
|
|
if (tf->flags & ATA_TFLAG_LBA) {
|
|
if (tf->flags & ATA_TFLAG_LBA48) {
|
|
block |= (u64)tf->hob_lbah << 40;
|
|
block |= (u64)tf->hob_lbam << 32;
|
|
block |= tf->hob_lbal << 24;
|
|
} else
|
|
block |= (tf->device & 0xf) << 24;
|
|
|
|
block |= tf->lbah << 16;
|
|
block |= tf->lbam << 8;
|
|
block |= tf->lbal;
|
|
} else {
|
|
u32 cyl, head, sect;
|
|
|
|
cyl = tf->lbam | (tf->lbah << 8);
|
|
head = tf->device & 0xf;
|
|
sect = tf->lbal;
|
|
|
|
block = (cyl * dev->heads + head) * dev->sectors + sect;
|
|
}
|
|
|
|
return block;
|
|
}
|
|
|
|
/**
|
|
* ata_build_rw_tf - Build ATA taskfile for given read/write request
|
|
* @tf: Target ATA taskfile
|
|
* @dev: ATA device @tf belongs to
|
|
* @block: Block address
|
|
* @n_block: Number of blocks
|
|
* @tf_flags: RW/FUA etc...
|
|
* @tag: tag
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*
|
|
* Build ATA taskfile @tf for read/write request described by
|
|
* @block, @n_block, @tf_flags and @tag on @dev.
|
|
*
|
|
* RETURNS:
|
|
*
|
|
* 0 on success, -ERANGE if the request is too large for @dev,
|
|
* -EINVAL if the request is invalid.
|
|
*/
|
|
int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
|
|
u64 block, u32 n_block, unsigned int tf_flags,
|
|
unsigned int tag)
|
|
{
|
|
tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
|
|
tf->flags |= tf_flags;
|
|
|
|
if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
|
|
/* yay, NCQ */
|
|
if (!lba_48_ok(block, n_block))
|
|
return -ERANGE;
|
|
|
|
tf->protocol = ATA_PROT_NCQ;
|
|
tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
|
|
|
|
if (tf->flags & ATA_TFLAG_WRITE)
|
|
tf->command = ATA_CMD_FPDMA_WRITE;
|
|
else
|
|
tf->command = ATA_CMD_FPDMA_READ;
|
|
|
|
tf->nsect = tag << 3;
|
|
tf->hob_feature = (n_block >> 8) & 0xff;
|
|
tf->feature = n_block & 0xff;
|
|
|
|
tf->hob_lbah = (block >> 40) & 0xff;
|
|
tf->hob_lbam = (block >> 32) & 0xff;
|
|
tf->hob_lbal = (block >> 24) & 0xff;
|
|
tf->lbah = (block >> 16) & 0xff;
|
|
tf->lbam = (block >> 8) & 0xff;
|
|
tf->lbal = block & 0xff;
|
|
|
|
tf->device = 1 << 6;
|
|
if (tf->flags & ATA_TFLAG_FUA)
|
|
tf->device |= 1 << 7;
|
|
} else if (dev->flags & ATA_DFLAG_LBA) {
|
|
tf->flags |= ATA_TFLAG_LBA;
|
|
|
|
if (lba_28_ok(block, n_block)) {
|
|
/* use LBA28 */
|
|
tf->device |= (block >> 24) & 0xf;
|
|
} else if (lba_48_ok(block, n_block)) {
|
|
if (!(dev->flags & ATA_DFLAG_LBA48))
|
|
return -ERANGE;
|
|
|
|
/* use LBA48 */
|
|
tf->flags |= ATA_TFLAG_LBA48;
|
|
|
|
tf->hob_nsect = (n_block >> 8) & 0xff;
|
|
|
|
tf->hob_lbah = (block >> 40) & 0xff;
|
|
tf->hob_lbam = (block >> 32) & 0xff;
|
|
tf->hob_lbal = (block >> 24) & 0xff;
|
|
} else
|
|
/* request too large even for LBA48 */
|
|
return -ERANGE;
|
|
|
|
if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
|
|
return -EINVAL;
|
|
|
|
tf->nsect = n_block & 0xff;
|
|
|
|
tf->lbah = (block >> 16) & 0xff;
|
|
tf->lbam = (block >> 8) & 0xff;
|
|
tf->lbal = block & 0xff;
|
|
|
|
tf->device |= ATA_LBA;
|
|
} else {
|
|
/* CHS */
|
|
u32 sect, head, cyl, track;
|
|
|
|
/* The request -may- be too large for CHS addressing. */
|
|
if (!lba_28_ok(block, n_block))
|
|
return -ERANGE;
|
|
|
|
if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
|
|
return -EINVAL;
|
|
|
|
/* Convert LBA to CHS */
|
|
track = (u32)block / dev->sectors;
|
|
cyl = track / dev->heads;
|
|
head = track % dev->heads;
|
|
sect = (u32)block % dev->sectors + 1;
|
|
|
|
DPRINTK("block %u track %u cyl %u head %u sect %u\n",
|
|
(u32)block, track, cyl, head, sect);
|
|
|
|
/* Check whether the converted CHS can fit.
|
|
Cylinder: 0-65535
|
|
Head: 0-15
|
|
Sector: 1-255*/
|
|
if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
|
|
return -ERANGE;
|
|
|
|
tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
|
|
tf->lbal = sect;
|
|
tf->lbam = cyl;
|
|
tf->lbah = cyl >> 8;
|
|
tf->device |= head;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
|
|
* @pio_mask: pio_mask
|
|
* @mwdma_mask: mwdma_mask
|
|
* @udma_mask: udma_mask
|
|
*
|
|
* Pack @pio_mask, @mwdma_mask and @udma_mask into a single
|
|
* unsigned int xfer_mask.
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*
|
|
* RETURNS:
|
|
* Packed xfer_mask.
|
|
*/
|
|
static unsigned int ata_pack_xfermask(unsigned int pio_mask,
|
|
unsigned int mwdma_mask,
|
|
unsigned int udma_mask)
|
|
{
|
|
return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
|
|
((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
|
|
((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
|
|
}
|
|
|
|
/**
|
|
* ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
|
|
* @xfer_mask: xfer_mask to unpack
|
|
* @pio_mask: resulting pio_mask
|
|
* @mwdma_mask: resulting mwdma_mask
|
|
* @udma_mask: resulting udma_mask
|
|
*
|
|
* Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
|
|
* Any NULL distination masks will be ignored.
|
|
*/
|
|
static void ata_unpack_xfermask(unsigned int xfer_mask,
|
|
unsigned int *pio_mask,
|
|
unsigned int *mwdma_mask,
|
|
unsigned int *udma_mask)
|
|
{
|
|
if (pio_mask)
|
|
*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
|
|
if (mwdma_mask)
|
|
*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
|
|
if (udma_mask)
|
|
*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
|
|
}
|
|
|
|
static const struct ata_xfer_ent {
|
|
int shift, bits;
|
|
u8 base;
|
|
} ata_xfer_tbl[] = {
|
|
{ ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
|
|
{ ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
|
|
{ ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
|
|
{ -1, },
|
|
};
|
|
|
|
/**
|
|
* ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
|
|
* @xfer_mask: xfer_mask of interest
|
|
*
|
|
* Return matching XFER_* value for @xfer_mask. Only the highest
|
|
* bit of @xfer_mask is considered.
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*
|
|
* RETURNS:
|
|
* Matching XFER_* value, 0 if no match found.
|
|
*/
|
|
static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
|
|
{
|
|
int highbit = fls(xfer_mask) - 1;
|
|
const struct ata_xfer_ent *ent;
|
|
|
|
for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
|
|
if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
|
|
return ent->base + highbit - ent->shift;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
|
|
* @xfer_mode: XFER_* of interest
|
|
*
|
|
* Return matching xfer_mask for @xfer_mode.
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*
|
|
* RETURNS:
|
|
* Matching xfer_mask, 0 if no match found.
|
|
*/
|
|
static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
|
|
{
|
|
const struct ata_xfer_ent *ent;
|
|
|
|
for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
|
|
if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
|
|
return 1 << (ent->shift + xfer_mode - ent->base);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
|
|
* @xfer_mode: XFER_* of interest
|
|
*
|
|
* Return matching xfer_shift for @xfer_mode.
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*
|
|
* RETURNS:
|
|
* Matching xfer_shift, -1 if no match found.
|
|
*/
|
|
static int ata_xfer_mode2shift(unsigned int xfer_mode)
|
|
{
|
|
const struct ata_xfer_ent *ent;
|
|
|
|
for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
|
|
if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
|
|
return ent->shift;
|
|
return -1;
|
|
}
|
|
|
|
/**
|
|
* ata_mode_string - convert xfer_mask to string
|
|
* @xfer_mask: mask of bits supported; only highest bit counts.
|
|
*
|
|
* Determine string which represents the highest speed
|
|
* (highest bit in @modemask).
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*
|
|
* RETURNS:
|
|
* Constant C string representing highest speed listed in
|
|
* @mode_mask, or the constant C string "<n/a>".
|
|
*/
|
|
static const char *ata_mode_string(unsigned int xfer_mask)
|
|
{
|
|
static const char * const xfer_mode_str[] = {
|
|
"PIO0",
|
|
"PIO1",
|
|
"PIO2",
|
|
"PIO3",
|
|
"PIO4",
|
|
"PIO5",
|
|
"PIO6",
|
|
"MWDMA0",
|
|
"MWDMA1",
|
|
"MWDMA2",
|
|
"MWDMA3",
|
|
"MWDMA4",
|
|
"UDMA/16",
|
|
"UDMA/25",
|
|
"UDMA/33",
|
|
"UDMA/44",
|
|
"UDMA/66",
|
|
"UDMA/100",
|
|
"UDMA/133",
|
|
"UDMA7",
|
|
};
|
|
int highbit;
|
|
|
|
highbit = fls(xfer_mask) - 1;
|
|
if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
|
|
return xfer_mode_str[highbit];
|
|
return "<n/a>";
|
|
}
|
|
|
|
static const char *sata_spd_string(unsigned int spd)
|
|
{
|
|
static const char * const spd_str[] = {
|
|
"1.5 Gbps",
|
|
"3.0 Gbps",
|
|
};
|
|
|
|
if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
|
|
return "<unknown>";
|
|
return spd_str[spd - 1];
|
|
}
|
|
|
|
void ata_dev_disable(struct ata_device *dev)
|
|
{
|
|
if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
|
|
ata_dev_printk(dev, KERN_WARNING, "disabled\n");
|
|
ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
|
|
ATA_DNXFER_QUIET);
|
|
dev->class++;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ata_devchk - PATA device presence detection
|
|
* @ap: ATA channel to examine
|
|
* @device: Device to examine (starting at zero)
|
|
*
|
|
* This technique was originally described in
|
|
* Hale Landis's ATADRVR (www.ata-atapi.com), and
|
|
* later found its way into the ATA/ATAPI spec.
|
|
*
|
|
* Write a pattern to the ATA shadow registers,
|
|
* and if a device is present, it will respond by
|
|
* correctly storing and echoing back the
|
|
* ATA shadow register contents.
|
|
*
|
|
* LOCKING:
|
|
* caller.
|
|
*/
|
|
|
|
static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
|
|
{
|
|
struct ata_ioports *ioaddr = &ap->ioaddr;
|
|
u8 nsect, lbal;
|
|
|
|
ap->ops->dev_select(ap, device);
|
|
|
|
iowrite8(0x55, ioaddr->nsect_addr);
|
|
iowrite8(0xaa, ioaddr->lbal_addr);
|
|
|
|
iowrite8(0xaa, ioaddr->nsect_addr);
|
|
iowrite8(0x55, ioaddr->lbal_addr);
|
|
|
|
iowrite8(0x55, ioaddr->nsect_addr);
|
|
iowrite8(0xaa, ioaddr->lbal_addr);
|
|
|
|
nsect = ioread8(ioaddr->nsect_addr);
|
|
lbal = ioread8(ioaddr->lbal_addr);
|
|
|
|
if ((nsect == 0x55) && (lbal == 0xaa))
|
|
return 1; /* we found a device */
|
|
|
|
return 0; /* nothing found */
|
|
}
|
|
|
|
/**
|
|
* ata_dev_classify - determine device type based on ATA-spec signature
|
|
* @tf: ATA taskfile register set for device to be identified
|
|
*
|
|
* Determine from taskfile register contents whether a device is
|
|
* ATA or ATAPI, as per "Signature and persistence" section
|
|
* of ATA/PI spec (volume 1, sect 5.14).
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*
|
|
* RETURNS:
|
|
* Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
|
|
* the event of failure.
|
|
*/
|
|
|
|
unsigned int ata_dev_classify(const struct ata_taskfile *tf)
|
|
{
|
|
/* Apple's open source Darwin code hints that some devices only
|
|
* put a proper signature into the LBA mid/high registers,
|
|
* So, we only check those. It's sufficient for uniqueness.
|
|
*/
|
|
|
|
if (((tf->lbam == 0) && (tf->lbah == 0)) ||
|
|
((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
|
|
DPRINTK("found ATA device by sig\n");
|
|
return ATA_DEV_ATA;
|
|
}
|
|
|
|
if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
|
|
((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
|
|
DPRINTK("found ATAPI device by sig\n");
|
|
return ATA_DEV_ATAPI;
|
|
}
|
|
|
|
DPRINTK("unknown device\n");
|
|
return ATA_DEV_UNKNOWN;
|
|
}
|
|
|
|
/**
|
|
* ata_dev_try_classify - Parse returned ATA device signature
|
|
* @ap: ATA channel to examine
|
|
* @device: Device to examine (starting at zero)
|
|
* @r_err: Value of error register on completion
|
|
*
|
|
* After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
|
|
* an ATA/ATAPI-defined set of values is placed in the ATA
|
|
* shadow registers, indicating the results of device detection
|
|
* and diagnostics.
|
|
*
|
|
* Select the ATA device, and read the values from the ATA shadow
|
|
* registers. Then parse according to the Error register value,
|
|
* and the spec-defined values examined by ata_dev_classify().
|
|
*
|
|
* LOCKING:
|
|
* caller.
|
|
*
|
|
* RETURNS:
|
|
* Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
|
|
*/
|
|
|
|
unsigned int
|
|
ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
|
|
{
|
|
struct ata_taskfile tf;
|
|
unsigned int class;
|
|
u8 err;
|
|
|
|
ap->ops->dev_select(ap, device);
|
|
|
|
memset(&tf, 0, sizeof(tf));
|
|
|
|
ap->ops->tf_read(ap, &tf);
|
|
err = tf.feature;
|
|
if (r_err)
|
|
*r_err = err;
|
|
|
|
/* see if device passed diags: if master then continue and warn later */
|
|
if (err == 0 && device == 0)
|
|
/* diagnostic fail : do nothing _YET_ */
|
|
ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
|
|
else if (err == 1)
|
|
/* do nothing */ ;
|
|
else if ((device == 0) && (err == 0x81))
|
|
/* do nothing */ ;
|
|
else
|
|
return ATA_DEV_NONE;
|
|
|
|
/* determine if device is ATA or ATAPI */
|
|
class = ata_dev_classify(&tf);
|
|
|
|
if (class == ATA_DEV_UNKNOWN)
|
|
return ATA_DEV_NONE;
|
|
if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
|
|
return ATA_DEV_NONE;
|
|
return class;
|
|
}
|
|
|
|
/**
|
|
* ata_id_string - Convert IDENTIFY DEVICE page into string
|
|
* @id: IDENTIFY DEVICE results we will examine
|
|
* @s: string into which data is output
|
|
* @ofs: offset into identify device page
|
|
* @len: length of string to return. must be an even number.
|
|
*
|
|
* The strings in the IDENTIFY DEVICE page are broken up into
|
|
* 16-bit chunks. Run through the string, and output each
|
|
* 8-bit chunk linearly, regardless of platform.
|
|
*
|
|
* LOCKING:
|
|
* caller.
|
|
*/
|
|
|
|
void ata_id_string(const u16 *id, unsigned char *s,
|
|
unsigned int ofs, unsigned int len)
|
|
{
|
|
unsigned int c;
|
|
|
|
while (len > 0) {
|
|
c = id[ofs] >> 8;
|
|
*s = c;
|
|
s++;
|
|
|
|
c = id[ofs] & 0xff;
|
|
*s = c;
|
|
s++;
|
|
|
|
ofs++;
|
|
len -= 2;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ata_id_c_string - Convert IDENTIFY DEVICE page into C string
|
|
* @id: IDENTIFY DEVICE results we will examine
|
|
* @s: string into which data is output
|
|
* @ofs: offset into identify device page
|
|
* @len: length of string to return. must be an odd number.
|
|
*
|
|
* This function is identical to ata_id_string except that it
|
|
* trims trailing spaces and terminates the resulting string with
|
|
* null. @len must be actual maximum length (even number) + 1.
|
|
*
|
|
* LOCKING:
|
|
* caller.
|
|
*/
|
|
void ata_id_c_string(const u16 *id, unsigned char *s,
|
|
unsigned int ofs, unsigned int len)
|
|
{
|
|
unsigned char *p;
|
|
|
|
WARN_ON(!(len & 1));
|
|
|
|
ata_id_string(id, s, ofs, len - 1);
|
|
|
|
p = s + strnlen(s, len - 1);
|
|
while (p > s && p[-1] == ' ')
|
|
p--;
|
|
*p = '\0';
|
|
}
|
|
|
|
static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
|
|
{
|
|
u64 sectors = 0;
|
|
|
|
sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
|
|
sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
|
|
sectors |= (tf->hob_lbal & 0xff) << 24;
|
|
sectors |= (tf->lbah & 0xff) << 16;
|
|
sectors |= (tf->lbam & 0xff) << 8;
|
|
sectors |= (tf->lbal & 0xff);
|
|
|
|
return ++sectors;
|
|
}
|
|
|
|
static u64 ata_tf_to_lba(struct ata_taskfile *tf)
|
|
{
|
|
u64 sectors = 0;
|
|
|
|
sectors |= (tf->device & 0x0f) << 24;
|
|
sectors |= (tf->lbah & 0xff) << 16;
|
|
sectors |= (tf->lbam & 0xff) << 8;
|
|
sectors |= (tf->lbal & 0xff);
|
|
|
|
return ++sectors;
|
|
}
|
|
|
|
/**
|
|
* ata_read_native_max_address_ext - LBA48 native max query
|
|
* @dev: Device to query
|
|
*
|
|
* Perform an LBA48 size query upon the device in question. Return the
|
|
* actual LBA48 size or zero if the command fails.
|
|
*/
|
|
|
|
static u64 ata_read_native_max_address_ext(struct ata_device *dev)
|
|
{
|
|
unsigned int err;
|
|
struct ata_taskfile tf;
|
|
|
|
ata_tf_init(dev, &tf);
|
|
|
|
tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
|
|
tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
|
|
tf.protocol |= ATA_PROT_NODATA;
|
|
tf.device |= 0x40;
|
|
|
|
err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
|
|
if (err)
|
|
return 0;
|
|
|
|
return ata_tf_to_lba48(&tf);
|
|
}
|
|
|
|
/**
|
|
* ata_read_native_max_address - LBA28 native max query
|
|
* @dev: Device to query
|
|
*
|
|
* Performa an LBA28 size query upon the device in question. Return the
|
|
* actual LBA28 size or zero if the command fails.
|
|
*/
|
|
|
|
static u64 ata_read_native_max_address(struct ata_device *dev)
|
|
{
|
|
unsigned int err;
|
|
struct ata_taskfile tf;
|
|
|
|
ata_tf_init(dev, &tf);
|
|
|
|
tf.command = ATA_CMD_READ_NATIVE_MAX;
|
|
tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
|
|
tf.protocol |= ATA_PROT_NODATA;
|
|
tf.device |= 0x40;
|
|
|
|
err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
|
|
if (err)
|
|
return 0;
|
|
|
|
return ata_tf_to_lba(&tf);
|
|
}
|
|
|
|
/**
|
|
* ata_set_native_max_address_ext - LBA48 native max set
|
|
* @dev: Device to query
|
|
*
|
|
* Perform an LBA48 size set max upon the device in question. Return the
|
|
* actual LBA48 size or zero if the command fails.
|
|
*/
|
|
|
|
static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
|
|
{
|
|
unsigned int err;
|
|
struct ata_taskfile tf;
|
|
|
|
new_sectors--;
|
|
|
|
ata_tf_init(dev, &tf);
|
|
|
|
tf.command = ATA_CMD_SET_MAX_EXT;
|
|
tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
|
|
tf.protocol |= ATA_PROT_NODATA;
|
|
tf.device |= 0x40;
|
|
|
|
tf.lbal = (new_sectors >> 0) & 0xff;
|
|
tf.lbam = (new_sectors >> 8) & 0xff;
|
|
tf.lbah = (new_sectors >> 16) & 0xff;
|
|
|
|
tf.hob_lbal = (new_sectors >> 24) & 0xff;
|
|
tf.hob_lbam = (new_sectors >> 32) & 0xff;
|
|
tf.hob_lbah = (new_sectors >> 40) & 0xff;
|
|
|
|
err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
|
|
if (err)
|
|
return 0;
|
|
|
|
return ata_tf_to_lba48(&tf);
|
|
}
|
|
|
|
/**
|
|
* ata_set_native_max_address - LBA28 native max set
|
|
* @dev: Device to query
|
|
*
|
|
* Perform an LBA28 size set max upon the device in question. Return the
|
|
* actual LBA28 size or zero if the command fails.
|
|
*/
|
|
|
|
static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
|
|
{
|
|
unsigned int err;
|
|
struct ata_taskfile tf;
|
|
|
|
new_sectors--;
|
|
|
|
ata_tf_init(dev, &tf);
|
|
|
|
tf.command = ATA_CMD_SET_MAX;
|
|
tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
|
|
tf.protocol |= ATA_PROT_NODATA;
|
|
|
|
tf.lbal = (new_sectors >> 0) & 0xff;
|
|
tf.lbam = (new_sectors >> 8) & 0xff;
|
|
tf.lbah = (new_sectors >> 16) & 0xff;
|
|
tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
|
|
|
|
err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
|
|
if (err)
|
|
return 0;
|
|
|
|
return ata_tf_to_lba(&tf);
|
|
}
|
|
|
|
/**
|
|
* ata_hpa_resize - Resize a device with an HPA set
|
|
* @dev: Device to resize
|
|
*
|
|
* Read the size of an LBA28 or LBA48 disk with HPA features and resize
|
|
* it if required to the full size of the media. The caller must check
|
|
* the drive has the HPA feature set enabled.
|
|
*/
|
|
|
|
static u64 ata_hpa_resize(struct ata_device *dev)
|
|
{
|
|
u64 sectors = dev->n_sectors;
|
|
u64 hpa_sectors;
|
|
|
|
if (ata_id_has_lba48(dev->id))
|
|
hpa_sectors = ata_read_native_max_address_ext(dev);
|
|
else
|
|
hpa_sectors = ata_read_native_max_address(dev);
|
|
|
|
/* if no hpa, both should be equal */
|
|
ata_dev_printk(dev, KERN_INFO, "%s 1: sectors = %lld, "
|
|
"hpa_sectors = %lld\n",
|
|
__FUNCTION__, (long long)sectors, (long long)hpa_sectors);
|
|
|
|
if (hpa_sectors > sectors) {
|
|
ata_dev_printk(dev, KERN_INFO,
|
|
"Host Protected Area detected:\n"
|
|
"\tcurrent size: %lld sectors\n"
|
|
"\tnative size: %lld sectors\n",
|
|
(long long)sectors, (long long)hpa_sectors);
|
|
|
|
if (ata_ignore_hpa) {
|
|
if (ata_id_has_lba48(dev->id))
|
|
hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
|
|
else
|
|
hpa_sectors = ata_set_native_max_address(dev,
|
|
hpa_sectors);
|
|
|
|
if (hpa_sectors) {
|
|
ata_dev_printk(dev, KERN_INFO, "native size "
|
|
"increased to %lld sectors\n",
|
|
(long long)hpa_sectors);
|
|
return hpa_sectors;
|
|
}
|
|
}
|
|
}
|
|
return sectors;
|
|
}
|
|
|
|
static u64 ata_id_n_sectors(const u16 *id)
|
|
{
|
|
if (ata_id_has_lba(id)) {
|
|
if (ata_id_has_lba48(id))
|
|
return ata_id_u64(id, 100);
|
|
else
|
|
return ata_id_u32(id, 60);
|
|
} else {
|
|
if (ata_id_current_chs_valid(id))
|
|
return ata_id_u32(id, 57);
|
|
else
|
|
return id[1] * id[3] * id[6];
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ata_id_to_dma_mode - Identify DMA mode from id block
|
|
* @dev: device to identify
|
|
* @unknown: mode to assume if we cannot tell
|
|
*
|
|
* Set up the timing values for the device based upon the identify
|
|
* reported values for the DMA mode. This function is used by drivers
|
|
* which rely upon firmware configured modes, but wish to report the
|
|
* mode correctly when possible.
|
|
*
|
|
* In addition we emit similarly formatted messages to the default
|
|
* ata_dev_set_mode handler, in order to provide consistency of
|
|
* presentation.
|
|
*/
|
|
|
|
void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
|
|
{
|
|
unsigned int mask;
|
|
u8 mode;
|
|
|
|
/* Pack the DMA modes */
|
|
mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
|
|
if (dev->id[53] & 0x04)
|
|
mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
|
|
|
|
/* Select the mode in use */
|
|
mode = ata_xfer_mask2mode(mask);
|
|
|
|
if (mode != 0) {
|
|
ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
|
|
ata_mode_string(mask));
|
|
} else {
|
|
/* SWDMA perhaps ? */
|
|
mode = unknown;
|
|
ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
|
|
}
|
|
|
|
/* Configure the device reporting */
|
|
dev->xfer_mode = mode;
|
|
dev->xfer_shift = ata_xfer_mode2shift(mode);
|
|
}
|
|
|
|
/**
|
|
* ata_noop_dev_select - Select device 0/1 on ATA bus
|
|
* @ap: ATA channel to manipulate
|
|
* @device: ATA device (numbered from zero) to select
|
|
*
|
|
* This function performs no actual function.
|
|
*
|
|
* May be used as the dev_select() entry in ata_port_operations.
|
|
*
|
|
* LOCKING:
|
|
* caller.
|
|
*/
|
|
void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
|
|
{
|
|
}
|
|
|
|
|
|
/**
|
|
* ata_std_dev_select - Select device 0/1 on ATA bus
|
|
* @ap: ATA channel to manipulate
|
|
* @device: ATA device (numbered from zero) to select
|
|
*
|
|
* Use the method defined in the ATA specification to
|
|
* make either device 0, or device 1, active on the
|
|
* ATA channel. Works with both PIO and MMIO.
|
|
*
|
|
* May be used as the dev_select() entry in ata_port_operations.
|
|
*
|
|
* LOCKING:
|
|
* caller.
|
|
*/
|
|
|
|
void ata_std_dev_select (struct ata_port *ap, unsigned int device)
|
|
{
|
|
u8 tmp;
|
|
|
|
if (device == 0)
|
|
tmp = ATA_DEVICE_OBS;
|
|
else
|
|
tmp = ATA_DEVICE_OBS | ATA_DEV1;
|
|
|
|
iowrite8(tmp, ap->ioaddr.device_addr);
|
|
ata_pause(ap); /* needed; also flushes, for mmio */
|
|
}
|
|
|
|
/**
|
|
* ata_dev_select - Select device 0/1 on ATA bus
|
|
* @ap: ATA channel to manipulate
|
|
* @device: ATA device (numbered from zero) to select
|
|
* @wait: non-zero to wait for Status register BSY bit to clear
|
|
* @can_sleep: non-zero if context allows sleeping
|
|
*
|
|
* Use the method defined in the ATA specification to
|
|
* make either device 0, or device 1, active on the
|
|
* ATA channel.
|
|
*
|
|
* This is a high-level version of ata_std_dev_select(),
|
|
* which additionally provides the services of inserting
|
|
* the proper pauses and status polling, where needed.
|
|
*
|
|
* LOCKING:
|
|
* caller.
|
|
*/
|
|
|
|
void ata_dev_select(struct ata_port *ap, unsigned int device,
|
|
unsigned int wait, unsigned int can_sleep)
|
|
{
|
|
if (ata_msg_probe(ap))
|
|
ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
|
|
"device %u, wait %u\n", device, wait);
|
|
|
|
if (wait)
|
|
ata_wait_idle(ap);
|
|
|
|
ap->ops->dev_select(ap, device);
|
|
|
|
if (wait) {
|
|
if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
|
|
msleep(150);
|
|
ata_wait_idle(ap);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ata_dump_id - IDENTIFY DEVICE info debugging output
|
|
* @id: IDENTIFY DEVICE page to dump
|
|
*
|
|
* Dump selected 16-bit words from the given IDENTIFY DEVICE
|
|
* page.
|
|
*
|
|
* LOCKING:
|
|
* caller.
|
|
*/
|
|
|
|
static inline void ata_dump_id(const u16 *id)
|
|
{
|
|
DPRINTK("49==0x%04x "
|
|
"53==0x%04x "
|
|
"63==0x%04x "
|
|
"64==0x%04x "
|
|
"75==0x%04x \n",
|
|
id[49],
|
|
id[53],
|
|
id[63],
|
|
id[64],
|
|
id[75]);
|
|
DPRINTK("80==0x%04x "
|
|
"81==0x%04x "
|
|
"82==0x%04x "
|
|
"83==0x%04x "
|
|
"84==0x%04x \n",
|
|
id[80],
|
|
id[81],
|
|
id[82],
|
|
id[83],
|
|
id[84]);
|
|
DPRINTK("88==0x%04x "
|
|
"93==0x%04x\n",
|
|
id[88],
|
|
id[93]);
|
|
}
|
|
|
|
/**
|
|
* ata_id_xfermask - Compute xfermask from the given IDENTIFY data
|
|
* @id: IDENTIFY data to compute xfer mask from
|
|
*
|
|
* Compute the xfermask for this device. This is not as trivial
|
|
* as it seems if we must consider early devices correctly.
|
|
*
|
|
* FIXME: pre IDE drive timing (do we care ?).
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*
|
|
* RETURNS:
|
|
* Computed xfermask
|
|
*/
|
|
static unsigned int ata_id_xfermask(const u16 *id)
|
|
{
|
|
unsigned int pio_mask, mwdma_mask, udma_mask;
|
|
|
|
/* Usual case. Word 53 indicates word 64 is valid */
|
|
if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
|
|
pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
|
|
pio_mask <<= 3;
|
|
pio_mask |= 0x7;
|
|
} else {
|
|
/* If word 64 isn't valid then Word 51 high byte holds
|
|
* the PIO timing number for the maximum. Turn it into
|
|
* a mask.
|
|
*/
|
|
u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
|
|
if (mode < 5) /* Valid PIO range */
|
|
pio_mask = (2 << mode) - 1;
|
|
else
|
|
pio_mask = 1;
|
|
|
|
/* But wait.. there's more. Design your standards by
|
|
* committee and you too can get a free iordy field to
|
|
* process. However its the speeds not the modes that
|
|
* are supported... Note drivers using the timing API
|
|
* will get this right anyway
|
|
*/
|
|
}
|
|
|
|
mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
|
|
|
|
if (ata_id_is_cfa(id)) {
|
|
/*
|
|
* Process compact flash extended modes
|
|
*/
|
|
int pio = id[163] & 0x7;
|
|
int dma = (id[163] >> 3) & 7;
|
|
|
|
if (pio)
|
|
pio_mask |= (1 << 5);
|
|
if (pio > 1)
|
|
pio_mask |= (1 << 6);
|
|
if (dma)
|
|
mwdma_mask |= (1 << 3);
|
|
if (dma > 1)
|
|
mwdma_mask |= (1 << 4);
|
|
}
|
|
|
|
udma_mask = 0;
|
|
if (id[ATA_ID_FIELD_VALID] & (1 << 2))
|
|
udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
|
|
|
|
return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
|
|
}
|
|
|
|
/**
|
|
* ata_port_queue_task - Queue port_task
|
|
* @ap: The ata_port to queue port_task for
|
|
* @fn: workqueue function to be scheduled
|
|
* @data: data for @fn to use
|
|
* @delay: delay time for workqueue function
|
|
*
|
|
* Schedule @fn(@data) for execution after @delay jiffies using
|
|
* port_task. There is one port_task per port and it's the
|
|
* user(low level driver)'s responsibility to make sure that only
|
|
* one task is active at any given time.
|
|
*
|
|
* libata core layer takes care of synchronization between
|
|
* port_task and EH. ata_port_queue_task() may be ignored for EH
|
|
* synchronization.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
|
|
unsigned long delay)
|
|
{
|
|
int rc;
|
|
|
|
if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
|
|
return;
|
|
|
|
PREPARE_DELAYED_WORK(&ap->port_task, fn);
|
|
ap->port_task_data = data;
|
|
|
|
rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
|
|
|
|
/* rc == 0 means that another user is using port task */
|
|
WARN_ON(rc == 0);
|
|
}
|
|
|
|
/**
|
|
* ata_port_flush_task - Flush port_task
|
|
* @ap: The ata_port to flush port_task for
|
|
*
|
|
* After this function completes, port_task is guranteed not to
|
|
* be running or scheduled.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep)
|
|
*/
|
|
void ata_port_flush_task(struct ata_port *ap)
|
|
{
|
|
unsigned long flags;
|
|
|
|
DPRINTK("ENTER\n");
|
|
|
|
spin_lock_irqsave(ap->lock, flags);
|
|
ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
|
|
spin_unlock_irqrestore(ap->lock, flags);
|
|
|
|
DPRINTK("flush #1\n");
|
|
cancel_work_sync(&ap->port_task.work); /* akpm: seems unneeded */
|
|
|
|
/*
|
|
* At this point, if a task is running, it's guaranteed to see
|
|
* the FLUSH flag; thus, it will never queue pio tasks again.
|
|
* Cancel and flush.
|
|
*/
|
|
if (!cancel_delayed_work(&ap->port_task)) {
|
|
if (ata_msg_ctl(ap))
|
|
ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
|
|
__FUNCTION__);
|
|
cancel_work_sync(&ap->port_task.work);
|
|
}
|
|
|
|
spin_lock_irqsave(ap->lock, flags);
|
|
ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
|
|
spin_unlock_irqrestore(ap->lock, flags);
|
|
|
|
if (ata_msg_ctl(ap))
|
|
ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
|
|
}
|
|
|
|
static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
|
|
{
|
|
struct completion *waiting = qc->private_data;
|
|
|
|
complete(waiting);
|
|
}
|
|
|
|
/**
|
|
* ata_exec_internal_sg - execute libata internal command
|
|
* @dev: Device to which the command is sent
|
|
* @tf: Taskfile registers for the command and the result
|
|
* @cdb: CDB for packet command
|
|
* @dma_dir: Data tranfer direction of the command
|
|
* @sg: sg list for the data buffer of the command
|
|
* @n_elem: Number of sg entries
|
|
*
|
|
* Executes libata internal command with timeout. @tf contains
|
|
* command on entry and result on return. Timeout and error
|
|
* conditions are reported via return value. No recovery action
|
|
* is taken after a command times out. It's caller's duty to
|
|
* clean up after timeout.
|
|
*
|
|
* LOCKING:
|
|
* None. Should be called with kernel context, might sleep.
|
|
*
|
|
* RETURNS:
|
|
* Zero on success, AC_ERR_* mask on failure
|
|
*/
|
|
unsigned ata_exec_internal_sg(struct ata_device *dev,
|
|
struct ata_taskfile *tf, const u8 *cdb,
|
|
int dma_dir, struct scatterlist *sg,
|
|
unsigned int n_elem)
|
|
{
|
|
struct ata_port *ap = dev->ap;
|
|
u8 command = tf->command;
|
|
struct ata_queued_cmd *qc;
|
|
unsigned int tag, preempted_tag;
|
|
u32 preempted_sactive, preempted_qc_active;
|
|
DECLARE_COMPLETION_ONSTACK(wait);
|
|
unsigned long flags;
|
|
unsigned int err_mask;
|
|
int rc;
|
|
|
|
spin_lock_irqsave(ap->lock, flags);
|
|
|
|
/* no internal command while frozen */
|
|
if (ap->pflags & ATA_PFLAG_FROZEN) {
|
|
spin_unlock_irqrestore(ap->lock, flags);
|
|
return AC_ERR_SYSTEM;
|
|
}
|
|
|
|
/* initialize internal qc */
|
|
|
|
/* XXX: Tag 0 is used for drivers with legacy EH as some
|
|
* drivers choke if any other tag is given. This breaks
|
|
* ata_tag_internal() test for those drivers. Don't use new
|
|
* EH stuff without converting to it.
|
|
*/
|
|
if (ap->ops->error_handler)
|
|
tag = ATA_TAG_INTERNAL;
|
|
else
|
|
tag = 0;
|
|
|
|
if (test_and_set_bit(tag, &ap->qc_allocated))
|
|
BUG();
|
|
qc = __ata_qc_from_tag(ap, tag);
|
|
|
|
qc->tag = tag;
|
|
qc->scsicmd = NULL;
|
|
qc->ap = ap;
|
|
qc->dev = dev;
|
|
ata_qc_reinit(qc);
|
|
|
|
preempted_tag = ap->active_tag;
|
|
preempted_sactive = ap->sactive;
|
|
preempted_qc_active = ap->qc_active;
|
|
ap->active_tag = ATA_TAG_POISON;
|
|
ap->sactive = 0;
|
|
ap->qc_active = 0;
|
|
|
|
/* prepare & issue qc */
|
|
qc->tf = *tf;
|
|
if (cdb)
|
|
memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
|
|
qc->flags |= ATA_QCFLAG_RESULT_TF;
|
|
qc->dma_dir = dma_dir;
|
|
if (dma_dir != DMA_NONE) {
|
|
unsigned int i, buflen = 0;
|
|
|
|
for (i = 0; i < n_elem; i++)
|
|
buflen += sg[i].length;
|
|
|
|
ata_sg_init(qc, sg, n_elem);
|
|
qc->nbytes = buflen;
|
|
}
|
|
|
|
qc->private_data = &wait;
|
|
qc->complete_fn = ata_qc_complete_internal;
|
|
|
|
ata_qc_issue(qc);
|
|
|
|
spin_unlock_irqrestore(ap->lock, flags);
|
|
|
|
rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
|
|
|
|
ata_port_flush_task(ap);
|
|
|
|
if (!rc) {
|
|
spin_lock_irqsave(ap->lock, flags);
|
|
|
|
/* We're racing with irq here. If we lose, the
|
|
* following test prevents us from completing the qc
|
|
* twice. If we win, the port is frozen and will be
|
|
* cleaned up by ->post_internal_cmd().
|
|
*/
|
|
if (qc->flags & ATA_QCFLAG_ACTIVE) {
|
|
qc->err_mask |= AC_ERR_TIMEOUT;
|
|
|
|
if (ap->ops->error_handler)
|
|
ata_port_freeze(ap);
|
|
else
|
|
ata_qc_complete(qc);
|
|
|
|
if (ata_msg_warn(ap))
|
|
ata_dev_printk(dev, KERN_WARNING,
|
|
"qc timeout (cmd 0x%x)\n", command);
|
|
}
|
|
|
|
spin_unlock_irqrestore(ap->lock, flags);
|
|
}
|
|
|
|
/* do post_internal_cmd */
|
|
if (ap->ops->post_internal_cmd)
|
|
ap->ops->post_internal_cmd(qc);
|
|
|
|
/* perform minimal error analysis */
|
|
if (qc->flags & ATA_QCFLAG_FAILED) {
|
|
if (qc->result_tf.command & (ATA_ERR | ATA_DF))
|
|
qc->err_mask |= AC_ERR_DEV;
|
|
|
|
if (!qc->err_mask)
|
|
qc->err_mask |= AC_ERR_OTHER;
|
|
|
|
if (qc->err_mask & ~AC_ERR_OTHER)
|
|
qc->err_mask &= ~AC_ERR_OTHER;
|
|
}
|
|
|
|
/* finish up */
|
|
spin_lock_irqsave(ap->lock, flags);
|
|
|
|
*tf = qc->result_tf;
|
|
err_mask = qc->err_mask;
|
|
|
|
ata_qc_free(qc);
|
|
ap->active_tag = preempted_tag;
|
|
ap->sactive = preempted_sactive;
|
|
ap->qc_active = preempted_qc_active;
|
|
|
|
/* XXX - Some LLDDs (sata_mv) disable port on command failure.
|
|
* Until those drivers are fixed, we detect the condition
|
|
* here, fail the command with AC_ERR_SYSTEM and reenable the
|
|
* port.
|
|
*
|
|
* Note that this doesn't change any behavior as internal
|
|
* command failure results in disabling the device in the
|
|
* higher layer for LLDDs without new reset/EH callbacks.
|
|
*
|
|
* Kill the following code as soon as those drivers are fixed.
|
|
*/
|
|
if (ap->flags & ATA_FLAG_DISABLED) {
|
|
err_mask |= AC_ERR_SYSTEM;
|
|
ata_port_probe(ap);
|
|
}
|
|
|
|
spin_unlock_irqrestore(ap->lock, flags);
|
|
|
|
return err_mask;
|
|
}
|
|
|
|
/**
|
|
* ata_exec_internal - execute libata internal command
|
|
* @dev: Device to which the command is sent
|
|
* @tf: Taskfile registers for the command and the result
|
|
* @cdb: CDB for packet command
|
|
* @dma_dir: Data tranfer direction of the command
|
|
* @buf: Data buffer of the command
|
|
* @buflen: Length of data buffer
|
|
*
|
|
* Wrapper around ata_exec_internal_sg() which takes simple
|
|
* buffer instead of sg list.
|
|
*
|
|
* LOCKING:
|
|
* None. Should be called with kernel context, might sleep.
|
|
*
|
|
* RETURNS:
|
|
* Zero on success, AC_ERR_* mask on failure
|
|
*/
|
|
unsigned ata_exec_internal(struct ata_device *dev,
|
|
struct ata_taskfile *tf, const u8 *cdb,
|
|
int dma_dir, void *buf, unsigned int buflen)
|
|
{
|
|
struct scatterlist *psg = NULL, sg;
|
|
unsigned int n_elem = 0;
|
|
|
|
if (dma_dir != DMA_NONE) {
|
|
WARN_ON(!buf);
|
|
sg_init_one(&sg, buf, buflen);
|
|
psg = &sg;
|
|
n_elem++;
|
|
}
|
|
|
|
return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
|
|
}
|
|
|
|
/**
|
|
* ata_do_simple_cmd - execute simple internal command
|
|
* @dev: Device to which the command is sent
|
|
* @cmd: Opcode to execute
|
|
*
|
|
* Execute a 'simple' command, that only consists of the opcode
|
|
* 'cmd' itself, without filling any other registers
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep).
|
|
*
|
|
* RETURNS:
|
|
* Zero on success, AC_ERR_* mask on failure
|
|
*/
|
|
unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
|
|
{
|
|
struct ata_taskfile tf;
|
|
|
|
ata_tf_init(dev, &tf);
|
|
|
|
tf.command = cmd;
|
|
tf.flags |= ATA_TFLAG_DEVICE;
|
|
tf.protocol = ATA_PROT_NODATA;
|
|
|
|
return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
|
|
}
|
|
|
|
/**
|
|
* ata_pio_need_iordy - check if iordy needed
|
|
* @adev: ATA device
|
|
*
|
|
* Check if the current speed of the device requires IORDY. Used
|
|
* by various controllers for chip configuration.
|
|
*/
|
|
|
|
unsigned int ata_pio_need_iordy(const struct ata_device *adev)
|
|
{
|
|
/* Controller doesn't support IORDY. Probably a pointless check
|
|
as the caller should know this */
|
|
if (adev->ap->flags & ATA_FLAG_NO_IORDY)
|
|
return 0;
|
|
/* PIO3 and higher it is mandatory */
|
|
if (adev->pio_mode > XFER_PIO_2)
|
|
return 1;
|
|
/* We turn it on when possible */
|
|
if (ata_id_has_iordy(adev->id))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ata_pio_mask_no_iordy - Return the non IORDY mask
|
|
* @adev: ATA device
|
|
*
|
|
* Compute the highest mode possible if we are not using iordy. Return
|
|
* -1 if no iordy mode is available.
|
|
*/
|
|
|
|
static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
|
|
{
|
|
/* If we have no drive specific rule, then PIO 2 is non IORDY */
|
|
if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
|
|
u16 pio = adev->id[ATA_ID_EIDE_PIO];
|
|
/* Is the speed faster than the drive allows non IORDY ? */
|
|
if (pio) {
|
|
/* This is cycle times not frequency - watch the logic! */
|
|
if (pio > 240) /* PIO2 is 240nS per cycle */
|
|
return 3 << ATA_SHIFT_PIO;
|
|
return 7 << ATA_SHIFT_PIO;
|
|
}
|
|
}
|
|
return 3 << ATA_SHIFT_PIO;
|
|
}
|
|
|
|
/**
|
|
* ata_dev_read_id - Read ID data from the specified device
|
|
* @dev: target device
|
|
* @p_class: pointer to class of the target device (may be changed)
|
|
* @flags: ATA_READID_* flags
|
|
* @id: buffer to read IDENTIFY data into
|
|
*
|
|
* Read ID data from the specified device. ATA_CMD_ID_ATA is
|
|
* performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
|
|
* devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
|
|
* for pre-ATA4 drives.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep)
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno otherwise.
|
|
*/
|
|
int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
|
|
unsigned int flags, u16 *id)
|
|
{
|
|
struct ata_port *ap = dev->ap;
|
|
unsigned int class = *p_class;
|
|
struct ata_taskfile tf;
|
|
unsigned int err_mask = 0;
|
|
const char *reason;
|
|
int tried_spinup = 0;
|
|
int rc;
|
|
|
|
if (ata_msg_ctl(ap))
|
|
ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
|
|
|
|
ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
|
|
retry:
|
|
ata_tf_init(dev, &tf);
|
|
|
|
switch (class) {
|
|
case ATA_DEV_ATA:
|
|
tf.command = ATA_CMD_ID_ATA;
|
|
break;
|
|
case ATA_DEV_ATAPI:
|
|
tf.command = ATA_CMD_ID_ATAPI;
|
|
break;
|
|
default:
|
|
rc = -ENODEV;
|
|
reason = "unsupported class";
|
|
goto err_out;
|
|
}
|
|
|
|
tf.protocol = ATA_PROT_PIO;
|
|
|
|
/* Some devices choke if TF registers contain garbage. Make
|
|
* sure those are properly initialized.
|
|
*/
|
|
tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
|
|
|
|
/* Device presence detection is unreliable on some
|
|
* controllers. Always poll IDENTIFY if available.
|
|
*/
|
|
tf.flags |= ATA_TFLAG_POLLING;
|
|
|
|
err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
|
|
id, sizeof(id[0]) * ATA_ID_WORDS);
|
|
if (err_mask) {
|
|
if (err_mask & AC_ERR_NODEV_HINT) {
|
|
DPRINTK("ata%u.%d: NODEV after polling detection\n",
|
|
ap->print_id, dev->devno);
|
|
return -ENOENT;
|
|
}
|
|
|
|
rc = -EIO;
|
|
reason = "I/O error";
|
|
goto err_out;
|
|
}
|
|
|
|
swap_buf_le16(id, ATA_ID_WORDS);
|
|
|
|
/* sanity check */
|
|
rc = -EINVAL;
|
|
reason = "device reports illegal type";
|
|
|
|
if (class == ATA_DEV_ATA) {
|
|
if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
|
|
goto err_out;
|
|
} else {
|
|
if (ata_id_is_ata(id))
|
|
goto err_out;
|
|
}
|
|
|
|
if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
|
|
tried_spinup = 1;
|
|
/*
|
|
* Drive powered-up in standby mode, and requires a specific
|
|
* SET_FEATURES spin-up subcommand before it will accept
|
|
* anything other than the original IDENTIFY command.
|
|
*/
|
|
ata_tf_init(dev, &tf);
|
|
tf.command = ATA_CMD_SET_FEATURES;
|
|
tf.feature = SETFEATURES_SPINUP;
|
|
tf.protocol = ATA_PROT_NODATA;
|
|
tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
|
|
err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
|
|
if (err_mask) {
|
|
rc = -EIO;
|
|
reason = "SPINUP failed";
|
|
goto err_out;
|
|
}
|
|
/*
|
|
* If the drive initially returned incomplete IDENTIFY info,
|
|
* we now must reissue the IDENTIFY command.
|
|
*/
|
|
if (id[2] == 0x37c8)
|
|
goto retry;
|
|
}
|
|
|
|
if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
|
|
/*
|
|
* The exact sequence expected by certain pre-ATA4 drives is:
|
|
* SRST RESET
|
|
* IDENTIFY
|
|
* INITIALIZE DEVICE PARAMETERS
|
|
* anything else..
|
|
* Some drives were very specific about that exact sequence.
|
|
*/
|
|
if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
|
|
err_mask = ata_dev_init_params(dev, id[3], id[6]);
|
|
if (err_mask) {
|
|
rc = -EIO;
|
|
reason = "INIT_DEV_PARAMS failed";
|
|
goto err_out;
|
|
}
|
|
|
|
/* current CHS translation info (id[53-58]) might be
|
|
* changed. reread the identify device info.
|
|
*/
|
|
flags &= ~ATA_READID_POSTRESET;
|
|
goto retry;
|
|
}
|
|
}
|
|
|
|
*p_class = class;
|
|
|
|
return 0;
|
|
|
|
err_out:
|
|
if (ata_msg_warn(ap))
|
|
ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
|
|
"(%s, err_mask=0x%x)\n", reason, err_mask);
|
|
return rc;
|
|
}
|
|
|
|
static inline u8 ata_dev_knobble(struct ata_device *dev)
|
|
{
|
|
return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
|
|
}
|
|
|
|
static void ata_dev_config_ncq(struct ata_device *dev,
|
|
char *desc, size_t desc_sz)
|
|
{
|
|
struct ata_port *ap = dev->ap;
|
|
int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
|
|
|
|
if (!ata_id_has_ncq(dev->id)) {
|
|
desc[0] = '\0';
|
|
return;
|
|
}
|
|
if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
|
|
snprintf(desc, desc_sz, "NCQ (not used)");
|
|
return;
|
|
}
|
|
if (ap->flags & ATA_FLAG_NCQ) {
|
|
hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
|
|
dev->flags |= ATA_DFLAG_NCQ;
|
|
}
|
|
|
|
if (hdepth >= ddepth)
|
|
snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
|
|
else
|
|
snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
|
|
}
|
|
|
|
/**
|
|
* ata_dev_configure - Configure the specified ATA/ATAPI device
|
|
* @dev: Target device to configure
|
|
*
|
|
* Configure @dev according to @dev->id. Generic and low-level
|
|
* driver specific fixups are also applied.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep)
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno otherwise
|
|
*/
|
|
int ata_dev_configure(struct ata_device *dev)
|
|
{
|
|
struct ata_port *ap = dev->ap;
|
|
int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
|
|
const u16 *id = dev->id;
|
|
unsigned int xfer_mask;
|
|
char revbuf[7]; /* XYZ-99\0 */
|
|
char fwrevbuf[ATA_ID_FW_REV_LEN+1];
|
|
char modelbuf[ATA_ID_PROD_LEN+1];
|
|
int rc;
|
|
|
|
if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
|
|
ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
|
|
__FUNCTION__);
|
|
return 0;
|
|
}
|
|
|
|
if (ata_msg_probe(ap))
|
|
ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
|
|
|
|
/* set _SDD */
|
|
rc = ata_acpi_push_id(ap, dev->devno);
|
|
if (rc) {
|
|
ata_dev_printk(dev, KERN_WARNING, "failed to set _SDD(%d)\n",
|
|
rc);
|
|
}
|
|
|
|
/* retrieve and execute the ATA task file of _GTF */
|
|
ata_acpi_exec_tfs(ap);
|
|
|
|
/* print device capabilities */
|
|
if (ata_msg_probe(ap))
|
|
ata_dev_printk(dev, KERN_DEBUG,
|
|
"%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
|
|
"85:%04x 86:%04x 87:%04x 88:%04x\n",
|
|
__FUNCTION__,
|
|
id[49], id[82], id[83], id[84],
|
|
id[85], id[86], id[87], id[88]);
|
|
|
|
/* initialize to-be-configured parameters */
|
|
dev->flags &= ~ATA_DFLAG_CFG_MASK;
|
|
dev->max_sectors = 0;
|
|
dev->cdb_len = 0;
|
|
dev->n_sectors = 0;
|
|
dev->cylinders = 0;
|
|
dev->heads = 0;
|
|
dev->sectors = 0;
|
|
|
|
/*
|
|
* common ATA, ATAPI feature tests
|
|
*/
|
|
|
|
/* find max transfer mode; for printk only */
|
|
xfer_mask = ata_id_xfermask(id);
|
|
|
|
if (ata_msg_probe(ap))
|
|
ata_dump_id(id);
|
|
|
|
/* ATA-specific feature tests */
|
|
if (dev->class == ATA_DEV_ATA) {
|
|
if (ata_id_is_cfa(id)) {
|
|
if (id[162] & 1) /* CPRM may make this media unusable */
|
|
ata_dev_printk(dev, KERN_WARNING,
|
|
"supports DRM functions and may "
|
|
"not be fully accessable.\n");
|
|
snprintf(revbuf, 7, "CFA");
|
|
}
|
|
else
|
|
snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
|
|
|
|
dev->n_sectors = ata_id_n_sectors(id);
|
|
dev->n_sectors_boot = dev->n_sectors;
|
|
|
|
/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
|
|
ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
|
|
sizeof(fwrevbuf));
|
|
|
|
ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
|
|
sizeof(modelbuf));
|
|
|
|
if (dev->id[59] & 0x100)
|
|
dev->multi_count = dev->id[59] & 0xff;
|
|
|
|
if (ata_id_has_lba(id)) {
|
|
const char *lba_desc;
|
|
char ncq_desc[20];
|
|
|
|
lba_desc = "LBA";
|
|
dev->flags |= ATA_DFLAG_LBA;
|
|
if (ata_id_has_lba48(id)) {
|
|
dev->flags |= ATA_DFLAG_LBA48;
|
|
lba_desc = "LBA48";
|
|
|
|
if (dev->n_sectors >= (1UL << 28) &&
|
|
ata_id_has_flush_ext(id))
|
|
dev->flags |= ATA_DFLAG_FLUSH_EXT;
|
|
}
|
|
|
|
if (ata_id_hpa_enabled(dev->id))
|
|
dev->n_sectors = ata_hpa_resize(dev);
|
|
|
|
/* config NCQ */
|
|
ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
|
|
|
|
/* print device info to dmesg */
|
|
if (ata_msg_drv(ap) && print_info) {
|
|
ata_dev_printk(dev, KERN_INFO,
|
|
"%s: %s, %s, max %s\n",
|
|
revbuf, modelbuf, fwrevbuf,
|
|
ata_mode_string(xfer_mask));
|
|
ata_dev_printk(dev, KERN_INFO,
|
|
"%Lu sectors, multi %u: %s %s\n",
|
|
(unsigned long long)dev->n_sectors,
|
|
dev->multi_count, lba_desc, ncq_desc);
|
|
}
|
|
} else {
|
|
/* CHS */
|
|
|
|
/* Default translation */
|
|
dev->cylinders = id[1];
|
|
dev->heads = id[3];
|
|
dev->sectors = id[6];
|
|
|
|
if (ata_id_current_chs_valid(id)) {
|
|
/* Current CHS translation is valid. */
|
|
dev->cylinders = id[54];
|
|
dev->heads = id[55];
|
|
dev->sectors = id[56];
|
|
}
|
|
|
|
/* print device info to dmesg */
|
|
if (ata_msg_drv(ap) && print_info) {
|
|
ata_dev_printk(dev, KERN_INFO,
|
|
"%s: %s, %s, max %s\n",
|
|
revbuf, modelbuf, fwrevbuf,
|
|
ata_mode_string(xfer_mask));
|
|
ata_dev_printk(dev, KERN_INFO,
|
|
"%Lu sectors, multi %u, CHS %u/%u/%u\n",
|
|
(unsigned long long)dev->n_sectors,
|
|
dev->multi_count, dev->cylinders,
|
|
dev->heads, dev->sectors);
|
|
}
|
|
}
|
|
|
|
dev->cdb_len = 16;
|
|
}
|
|
|
|
/* ATAPI-specific feature tests */
|
|
else if (dev->class == ATA_DEV_ATAPI) {
|
|
char *cdb_intr_string = "";
|
|
|
|
rc = atapi_cdb_len(id);
|
|
if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
|
|
if (ata_msg_warn(ap))
|
|
ata_dev_printk(dev, KERN_WARNING,
|
|
"unsupported CDB len\n");
|
|
rc = -EINVAL;
|
|
goto err_out_nosup;
|
|
}
|
|
dev->cdb_len = (unsigned int) rc;
|
|
|
|
if (ata_id_cdb_intr(dev->id)) {
|
|
dev->flags |= ATA_DFLAG_CDB_INTR;
|
|
cdb_intr_string = ", CDB intr";
|
|
}
|
|
|
|
/* print device info to dmesg */
|
|
if (ata_msg_drv(ap) && print_info)
|
|
ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
|
|
ata_mode_string(xfer_mask),
|
|
cdb_intr_string);
|
|
}
|
|
|
|
/* determine max_sectors */
|
|
dev->max_sectors = ATA_MAX_SECTORS;
|
|
if (dev->flags & ATA_DFLAG_LBA48)
|
|
dev->max_sectors = ATA_MAX_SECTORS_LBA48;
|
|
|
|
if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
|
|
/* Let the user know. We don't want to disallow opens for
|
|
rescue purposes, or in case the vendor is just a blithering
|
|
idiot */
|
|
if (print_info) {
|
|
ata_dev_printk(dev, KERN_WARNING,
|
|
"Drive reports diagnostics failure. This may indicate a drive\n");
|
|
ata_dev_printk(dev, KERN_WARNING,
|
|
"fault or invalid emulation. Contact drive vendor for information.\n");
|
|
}
|
|
}
|
|
|
|
/* limit bridge transfers to udma5, 200 sectors */
|
|
if (ata_dev_knobble(dev)) {
|
|
if (ata_msg_drv(ap) && print_info)
|
|
ata_dev_printk(dev, KERN_INFO,
|
|
"applying bridge limits\n");
|
|
dev->udma_mask &= ATA_UDMA5;
|
|
dev->max_sectors = ATA_MAX_SECTORS;
|
|
}
|
|
|
|
if (ata_device_blacklisted(dev) & ATA_HORKAGE_MAX_SEC_128)
|
|
dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
|
|
dev->max_sectors);
|
|
|
|
/* limit ATAPI DMA to R/W commands only */
|
|
if (ata_device_blacklisted(dev) & ATA_HORKAGE_DMA_RW_ONLY)
|
|
dev->horkage |= ATA_HORKAGE_DMA_RW_ONLY;
|
|
|
|
if (ap->ops->dev_config)
|
|
ap->ops->dev_config(dev);
|
|
|
|
if (ata_msg_probe(ap))
|
|
ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
|
|
__FUNCTION__, ata_chk_status(ap));
|
|
return 0;
|
|
|
|
err_out_nosup:
|
|
if (ata_msg_probe(ap))
|
|
ata_dev_printk(dev, KERN_DEBUG,
|
|
"%s: EXIT, err\n", __FUNCTION__);
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* ata_cable_40wire - return 40 wire cable type
|
|
* @ap: port
|
|
*
|
|
* Helper method for drivers which want to hardwire 40 wire cable
|
|
* detection.
|
|
*/
|
|
|
|
int ata_cable_40wire(struct ata_port *ap)
|
|
{
|
|
return ATA_CBL_PATA40;
|
|
}
|
|
|
|
/**
|
|
* ata_cable_80wire - return 80 wire cable type
|
|
* @ap: port
|
|
*
|
|
* Helper method for drivers which want to hardwire 80 wire cable
|
|
* detection.
|
|
*/
|
|
|
|
int ata_cable_80wire(struct ata_port *ap)
|
|
{
|
|
return ATA_CBL_PATA80;
|
|
}
|
|
|
|
/**
|
|
* ata_cable_unknown - return unknown PATA cable.
|
|
* @ap: port
|
|
*
|
|
* Helper method for drivers which have no PATA cable detection.
|
|
*/
|
|
|
|
int ata_cable_unknown(struct ata_port *ap)
|
|
{
|
|
return ATA_CBL_PATA_UNK;
|
|
}
|
|
|
|
/**
|
|
* ata_cable_sata - return SATA cable type
|
|
* @ap: port
|
|
*
|
|
* Helper method for drivers which have SATA cables
|
|
*/
|
|
|
|
int ata_cable_sata(struct ata_port *ap)
|
|
{
|
|
return ATA_CBL_SATA;
|
|
}
|
|
|
|
/**
|
|
* ata_bus_probe - Reset and probe ATA bus
|
|
* @ap: Bus to probe
|
|
*
|
|
* Master ATA bus probing function. Initiates a hardware-dependent
|
|
* bus reset, then attempts to identify any devices found on
|
|
* the bus.
|
|
*
|
|
* LOCKING:
|
|
* PCI/etc. bus probe sem.
|
|
*
|
|
* RETURNS:
|
|
* Zero on success, negative errno otherwise.
|
|
*/
|
|
|
|
int ata_bus_probe(struct ata_port *ap)
|
|
{
|
|
unsigned int classes[ATA_MAX_DEVICES];
|
|
int tries[ATA_MAX_DEVICES];
|
|
int i, rc;
|
|
struct ata_device *dev;
|
|
|
|
ata_port_probe(ap);
|
|
|
|
for (i = 0; i < ATA_MAX_DEVICES; i++)
|
|
tries[i] = ATA_PROBE_MAX_TRIES;
|
|
|
|
retry:
|
|
/* reset and determine device classes */
|
|
ap->ops->phy_reset(ap);
|
|
|
|
for (i = 0; i < ATA_MAX_DEVICES; i++) {
|
|
dev = &ap->device[i];
|
|
|
|
if (!(ap->flags & ATA_FLAG_DISABLED) &&
|
|
dev->class != ATA_DEV_UNKNOWN)
|
|
classes[dev->devno] = dev->class;
|
|
else
|
|
classes[dev->devno] = ATA_DEV_NONE;
|
|
|
|
dev->class = ATA_DEV_UNKNOWN;
|
|
}
|
|
|
|
ata_port_probe(ap);
|
|
|
|
/* after the reset the device state is PIO 0 and the controller
|
|
state is undefined. Record the mode */
|
|
|
|
for (i = 0; i < ATA_MAX_DEVICES; i++)
|
|
ap->device[i].pio_mode = XFER_PIO_0;
|
|
|
|
/* read IDENTIFY page and configure devices. We have to do the identify
|
|
specific sequence bass-ackwards so that PDIAG- is released by
|
|
the slave device */
|
|
|
|
for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
|
|
dev = &ap->device[i];
|
|
|
|
if (tries[i])
|
|
dev->class = classes[i];
|
|
|
|
if (!ata_dev_enabled(dev))
|
|
continue;
|
|
|
|
rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
|
|
dev->id);
|
|
if (rc)
|
|
goto fail;
|
|
}
|
|
|
|
/* Now ask for the cable type as PDIAG- should have been released */
|
|
if (ap->ops->cable_detect)
|
|
ap->cbl = ap->ops->cable_detect(ap);
|
|
|
|
/* After the identify sequence we can now set up the devices. We do
|
|
this in the normal order so that the user doesn't get confused */
|
|
|
|
for(i = 0; i < ATA_MAX_DEVICES; i++) {
|
|
dev = &ap->device[i];
|
|
if (!ata_dev_enabled(dev))
|
|
continue;
|
|
|
|
ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
|
|
rc = ata_dev_configure(dev);
|
|
ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
|
|
if (rc)
|
|
goto fail;
|
|
}
|
|
|
|
/* configure transfer mode */
|
|
rc = ata_set_mode(ap, &dev);
|
|
if (rc)
|
|
goto fail;
|
|
|
|
for (i = 0; i < ATA_MAX_DEVICES; i++)
|
|
if (ata_dev_enabled(&ap->device[i]))
|
|
return 0;
|
|
|
|
/* no device present, disable port */
|
|
ata_port_disable(ap);
|
|
ap->ops->port_disable(ap);
|
|
return -ENODEV;
|
|
|
|
fail:
|
|
tries[dev->devno]--;
|
|
|
|
switch (rc) {
|
|
case -EINVAL:
|
|
/* eeek, something went very wrong, give up */
|
|
tries[dev->devno] = 0;
|
|
break;
|
|
|
|
case -ENODEV:
|
|
/* give it just one more chance */
|
|
tries[dev->devno] = min(tries[dev->devno], 1);
|
|
case -EIO:
|
|
if (tries[dev->devno] == 1) {
|
|
/* This is the last chance, better to slow
|
|
* down than lose it.
|
|
*/
|
|
sata_down_spd_limit(ap);
|
|
ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
|
|
}
|
|
}
|
|
|
|
if (!tries[dev->devno])
|
|
ata_dev_disable(dev);
|
|
|
|
goto retry;
|
|
}
|
|
|
|
/**
|
|
* ata_port_probe - Mark port as enabled
|
|
* @ap: Port for which we indicate enablement
|
|
*
|
|
* Modify @ap data structure such that the system
|
|
* thinks that the entire port is enabled.
|
|
*
|
|
* LOCKING: host lock, or some other form of
|
|
* serialization.
|
|
*/
|
|
|
|
void ata_port_probe(struct ata_port *ap)
|
|
{
|
|
ap->flags &= ~ATA_FLAG_DISABLED;
|
|
}
|
|
|
|
/**
|
|
* sata_print_link_status - Print SATA link status
|
|
* @ap: SATA port to printk link status about
|
|
*
|
|
* This function prints link speed and status of a SATA link.
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*/
|
|
void sata_print_link_status(struct ata_port *ap)
|
|
{
|
|
u32 sstatus, scontrol, tmp;
|
|
|
|
if (sata_scr_read(ap, SCR_STATUS, &sstatus))
|
|
return;
|
|
sata_scr_read(ap, SCR_CONTROL, &scontrol);
|
|
|
|
if (ata_port_online(ap)) {
|
|
tmp = (sstatus >> 4) & 0xf;
|
|
ata_port_printk(ap, KERN_INFO,
|
|
"SATA link up %s (SStatus %X SControl %X)\n",
|
|
sata_spd_string(tmp), sstatus, scontrol);
|
|
} else {
|
|
ata_port_printk(ap, KERN_INFO,
|
|
"SATA link down (SStatus %X SControl %X)\n",
|
|
sstatus, scontrol);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* __sata_phy_reset - Wake/reset a low-level SATA PHY
|
|
* @ap: SATA port associated with target SATA PHY.
|
|
*
|
|
* This function issues commands to standard SATA Sxxx
|
|
* PHY registers, to wake up the phy (and device), and
|
|
* clear any reset condition.
|
|
*
|
|
* LOCKING:
|
|
* PCI/etc. bus probe sem.
|
|
*
|
|
*/
|
|
void __sata_phy_reset(struct ata_port *ap)
|
|
{
|
|
u32 sstatus;
|
|
unsigned long timeout = jiffies + (HZ * 5);
|
|
|
|
if (ap->flags & ATA_FLAG_SATA_RESET) {
|
|
/* issue phy wake/reset */
|
|
sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
|
|
/* Couldn't find anything in SATA I/II specs, but
|
|
* AHCI-1.1 10.4.2 says at least 1 ms. */
|
|
mdelay(1);
|
|
}
|
|
/* phy wake/clear reset */
|
|
sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
|
|
|
|
/* wait for phy to become ready, if necessary */
|
|
do {
|
|
msleep(200);
|
|
sata_scr_read(ap, SCR_STATUS, &sstatus);
|
|
if ((sstatus & 0xf) != 1)
|
|
break;
|
|
} while (time_before(jiffies, timeout));
|
|
|
|
/* print link status */
|
|
sata_print_link_status(ap);
|
|
|
|
/* TODO: phy layer with polling, timeouts, etc. */
|
|
if (!ata_port_offline(ap))
|
|
ata_port_probe(ap);
|
|
else
|
|
ata_port_disable(ap);
|
|
|
|
if (ap->flags & ATA_FLAG_DISABLED)
|
|
return;
|
|
|
|
if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
|
|
ata_port_disable(ap);
|
|
return;
|
|
}
|
|
|
|
ap->cbl = ATA_CBL_SATA;
|
|
}
|
|
|
|
/**
|
|
* sata_phy_reset - Reset SATA bus.
|
|
* @ap: SATA port associated with target SATA PHY.
|
|
*
|
|
* This function resets the SATA bus, and then probes
|
|
* the bus for devices.
|
|
*
|
|
* LOCKING:
|
|
* PCI/etc. bus probe sem.
|
|
*
|
|
*/
|
|
void sata_phy_reset(struct ata_port *ap)
|
|
{
|
|
__sata_phy_reset(ap);
|
|
if (ap->flags & ATA_FLAG_DISABLED)
|
|
return;
|
|
ata_bus_reset(ap);
|
|
}
|
|
|
|
/**
|
|
* ata_dev_pair - return other device on cable
|
|
* @adev: device
|
|
*
|
|
* Obtain the other device on the same cable, or if none is
|
|
* present NULL is returned
|
|
*/
|
|
|
|
struct ata_device *ata_dev_pair(struct ata_device *adev)
|
|
{
|
|
struct ata_port *ap = adev->ap;
|
|
struct ata_device *pair = &ap->device[1 - adev->devno];
|
|
if (!ata_dev_enabled(pair))
|
|
return NULL;
|
|
return pair;
|
|
}
|
|
|
|
/**
|
|
* ata_port_disable - Disable port.
|
|
* @ap: Port to be disabled.
|
|
*
|
|
* Modify @ap data structure such that the system
|
|
* thinks that the entire port is disabled, and should
|
|
* never attempt to probe or communicate with devices
|
|
* on this port.
|
|
*
|
|
* LOCKING: host lock, or some other form of
|
|
* serialization.
|
|
*/
|
|
|
|
void ata_port_disable(struct ata_port *ap)
|
|
{
|
|
ap->device[0].class = ATA_DEV_NONE;
|
|
ap->device[1].class = ATA_DEV_NONE;
|
|
ap->flags |= ATA_FLAG_DISABLED;
|
|
}
|
|
|
|
/**
|
|
* sata_down_spd_limit - adjust SATA spd limit downward
|
|
* @ap: Port to adjust SATA spd limit for
|
|
*
|
|
* Adjust SATA spd limit of @ap downward. Note that this
|
|
* function only adjusts the limit. The change must be applied
|
|
* using sata_set_spd().
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, negative errno on failure
|
|
*/
|
|
int sata_down_spd_limit(struct ata_port *ap)
|
|
{
|
|
u32 sstatus, spd, mask;
|
|
int rc, highbit;
|
|
|
|
rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
|
|
if (rc)
|
|
return rc;
|
|
|
|
mask = ap->sata_spd_limit;
|
|
if (mask <= 1)
|
|
return -EINVAL;
|
|
highbit = fls(mask) - 1;
|
|
mask &= ~(1 << highbit);
|
|
|
|
spd = (sstatus >> 4) & 0xf;
|
|
if (spd <= 1)
|
|
return -EINVAL;
|
|
spd--;
|
|
mask &= (1 << spd) - 1;
|
|
if (!mask)
|
|
return -EINVAL;
|
|
|
|
ap->sata_spd_limit = mask;
|
|
|
|
ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
|
|
sata_spd_string(fls(mask)));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
|
|
{
|
|
u32 spd, limit;
|
|
|
|
if (ap->sata_spd_limit == UINT_MAX)
|
|
limit = 0;
|
|
else
|
|
limit = fls(ap->sata_spd_limit);
|
|
|
|
spd = (*scontrol >> 4) & 0xf;
|
|
*scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
|
|
|
|
return spd != limit;
|
|
}
|
|
|
|
/**
|
|
* sata_set_spd_needed - is SATA spd configuration needed
|
|
* @ap: Port in question
|
|
*
|
|
* Test whether the spd limit in SControl matches
|
|
* @ap->sata_spd_limit. This function is used to determine
|
|
* whether hardreset is necessary to apply SATA spd
|
|
* configuration.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*
|
|
* RETURNS:
|
|
* 1 if SATA spd configuration is needed, 0 otherwise.
|
|
*/
|
|
int sata_set_spd_needed(struct ata_port *ap)
|
|
{
|
|
u32 scontrol;
|
|
|
|
if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
|
|
return 0;
|
|
|
|
return __sata_set_spd_needed(ap, &scontrol);
|
|
}
|
|
|
|
/**
|
|
* sata_set_spd - set SATA spd according to spd limit
|
|
* @ap: Port to set SATA spd for
|
|
*
|
|
* Set SATA spd of @ap according to sata_spd_limit.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*
|
|
* RETURNS:
|
|
* 0 if spd doesn't need to be changed, 1 if spd has been
|
|
* changed. Negative errno if SCR registers are inaccessible.
|
|
*/
|
|
int sata_set_spd(struct ata_port *ap)
|
|
{
|
|
u32 scontrol;
|
|
int rc;
|
|
|
|
if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
|
|
return rc;
|
|
|
|
if (!__sata_set_spd_needed(ap, &scontrol))
|
|
return 0;
|
|
|
|
if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
|
|
return rc;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* This mode timing computation functionality is ported over from
|
|
* drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
|
|
*/
|
|
/*
|
|
* PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
|
|
* These were taken from ATA/ATAPI-6 standard, rev 0a, except
|
|
* for UDMA6, which is currently supported only by Maxtor drives.
|
|
*
|
|
* For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
|
|
*/
|
|
|
|
static const struct ata_timing ata_timing[] = {
|
|
|
|
{ XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
|
|
{ XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
|
|
{ XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
|
|
{ XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
|
|
|
|
{ XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
|
|
{ XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
|
|
{ XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
|
|
{ XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
|
|
{ XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
|
|
|
|
/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
|
|
|
|
{ XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
|
|
{ XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
|
|
{ XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
|
|
|
|
{ XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
|
|
{ XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
|
|
{ XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
|
|
|
|
{ XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
|
|
{ XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
|
|
{ XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
|
|
{ XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
|
|
|
|
{ XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
|
|
{ XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
|
|
{ XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
|
|
|
|
/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
|
|
|
|
{ 0xFF }
|
|
};
|
|
|
|
#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
|
|
#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
|
|
|
|
static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
|
|
{
|
|
q->setup = EZ(t->setup * 1000, T);
|
|
q->act8b = EZ(t->act8b * 1000, T);
|
|
q->rec8b = EZ(t->rec8b * 1000, T);
|
|
q->cyc8b = EZ(t->cyc8b * 1000, T);
|
|
q->active = EZ(t->active * 1000, T);
|
|
q->recover = EZ(t->recover * 1000, T);
|
|
q->cycle = EZ(t->cycle * 1000, T);
|
|
q->udma = EZ(t->udma * 1000, UT);
|
|
}
|
|
|
|
void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
|
|
struct ata_timing *m, unsigned int what)
|
|
{
|
|
if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
|
|
if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
|
|
if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
|
|
if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
|
|
if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
|
|
if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
|
|
if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
|
|
if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
|
|
}
|
|
|
|
static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
|
|
{
|
|
const struct ata_timing *t;
|
|
|
|
for (t = ata_timing; t->mode != speed; t++)
|
|
if (t->mode == 0xFF)
|
|
return NULL;
|
|
return t;
|
|
}
|
|
|
|
int ata_timing_compute(struct ata_device *adev, unsigned short speed,
|
|
struct ata_timing *t, int T, int UT)
|
|
{
|
|
const struct ata_timing *s;
|
|
struct ata_timing p;
|
|
|
|
/*
|
|
* Find the mode.
|
|
*/
|
|
|
|
if (!(s = ata_timing_find_mode(speed)))
|
|
return -EINVAL;
|
|
|
|
memcpy(t, s, sizeof(*s));
|
|
|
|
/*
|
|
* If the drive is an EIDE drive, it can tell us it needs extended
|
|
* PIO/MW_DMA cycle timing.
|
|
*/
|
|
|
|
if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
|
|
memset(&p, 0, sizeof(p));
|
|
if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
|
|
if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
|
|
else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
|
|
} else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
|
|
p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
|
|
}
|
|
ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
|
|
}
|
|
|
|
/*
|
|
* Convert the timing to bus clock counts.
|
|
*/
|
|
|
|
ata_timing_quantize(t, t, T, UT);
|
|
|
|
/*
|
|
* Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
|
|
* S.M.A.R.T * and some other commands. We have to ensure that the
|
|
* DMA cycle timing is slower/equal than the fastest PIO timing.
|
|
*/
|
|
|
|
if (speed > XFER_PIO_6) {
|
|
ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
|
|
ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
|
|
}
|
|
|
|
/*
|
|
* Lengthen active & recovery time so that cycle time is correct.
|
|
*/
|
|
|
|
if (t->act8b + t->rec8b < t->cyc8b) {
|
|
t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
|
|
t->rec8b = t->cyc8b - t->act8b;
|
|
}
|
|
|
|
if (t->active + t->recover < t->cycle) {
|
|
t->active += (t->cycle - (t->active + t->recover)) / 2;
|
|
t->recover = t->cycle - t->active;
|
|
}
|
|
|
|
/* In a few cases quantisation may produce enough errors to
|
|
leave t->cycle too low for the sum of active and recovery
|
|
if so we must correct this */
|
|
if (t->active + t->recover > t->cycle)
|
|
t->cycle = t->active + t->recover;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ata_down_xfermask_limit - adjust dev xfer masks downward
|
|
* @dev: Device to adjust xfer masks
|
|
* @sel: ATA_DNXFER_* selector
|
|
*
|
|
* Adjust xfer masks of @dev downward. Note that this function
|
|
* does not apply the change. Invoking ata_set_mode() afterwards
|
|
* will apply the limit.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, negative errno on failure
|
|
*/
|
|
int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
|
|
{
|
|
char buf[32];
|
|
unsigned int orig_mask, xfer_mask;
|
|
unsigned int pio_mask, mwdma_mask, udma_mask;
|
|
int quiet, highbit;
|
|
|
|
quiet = !!(sel & ATA_DNXFER_QUIET);
|
|
sel &= ~ATA_DNXFER_QUIET;
|
|
|
|
xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
|
|
dev->mwdma_mask,
|
|
dev->udma_mask);
|
|
ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
|
|
|
|
switch (sel) {
|
|
case ATA_DNXFER_PIO:
|
|
highbit = fls(pio_mask) - 1;
|
|
pio_mask &= ~(1 << highbit);
|
|
break;
|
|
|
|
case ATA_DNXFER_DMA:
|
|
if (udma_mask) {
|
|
highbit = fls(udma_mask) - 1;
|
|
udma_mask &= ~(1 << highbit);
|
|
if (!udma_mask)
|
|
return -ENOENT;
|
|
} else if (mwdma_mask) {
|
|
highbit = fls(mwdma_mask) - 1;
|
|
mwdma_mask &= ~(1 << highbit);
|
|
if (!mwdma_mask)
|
|
return -ENOENT;
|
|
}
|
|
break;
|
|
|
|
case ATA_DNXFER_40C:
|
|
udma_mask &= ATA_UDMA_MASK_40C;
|
|
break;
|
|
|
|
case ATA_DNXFER_FORCE_PIO0:
|
|
pio_mask &= 1;
|
|
case ATA_DNXFER_FORCE_PIO:
|
|
mwdma_mask = 0;
|
|
udma_mask = 0;
|
|
break;
|
|
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
|
|
|
|
if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
|
|
return -ENOENT;
|
|
|
|
if (!quiet) {
|
|
if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
|
|
snprintf(buf, sizeof(buf), "%s:%s",
|
|
ata_mode_string(xfer_mask),
|
|
ata_mode_string(xfer_mask & ATA_MASK_PIO));
|
|
else
|
|
snprintf(buf, sizeof(buf), "%s",
|
|
ata_mode_string(xfer_mask));
|
|
|
|
ata_dev_printk(dev, KERN_WARNING,
|
|
"limiting speed to %s\n", buf);
|
|
}
|
|
|
|
ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
|
|
&dev->udma_mask);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ata_dev_set_mode(struct ata_device *dev)
|
|
{
|
|
struct ata_eh_context *ehc = &dev->ap->eh_context;
|
|
unsigned int err_mask;
|
|
int rc;
|
|
|
|
dev->flags &= ~ATA_DFLAG_PIO;
|
|
if (dev->xfer_shift == ATA_SHIFT_PIO)
|
|
dev->flags |= ATA_DFLAG_PIO;
|
|
|
|
err_mask = ata_dev_set_xfermode(dev);
|
|
/* Old CFA may refuse this command, which is just fine */
|
|
if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
|
|
err_mask &= ~AC_ERR_DEV;
|
|
|
|
if (err_mask) {
|
|
ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
|
|
"(err_mask=0x%x)\n", err_mask);
|
|
return -EIO;
|
|
}
|
|
|
|
ehc->i.flags |= ATA_EHI_POST_SETMODE;
|
|
rc = ata_dev_revalidate(dev, 0);
|
|
ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
|
|
if (rc)
|
|
return rc;
|
|
|
|
DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
|
|
dev->xfer_shift, (int)dev->xfer_mode);
|
|
|
|
ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
|
|
ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ata_do_set_mode - Program timings and issue SET FEATURES - XFER
|
|
* @ap: port on which timings will be programmed
|
|
* @r_failed_dev: out paramter for failed device
|
|
*
|
|
* Standard implementation of the function used to tune and set
|
|
* ATA device disk transfer mode (PIO3, UDMA6, etc.). If
|
|
* ata_dev_set_mode() fails, pointer to the failing device is
|
|
* returned in @r_failed_dev.
|
|
*
|
|
* LOCKING:
|
|
* PCI/etc. bus probe sem.
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, negative errno otherwise
|
|
*/
|
|
|
|
int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
|
|
{
|
|
struct ata_device *dev;
|
|
int i, rc = 0, used_dma = 0, found = 0;
|
|
|
|
|
|
/* step 1: calculate xfer_mask */
|
|
for (i = 0; i < ATA_MAX_DEVICES; i++) {
|
|
unsigned int pio_mask, dma_mask;
|
|
|
|
dev = &ap->device[i];
|
|
|
|
if (!ata_dev_enabled(dev))
|
|
continue;
|
|
|
|
ata_dev_xfermask(dev);
|
|
|
|
pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
|
|
dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
|
|
dev->pio_mode = ata_xfer_mask2mode(pio_mask);
|
|
dev->dma_mode = ata_xfer_mask2mode(dma_mask);
|
|
|
|
found = 1;
|
|
if (dev->dma_mode)
|
|
used_dma = 1;
|
|
}
|
|
if (!found)
|
|
goto out;
|
|
|
|
/* step 2: always set host PIO timings */
|
|
for (i = 0; i < ATA_MAX_DEVICES; i++) {
|
|
dev = &ap->device[i];
|
|
if (!ata_dev_enabled(dev))
|
|
continue;
|
|
|
|
if (!dev->pio_mode) {
|
|
ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
|
|
rc = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
dev->xfer_mode = dev->pio_mode;
|
|
dev->xfer_shift = ATA_SHIFT_PIO;
|
|
if (ap->ops->set_piomode)
|
|
ap->ops->set_piomode(ap, dev);
|
|
}
|
|
|
|
/* step 3: set host DMA timings */
|
|
for (i = 0; i < ATA_MAX_DEVICES; i++) {
|
|
dev = &ap->device[i];
|
|
|
|
if (!ata_dev_enabled(dev) || !dev->dma_mode)
|
|
continue;
|
|
|
|
dev->xfer_mode = dev->dma_mode;
|
|
dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
|
|
if (ap->ops->set_dmamode)
|
|
ap->ops->set_dmamode(ap, dev);
|
|
}
|
|
|
|
/* step 4: update devices' xfer mode */
|
|
for (i = 0; i < ATA_MAX_DEVICES; i++) {
|
|
dev = &ap->device[i];
|
|
|
|
/* don't update suspended devices' xfer mode */
|
|
if (!ata_dev_ready(dev))
|
|
continue;
|
|
|
|
rc = ata_dev_set_mode(dev);
|
|
if (rc)
|
|
goto out;
|
|
}
|
|
|
|
/* Record simplex status. If we selected DMA then the other
|
|
* host channels are not permitted to do so.
|
|
*/
|
|
if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
|
|
ap->host->simplex_claimed = ap;
|
|
|
|
/* step5: chip specific finalisation */
|
|
if (ap->ops->post_set_mode)
|
|
ap->ops->post_set_mode(ap);
|
|
out:
|
|
if (rc)
|
|
*r_failed_dev = dev;
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* ata_set_mode - Program timings and issue SET FEATURES - XFER
|
|
* @ap: port on which timings will be programmed
|
|
* @r_failed_dev: out paramter for failed device
|
|
*
|
|
* Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
|
|
* ata_set_mode() fails, pointer to the failing device is
|
|
* returned in @r_failed_dev.
|
|
*
|
|
* LOCKING:
|
|
* PCI/etc. bus probe sem.
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, negative errno otherwise
|
|
*/
|
|
int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
|
|
{
|
|
/* has private set_mode? */
|
|
if (ap->ops->set_mode)
|
|
return ap->ops->set_mode(ap, r_failed_dev);
|
|
return ata_do_set_mode(ap, r_failed_dev);
|
|
}
|
|
|
|
/**
|
|
* ata_tf_to_host - issue ATA taskfile to host controller
|
|
* @ap: port to which command is being issued
|
|
* @tf: ATA taskfile register set
|
|
*
|
|
* Issues ATA taskfile register set to ATA host controller,
|
|
* with proper synchronization with interrupt handler and
|
|
* other threads.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*/
|
|
|
|
static inline void ata_tf_to_host(struct ata_port *ap,
|
|
const struct ata_taskfile *tf)
|
|
{
|
|
ap->ops->tf_load(ap, tf);
|
|
ap->ops->exec_command(ap, tf);
|
|
}
|
|
|
|
/**
|
|
* ata_busy_sleep - sleep until BSY clears, or timeout
|
|
* @ap: port containing status register to be polled
|
|
* @tmout_pat: impatience timeout
|
|
* @tmout: overall timeout
|
|
*
|
|
* Sleep until ATA Status register bit BSY clears,
|
|
* or a timeout occurs.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep).
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno otherwise.
|
|
*/
|
|
int ata_busy_sleep(struct ata_port *ap,
|
|
unsigned long tmout_pat, unsigned long tmout)
|
|
{
|
|
unsigned long timer_start, timeout;
|
|
u8 status;
|
|
|
|
status = ata_busy_wait(ap, ATA_BUSY, 300);
|
|
timer_start = jiffies;
|
|
timeout = timer_start + tmout_pat;
|
|
while (status != 0xff && (status & ATA_BUSY) &&
|
|
time_before(jiffies, timeout)) {
|
|
msleep(50);
|
|
status = ata_busy_wait(ap, ATA_BUSY, 3);
|
|
}
|
|
|
|
if (status != 0xff && (status & ATA_BUSY))
|
|
ata_port_printk(ap, KERN_WARNING,
|
|
"port is slow to respond, please be patient "
|
|
"(Status 0x%x)\n", status);
|
|
|
|
timeout = timer_start + tmout;
|
|
while (status != 0xff && (status & ATA_BUSY) &&
|
|
time_before(jiffies, timeout)) {
|
|
msleep(50);
|
|
status = ata_chk_status(ap);
|
|
}
|
|
|
|
if (status == 0xff)
|
|
return -ENODEV;
|
|
|
|
if (status & ATA_BUSY) {
|
|
ata_port_printk(ap, KERN_ERR, "port failed to respond "
|
|
"(%lu secs, Status 0x%x)\n",
|
|
tmout / HZ, status);
|
|
return -EBUSY;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ata_wait_ready - sleep until BSY clears, or timeout
|
|
* @ap: port containing status register to be polled
|
|
* @deadline: deadline jiffies for the operation
|
|
*
|
|
* Sleep until ATA Status register bit BSY clears, or timeout
|
|
* occurs.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep).
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno otherwise.
|
|
*/
|
|
int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
|
|
{
|
|
unsigned long start = jiffies;
|
|
int warned = 0;
|
|
|
|
while (1) {
|
|
u8 status = ata_chk_status(ap);
|
|
unsigned long now = jiffies;
|
|
|
|
if (!(status & ATA_BUSY))
|
|
return 0;
|
|
if (status == 0xff)
|
|
return -ENODEV;
|
|
if (time_after(now, deadline))
|
|
return -EBUSY;
|
|
|
|
if (!warned && time_after(now, start + 5 * HZ) &&
|
|
(deadline - now > 3 * HZ)) {
|
|
ata_port_printk(ap, KERN_WARNING,
|
|
"port is slow to respond, please be patient "
|
|
"(Status 0x%x)\n", status);
|
|
warned = 1;
|
|
}
|
|
|
|
msleep(50);
|
|
}
|
|
}
|
|
|
|
static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
|
|
unsigned long deadline)
|
|
{
|
|
struct ata_ioports *ioaddr = &ap->ioaddr;
|
|
unsigned int dev0 = devmask & (1 << 0);
|
|
unsigned int dev1 = devmask & (1 << 1);
|
|
int rc, ret = 0;
|
|
|
|
/* if device 0 was found in ata_devchk, wait for its
|
|
* BSY bit to clear
|
|
*/
|
|
if (dev0) {
|
|
rc = ata_wait_ready(ap, deadline);
|
|
if (rc) {
|
|
if (rc != -ENODEV)
|
|
return rc;
|
|
ret = rc;
|
|
}
|
|
}
|
|
|
|
/* if device 1 was found in ata_devchk, wait for
|
|
* register access, then wait for BSY to clear
|
|
*/
|
|
while (dev1) {
|
|
u8 nsect, lbal;
|
|
|
|
ap->ops->dev_select(ap, 1);
|
|
nsect = ioread8(ioaddr->nsect_addr);
|
|
lbal = ioread8(ioaddr->lbal_addr);
|
|
if ((nsect == 1) && (lbal == 1))
|
|
break;
|
|
if (time_after(jiffies, deadline))
|
|
return -EBUSY;
|
|
msleep(50); /* give drive a breather */
|
|
}
|
|
if (dev1) {
|
|
rc = ata_wait_ready(ap, deadline);
|
|
if (rc) {
|
|
if (rc != -ENODEV)
|
|
return rc;
|
|
ret = rc;
|
|
}
|
|
}
|
|
|
|
/* is all this really necessary? */
|
|
ap->ops->dev_select(ap, 0);
|
|
if (dev1)
|
|
ap->ops->dev_select(ap, 1);
|
|
if (dev0)
|
|
ap->ops->dev_select(ap, 0);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
|
|
unsigned long deadline)
|
|
{
|
|
struct ata_ioports *ioaddr = &ap->ioaddr;
|
|
|
|
DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
|
|
|
|
/* software reset. causes dev0 to be selected */
|
|
iowrite8(ap->ctl, ioaddr->ctl_addr);
|
|
udelay(20); /* FIXME: flush */
|
|
iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
|
|
udelay(20); /* FIXME: flush */
|
|
iowrite8(ap->ctl, ioaddr->ctl_addr);
|
|
|
|
/* spec mandates ">= 2ms" before checking status.
|
|
* We wait 150ms, because that was the magic delay used for
|
|
* ATAPI devices in Hale Landis's ATADRVR, for the period of time
|
|
* between when the ATA command register is written, and then
|
|
* status is checked. Because waiting for "a while" before
|
|
* checking status is fine, post SRST, we perform this magic
|
|
* delay here as well.
|
|
*
|
|
* Old drivers/ide uses the 2mS rule and then waits for ready
|
|
*/
|
|
msleep(150);
|
|
|
|
/* Before we perform post reset processing we want to see if
|
|
* the bus shows 0xFF because the odd clown forgets the D7
|
|
* pulldown resistor.
|
|
*/
|
|
if (ata_check_status(ap) == 0xFF)
|
|
return -ENODEV;
|
|
|
|
return ata_bus_post_reset(ap, devmask, deadline);
|
|
}
|
|
|
|
/**
|
|
* ata_bus_reset - reset host port and associated ATA channel
|
|
* @ap: port to reset
|
|
*
|
|
* This is typically the first time we actually start issuing
|
|
* commands to the ATA channel. We wait for BSY to clear, then
|
|
* issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
|
|
* result. Determine what devices, if any, are on the channel
|
|
* by looking at the device 0/1 error register. Look at the signature
|
|
* stored in each device's taskfile registers, to determine if
|
|
* the device is ATA or ATAPI.
|
|
*
|
|
* LOCKING:
|
|
* PCI/etc. bus probe sem.
|
|
* Obtains host lock.
|
|
*
|
|
* SIDE EFFECTS:
|
|
* Sets ATA_FLAG_DISABLED if bus reset fails.
|
|
*/
|
|
|
|
void ata_bus_reset(struct ata_port *ap)
|
|
{
|
|
struct ata_ioports *ioaddr = &ap->ioaddr;
|
|
unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
|
|
u8 err;
|
|
unsigned int dev0, dev1 = 0, devmask = 0;
|
|
int rc;
|
|
|
|
DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
|
|
|
|
/* determine if device 0/1 are present */
|
|
if (ap->flags & ATA_FLAG_SATA_RESET)
|
|
dev0 = 1;
|
|
else {
|
|
dev0 = ata_devchk(ap, 0);
|
|
if (slave_possible)
|
|
dev1 = ata_devchk(ap, 1);
|
|
}
|
|
|
|
if (dev0)
|
|
devmask |= (1 << 0);
|
|
if (dev1)
|
|
devmask |= (1 << 1);
|
|
|
|
/* select device 0 again */
|
|
ap->ops->dev_select(ap, 0);
|
|
|
|
/* issue bus reset */
|
|
if (ap->flags & ATA_FLAG_SRST) {
|
|
rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
|
|
if (rc && rc != -ENODEV)
|
|
goto err_out;
|
|
}
|
|
|
|
/*
|
|
* determine by signature whether we have ATA or ATAPI devices
|
|
*/
|
|
ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
|
|
if ((slave_possible) && (err != 0x81))
|
|
ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
|
|
|
|
/* re-enable interrupts */
|
|
ap->ops->irq_on(ap);
|
|
|
|
/* is double-select really necessary? */
|
|
if (ap->device[1].class != ATA_DEV_NONE)
|
|
ap->ops->dev_select(ap, 1);
|
|
if (ap->device[0].class != ATA_DEV_NONE)
|
|
ap->ops->dev_select(ap, 0);
|
|
|
|
/* if no devices were detected, disable this port */
|
|
if ((ap->device[0].class == ATA_DEV_NONE) &&
|
|
(ap->device[1].class == ATA_DEV_NONE))
|
|
goto err_out;
|
|
|
|
if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
|
|
/* set up device control for ATA_FLAG_SATA_RESET */
|
|
iowrite8(ap->ctl, ioaddr->ctl_addr);
|
|
}
|
|
|
|
DPRINTK("EXIT\n");
|
|
return;
|
|
|
|
err_out:
|
|
ata_port_printk(ap, KERN_ERR, "disabling port\n");
|
|
ap->ops->port_disable(ap);
|
|
|
|
DPRINTK("EXIT\n");
|
|
}
|
|
|
|
/**
|
|
* sata_phy_debounce - debounce SATA phy status
|
|
* @ap: ATA port to debounce SATA phy status for
|
|
* @params: timing parameters { interval, duratinon, timeout } in msec
|
|
* @deadline: deadline jiffies for the operation
|
|
*
|
|
* Make sure SStatus of @ap reaches stable state, determined by
|
|
* holding the same value where DET is not 1 for @duration polled
|
|
* every @interval, before @timeout. Timeout constraints the
|
|
* beginning of the stable state. Because DET gets stuck at 1 on
|
|
* some controllers after hot unplugging, this functions waits
|
|
* until timeout then returns 0 if DET is stable at 1.
|
|
*
|
|
* @timeout is further limited by @deadline. The sooner of the
|
|
* two is used.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep)
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno on failure.
|
|
*/
|
|
int sata_phy_debounce(struct ata_port *ap, const unsigned long *params,
|
|
unsigned long deadline)
|
|
{
|
|
unsigned long interval_msec = params[0];
|
|
unsigned long duration = msecs_to_jiffies(params[1]);
|
|
unsigned long last_jiffies, t;
|
|
u32 last, cur;
|
|
int rc;
|
|
|
|
t = jiffies + msecs_to_jiffies(params[2]);
|
|
if (time_before(t, deadline))
|
|
deadline = t;
|
|
|
|
if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
|
|
return rc;
|
|
cur &= 0xf;
|
|
|
|
last = cur;
|
|
last_jiffies = jiffies;
|
|
|
|
while (1) {
|
|
msleep(interval_msec);
|
|
if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
|
|
return rc;
|
|
cur &= 0xf;
|
|
|
|
/* DET stable? */
|
|
if (cur == last) {
|
|
if (cur == 1 && time_before(jiffies, deadline))
|
|
continue;
|
|
if (time_after(jiffies, last_jiffies + duration))
|
|
return 0;
|
|
continue;
|
|
}
|
|
|
|
/* unstable, start over */
|
|
last = cur;
|
|
last_jiffies = jiffies;
|
|
|
|
/* check deadline */
|
|
if (time_after(jiffies, deadline))
|
|
return -EBUSY;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* sata_phy_resume - resume SATA phy
|
|
* @ap: ATA port to resume SATA phy for
|
|
* @params: timing parameters { interval, duratinon, timeout } in msec
|
|
* @deadline: deadline jiffies for the operation
|
|
*
|
|
* Resume SATA phy of @ap and debounce it.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep)
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno on failure.
|
|
*/
|
|
int sata_phy_resume(struct ata_port *ap, const unsigned long *params,
|
|
unsigned long deadline)
|
|
{
|
|
u32 scontrol;
|
|
int rc;
|
|
|
|
if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
|
|
return rc;
|
|
|
|
scontrol = (scontrol & 0x0f0) | 0x300;
|
|
|
|
if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
|
|
return rc;
|
|
|
|
/* Some PHYs react badly if SStatus is pounded immediately
|
|
* after resuming. Delay 200ms before debouncing.
|
|
*/
|
|
msleep(200);
|
|
|
|
return sata_phy_debounce(ap, params, deadline);
|
|
}
|
|
|
|
/**
|
|
* ata_std_prereset - prepare for reset
|
|
* @ap: ATA port to be reset
|
|
* @deadline: deadline jiffies for the operation
|
|
*
|
|
* @ap is about to be reset. Initialize it. Failure from
|
|
* prereset makes libata abort whole reset sequence and give up
|
|
* that port, so prereset should be best-effort. It does its
|
|
* best to prepare for reset sequence but if things go wrong, it
|
|
* should just whine, not fail.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep)
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno otherwise.
|
|
*/
|
|
int ata_std_prereset(struct ata_port *ap, unsigned long deadline)
|
|
{
|
|
struct ata_eh_context *ehc = &ap->eh_context;
|
|
const unsigned long *timing = sata_ehc_deb_timing(ehc);
|
|
int rc;
|
|
|
|
/* handle link resume */
|
|
if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
|
|
(ap->flags & ATA_FLAG_HRST_TO_RESUME))
|
|
ehc->i.action |= ATA_EH_HARDRESET;
|
|
|
|
/* if we're about to do hardreset, nothing more to do */
|
|
if (ehc->i.action & ATA_EH_HARDRESET)
|
|
return 0;
|
|
|
|
/* if SATA, resume phy */
|
|
if (ap->cbl == ATA_CBL_SATA) {
|
|
rc = sata_phy_resume(ap, timing, deadline);
|
|
/* whine about phy resume failure but proceed */
|
|
if (rc && rc != -EOPNOTSUPP)
|
|
ata_port_printk(ap, KERN_WARNING, "failed to resume "
|
|
"link for reset (errno=%d)\n", rc);
|
|
}
|
|
|
|
/* Wait for !BSY if the controller can wait for the first D2H
|
|
* Reg FIS and we don't know that no device is attached.
|
|
*/
|
|
if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap)) {
|
|
rc = ata_wait_ready(ap, deadline);
|
|
if (rc) {
|
|
ata_port_printk(ap, KERN_WARNING, "device not ready "
|
|
"(errno=%d), forcing hardreset\n", rc);
|
|
ehc->i.action |= ATA_EH_HARDRESET;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ata_std_softreset - reset host port via ATA SRST
|
|
* @ap: port to reset
|
|
* @classes: resulting classes of attached devices
|
|
* @deadline: deadline jiffies for the operation
|
|
*
|
|
* Reset host port using ATA SRST.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep)
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno otherwise.
|
|
*/
|
|
int ata_std_softreset(struct ata_port *ap, unsigned int *classes,
|
|
unsigned long deadline)
|
|
{
|
|
unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
|
|
unsigned int devmask = 0;
|
|
int rc;
|
|
u8 err;
|
|
|
|
DPRINTK("ENTER\n");
|
|
|
|
if (ata_port_offline(ap)) {
|
|
classes[0] = ATA_DEV_NONE;
|
|
goto out;
|
|
}
|
|
|
|
/* determine if device 0/1 are present */
|
|
if (ata_devchk(ap, 0))
|
|
devmask |= (1 << 0);
|
|
if (slave_possible && ata_devchk(ap, 1))
|
|
devmask |= (1 << 1);
|
|
|
|
/* select device 0 again */
|
|
ap->ops->dev_select(ap, 0);
|
|
|
|
/* issue bus reset */
|
|
DPRINTK("about to softreset, devmask=%x\n", devmask);
|
|
rc = ata_bus_softreset(ap, devmask, deadline);
|
|
/* if link is occupied, -ENODEV too is an error */
|
|
if (rc && (rc != -ENODEV || sata_scr_valid(ap))) {
|
|
ata_port_printk(ap, KERN_ERR, "SRST failed (errno=%d)\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
/* determine by signature whether we have ATA or ATAPI devices */
|
|
classes[0] = ata_dev_try_classify(ap, 0, &err);
|
|
if (slave_possible && err != 0x81)
|
|
classes[1] = ata_dev_try_classify(ap, 1, &err);
|
|
|
|
out:
|
|
DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* sata_port_hardreset - reset port via SATA phy reset
|
|
* @ap: port to reset
|
|
* @timing: timing parameters { interval, duratinon, timeout } in msec
|
|
* @deadline: deadline jiffies for the operation
|
|
*
|
|
* SATA phy-reset host port using DET bits of SControl register.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep)
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno otherwise.
|
|
*/
|
|
int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing,
|
|
unsigned long deadline)
|
|
{
|
|
u32 scontrol;
|
|
int rc;
|
|
|
|
DPRINTK("ENTER\n");
|
|
|
|
if (sata_set_spd_needed(ap)) {
|
|
/* SATA spec says nothing about how to reconfigure
|
|
* spd. To be on the safe side, turn off phy during
|
|
* reconfiguration. This works for at least ICH7 AHCI
|
|
* and Sil3124.
|
|
*/
|
|
if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
|
|
goto out;
|
|
|
|
scontrol = (scontrol & 0x0f0) | 0x304;
|
|
|
|
if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
|
|
goto out;
|
|
|
|
sata_set_spd(ap);
|
|
}
|
|
|
|
/* issue phy wake/reset */
|
|
if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
|
|
goto out;
|
|
|
|
scontrol = (scontrol & 0x0f0) | 0x301;
|
|
|
|
if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
|
|
goto out;
|
|
|
|
/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
|
|
* 10.4.2 says at least 1 ms.
|
|
*/
|
|
msleep(1);
|
|
|
|
/* bring phy back */
|
|
rc = sata_phy_resume(ap, timing, deadline);
|
|
out:
|
|
DPRINTK("EXIT, rc=%d\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* sata_std_hardreset - reset host port via SATA phy reset
|
|
* @ap: port to reset
|
|
* @class: resulting class of attached device
|
|
* @deadline: deadline jiffies for the operation
|
|
*
|
|
* SATA phy-reset host port using DET bits of SControl register,
|
|
* wait for !BSY and classify the attached device.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep)
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno otherwise.
|
|
*/
|
|
int sata_std_hardreset(struct ata_port *ap, unsigned int *class,
|
|
unsigned long deadline)
|
|
{
|
|
const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
|
|
int rc;
|
|
|
|
DPRINTK("ENTER\n");
|
|
|
|
/* do hardreset */
|
|
rc = sata_port_hardreset(ap, timing, deadline);
|
|
if (rc) {
|
|
ata_port_printk(ap, KERN_ERR,
|
|
"COMRESET failed (errno=%d)\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
/* TODO: phy layer with polling, timeouts, etc. */
|
|
if (ata_port_offline(ap)) {
|
|
*class = ATA_DEV_NONE;
|
|
DPRINTK("EXIT, link offline\n");
|
|
return 0;
|
|
}
|
|
|
|
/* wait a while before checking status, see SRST for more info */
|
|
msleep(150);
|
|
|
|
rc = ata_wait_ready(ap, deadline);
|
|
/* link occupied, -ENODEV too is an error */
|
|
if (rc) {
|
|
ata_port_printk(ap, KERN_ERR,
|
|
"COMRESET failed (errno=%d)\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
ap->ops->dev_select(ap, 0); /* probably unnecessary */
|
|
|
|
*class = ata_dev_try_classify(ap, 0, NULL);
|
|
|
|
DPRINTK("EXIT, class=%u\n", *class);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ata_std_postreset - standard postreset callback
|
|
* @ap: the target ata_port
|
|
* @classes: classes of attached devices
|
|
*
|
|
* This function is invoked after a successful reset. Note that
|
|
* the device might have been reset more than once using
|
|
* different reset methods before postreset is invoked.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep)
|
|
*/
|
|
void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
|
|
{
|
|
u32 serror;
|
|
|
|
DPRINTK("ENTER\n");
|
|
|
|
/* print link status */
|
|
sata_print_link_status(ap);
|
|
|
|
/* clear SError */
|
|
if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
|
|
sata_scr_write(ap, SCR_ERROR, serror);
|
|
|
|
/* re-enable interrupts */
|
|
if (!ap->ops->error_handler)
|
|
ap->ops->irq_on(ap);
|
|
|
|
/* is double-select really necessary? */
|
|
if (classes[0] != ATA_DEV_NONE)
|
|
ap->ops->dev_select(ap, 1);
|
|
if (classes[1] != ATA_DEV_NONE)
|
|
ap->ops->dev_select(ap, 0);
|
|
|
|
/* bail out if no device is present */
|
|
if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
|
|
DPRINTK("EXIT, no device\n");
|
|
return;
|
|
}
|
|
|
|
/* set up device control */
|
|
if (ap->ioaddr.ctl_addr)
|
|
iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
|
|
|
|
DPRINTK("EXIT\n");
|
|
}
|
|
|
|
/**
|
|
* ata_dev_same_device - Determine whether new ID matches configured device
|
|
* @dev: device to compare against
|
|
* @new_class: class of the new device
|
|
* @new_id: IDENTIFY page of the new device
|
|
*
|
|
* Compare @new_class and @new_id against @dev and determine
|
|
* whether @dev is the device indicated by @new_class and
|
|
* @new_id.
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*
|
|
* RETURNS:
|
|
* 1 if @dev matches @new_class and @new_id, 0 otherwise.
|
|
*/
|
|
static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
|
|
const u16 *new_id)
|
|
{
|
|
const u16 *old_id = dev->id;
|
|
unsigned char model[2][ATA_ID_PROD_LEN + 1];
|
|
unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
|
|
u64 new_n_sectors;
|
|
|
|
if (dev->class != new_class) {
|
|
ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
|
|
dev->class, new_class);
|
|
return 0;
|
|
}
|
|
|
|
ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
|
|
ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
|
|
ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
|
|
ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
|
|
new_n_sectors = ata_id_n_sectors(new_id);
|
|
|
|
if (strcmp(model[0], model[1])) {
|
|
ata_dev_printk(dev, KERN_INFO, "model number mismatch "
|
|
"'%s' != '%s'\n", model[0], model[1]);
|
|
return 0;
|
|
}
|
|
|
|
if (strcmp(serial[0], serial[1])) {
|
|
ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
|
|
"'%s' != '%s'\n", serial[0], serial[1]);
|
|
return 0;
|
|
}
|
|
|
|
if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
|
|
ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
|
|
"%llu != %llu\n",
|
|
(unsigned long long)dev->n_sectors,
|
|
(unsigned long long)new_n_sectors);
|
|
/* Are we the boot time size - if so we appear to be the
|
|
same disk at this point and our HPA got reapplied */
|
|
if (ata_ignore_hpa && dev->n_sectors_boot == new_n_sectors
|
|
&& ata_id_hpa_enabled(new_id))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* ata_dev_revalidate - Revalidate ATA device
|
|
* @dev: device to revalidate
|
|
* @readid_flags: read ID flags
|
|
*
|
|
* Re-read IDENTIFY page and make sure @dev is still attached to
|
|
* the port.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep)
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, negative errno otherwise
|
|
*/
|
|
int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
|
|
{
|
|
unsigned int class = dev->class;
|
|
u16 *id = (void *)dev->ap->sector_buf;
|
|
int rc;
|
|
|
|
if (!ata_dev_enabled(dev)) {
|
|
rc = -ENODEV;
|
|
goto fail;
|
|
}
|
|
|
|
/* read ID data */
|
|
rc = ata_dev_read_id(dev, &class, readid_flags, id);
|
|
if (rc)
|
|
goto fail;
|
|
|
|
/* is the device still there? */
|
|
if (!ata_dev_same_device(dev, class, id)) {
|
|
rc = -ENODEV;
|
|
goto fail;
|
|
}
|
|
|
|
memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
|
|
|
|
/* configure device according to the new ID */
|
|
rc = ata_dev_configure(dev);
|
|
if (rc == 0)
|
|
return 0;
|
|
|
|
fail:
|
|
ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
struct ata_blacklist_entry {
|
|
const char *model_num;
|
|
const char *model_rev;
|
|
unsigned long horkage;
|
|
};
|
|
|
|
static const struct ata_blacklist_entry ata_device_blacklist [] = {
|
|
/* Devices with DMA related problems under Linux */
|
|
{ "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
|
|
{ "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
|
|
{ "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
|
|
{ "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
|
|
{ "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
|
|
{ "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
|
|
{ "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
|
|
{ "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
|
|
{ "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
|
|
{ "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
|
|
{ "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
|
|
{ "CRD-84", NULL, ATA_HORKAGE_NODMA },
|
|
{ "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
|
|
{ "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
|
|
{ "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
|
|
{ "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
|
|
{ "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
|
|
{ "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
|
|
{ "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
|
|
{ "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
|
|
{ "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
|
|
{ "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
|
|
{ "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
|
|
{ "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
|
|
{ "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
|
|
{ "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
|
|
{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
|
|
{ "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
|
|
{ "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
|
|
|
|
/* Weird ATAPI devices */
|
|
{ "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 |
|
|
ATA_HORKAGE_DMA_RW_ONLY },
|
|
|
|
/* Devices we expect to fail diagnostics */
|
|
|
|
/* Devices where NCQ should be avoided */
|
|
/* NCQ is slow */
|
|
{ "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
|
|
/* http://thread.gmane.org/gmane.linux.ide/14907 */
|
|
{ "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
|
|
/* NCQ is broken */
|
|
{ "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
|
|
/* NCQ hard hangs device under heavier load, needs hard power cycle */
|
|
{ "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
|
|
/* Blacklist entries taken from Silicon Image 3124/3132
|
|
Windows driver .inf file - also several Linux problem reports */
|
|
{ "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
|
|
{ "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
|
|
{ "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
|
|
|
|
/* Devices with NCQ limits */
|
|
|
|
/* End Marker */
|
|
{ }
|
|
};
|
|
|
|
unsigned long ata_device_blacklisted(const struct ata_device *dev)
|
|
{
|
|
unsigned char model_num[ATA_ID_PROD_LEN + 1];
|
|
unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
|
|
const struct ata_blacklist_entry *ad = ata_device_blacklist;
|
|
|
|
ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
|
|
ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
|
|
|
|
while (ad->model_num) {
|
|
if (!strcmp(ad->model_num, model_num)) {
|
|
if (ad->model_rev == NULL)
|
|
return ad->horkage;
|
|
if (!strcmp(ad->model_rev, model_rev))
|
|
return ad->horkage;
|
|
}
|
|
ad++;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int ata_dma_blacklisted(const struct ata_device *dev)
|
|
{
|
|
/* We don't support polling DMA.
|
|
* DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
|
|
* if the LLDD handles only interrupts in the HSM_ST_LAST state.
|
|
*/
|
|
if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
|
|
(dev->flags & ATA_DFLAG_CDB_INTR))
|
|
return 1;
|
|
return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
|
|
}
|
|
|
|
/**
|
|
* ata_dev_xfermask - Compute supported xfermask of the given device
|
|
* @dev: Device to compute xfermask for
|
|
*
|
|
* Compute supported xfermask of @dev and store it in
|
|
* dev->*_mask. This function is responsible for applying all
|
|
* known limits including host controller limits, device
|
|
* blacklist, etc...
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*/
|
|
static void ata_dev_xfermask(struct ata_device *dev)
|
|
{
|
|
struct ata_port *ap = dev->ap;
|
|
struct ata_host *host = ap->host;
|
|
unsigned long xfer_mask;
|
|
|
|
/* controller modes available */
|
|
xfer_mask = ata_pack_xfermask(ap->pio_mask,
|
|
ap->mwdma_mask, ap->udma_mask);
|
|
|
|
/* drive modes available */
|
|
xfer_mask &= ata_pack_xfermask(dev->pio_mask,
|
|
dev->mwdma_mask, dev->udma_mask);
|
|
xfer_mask &= ata_id_xfermask(dev->id);
|
|
|
|
/*
|
|
* CFA Advanced TrueIDE timings are not allowed on a shared
|
|
* cable
|
|
*/
|
|
if (ata_dev_pair(dev)) {
|
|
/* No PIO5 or PIO6 */
|
|
xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
|
|
/* No MWDMA3 or MWDMA 4 */
|
|
xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
|
|
}
|
|
|
|
if (ata_dma_blacklisted(dev)) {
|
|
xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
|
|
ata_dev_printk(dev, KERN_WARNING,
|
|
"device is on DMA blacklist, disabling DMA\n");
|
|
}
|
|
|
|
if ((host->flags & ATA_HOST_SIMPLEX) &&
|
|
host->simplex_claimed && host->simplex_claimed != ap) {
|
|
xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
|
|
ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
|
|
"other device, disabling DMA\n");
|
|
}
|
|
|
|
if (ap->flags & ATA_FLAG_NO_IORDY)
|
|
xfer_mask &= ata_pio_mask_no_iordy(dev);
|
|
|
|
if (ap->ops->mode_filter)
|
|
xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
|
|
|
|
/* Apply cable rule here. Don't apply it early because when
|
|
* we handle hot plug the cable type can itself change.
|
|
* Check this last so that we know if the transfer rate was
|
|
* solely limited by the cable.
|
|
* Unknown or 80 wire cables reported host side are checked
|
|
* drive side as well. Cases where we know a 40wire cable
|
|
* is used safely for 80 are not checked here.
|
|
*/
|
|
if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
|
|
/* UDMA/44 or higher would be available */
|
|
if((ap->cbl == ATA_CBL_PATA40) ||
|
|
(ata_drive_40wire(dev->id) &&
|
|
(ap->cbl == ATA_CBL_PATA_UNK ||
|
|
ap->cbl == ATA_CBL_PATA80))) {
|
|
ata_dev_printk(dev, KERN_WARNING,
|
|
"limited to UDMA/33 due to 40-wire cable\n");
|
|
xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
|
|
}
|
|
|
|
ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
|
|
&dev->mwdma_mask, &dev->udma_mask);
|
|
}
|
|
|
|
/**
|
|
* ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
|
|
* @dev: Device to which command will be sent
|
|
*
|
|
* Issue SET FEATURES - XFER MODE command to device @dev
|
|
* on port @ap.
|
|
*
|
|
* LOCKING:
|
|
* PCI/etc. bus probe sem.
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, AC_ERR_* mask otherwise.
|
|
*/
|
|
|
|
static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
|
|
{
|
|
struct ata_taskfile tf;
|
|
unsigned int err_mask;
|
|
|
|
/* set up set-features taskfile */
|
|
DPRINTK("set features - xfer mode\n");
|
|
|
|
ata_tf_init(dev, &tf);
|
|
tf.command = ATA_CMD_SET_FEATURES;
|
|
tf.feature = SETFEATURES_XFER;
|
|
tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
|
|
tf.protocol = ATA_PROT_NODATA;
|
|
tf.nsect = dev->xfer_mode;
|
|
|
|
err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
|
|
|
|
DPRINTK("EXIT, err_mask=%x\n", err_mask);
|
|
return err_mask;
|
|
}
|
|
|
|
/**
|
|
* ata_dev_init_params - Issue INIT DEV PARAMS command
|
|
* @dev: Device to which command will be sent
|
|
* @heads: Number of heads (taskfile parameter)
|
|
* @sectors: Number of sectors (taskfile parameter)
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep)
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, AC_ERR_* mask otherwise.
|
|
*/
|
|
static unsigned int ata_dev_init_params(struct ata_device *dev,
|
|
u16 heads, u16 sectors)
|
|
{
|
|
struct ata_taskfile tf;
|
|
unsigned int err_mask;
|
|
|
|
/* Number of sectors per track 1-255. Number of heads 1-16 */
|
|
if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
|
|
return AC_ERR_INVALID;
|
|
|
|
/* set up init dev params taskfile */
|
|
DPRINTK("init dev params \n");
|
|
|
|
ata_tf_init(dev, &tf);
|
|
tf.command = ATA_CMD_INIT_DEV_PARAMS;
|
|
tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
|
|
tf.protocol = ATA_PROT_NODATA;
|
|
tf.nsect = sectors;
|
|
tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
|
|
|
|
err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
|
|
|
|
DPRINTK("EXIT, err_mask=%x\n", err_mask);
|
|
return err_mask;
|
|
}
|
|
|
|
/**
|
|
* ata_sg_clean - Unmap DMA memory associated with command
|
|
* @qc: Command containing DMA memory to be released
|
|
*
|
|
* Unmap all mapped DMA memory associated with this command.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*/
|
|
void ata_sg_clean(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
struct scatterlist *sg = qc->__sg;
|
|
int dir = qc->dma_dir;
|
|
void *pad_buf = NULL;
|
|
|
|
WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
|
|
WARN_ON(sg == NULL);
|
|
|
|
if (qc->flags & ATA_QCFLAG_SINGLE)
|
|
WARN_ON(qc->n_elem > 1);
|
|
|
|
VPRINTK("unmapping %u sg elements\n", qc->n_elem);
|
|
|
|
/* if we padded the buffer out to 32-bit bound, and data
|
|
* xfer direction is from-device, we must copy from the
|
|
* pad buffer back into the supplied buffer
|
|
*/
|
|
if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
|
|
pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
|
|
|
|
if (qc->flags & ATA_QCFLAG_SG) {
|
|
if (qc->n_elem)
|
|
dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
|
|
/* restore last sg */
|
|
sg[qc->orig_n_elem - 1].length += qc->pad_len;
|
|
if (pad_buf) {
|
|
struct scatterlist *psg = &qc->pad_sgent;
|
|
void *addr = kmap_atomic(psg->page, KM_IRQ0);
|
|
memcpy(addr + psg->offset, pad_buf, qc->pad_len);
|
|
kunmap_atomic(addr, KM_IRQ0);
|
|
}
|
|
} else {
|
|
if (qc->n_elem)
|
|
dma_unmap_single(ap->dev,
|
|
sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
|
|
dir);
|
|
/* restore sg */
|
|
sg->length += qc->pad_len;
|
|
if (pad_buf)
|
|
memcpy(qc->buf_virt + sg->length - qc->pad_len,
|
|
pad_buf, qc->pad_len);
|
|
}
|
|
|
|
qc->flags &= ~ATA_QCFLAG_DMAMAP;
|
|
qc->__sg = NULL;
|
|
}
|
|
|
|
/**
|
|
* ata_fill_sg - Fill PCI IDE PRD table
|
|
* @qc: Metadata associated with taskfile to be transferred
|
|
*
|
|
* Fill PCI IDE PRD (scatter-gather) table with segments
|
|
* associated with the current disk command.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*
|
|
*/
|
|
static void ata_fill_sg(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
struct scatterlist *sg;
|
|
unsigned int idx;
|
|
|
|
WARN_ON(qc->__sg == NULL);
|
|
WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
|
|
|
|
idx = 0;
|
|
ata_for_each_sg(sg, qc) {
|
|
u32 addr, offset;
|
|
u32 sg_len, len;
|
|
|
|
/* determine if physical DMA addr spans 64K boundary.
|
|
* Note h/w doesn't support 64-bit, so we unconditionally
|
|
* truncate dma_addr_t to u32.
|
|
*/
|
|
addr = (u32) sg_dma_address(sg);
|
|
sg_len = sg_dma_len(sg);
|
|
|
|
while (sg_len) {
|
|
offset = addr & 0xffff;
|
|
len = sg_len;
|
|
if ((offset + sg_len) > 0x10000)
|
|
len = 0x10000 - offset;
|
|
|
|
ap->prd[idx].addr = cpu_to_le32(addr);
|
|
ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
|
|
VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
|
|
|
|
idx++;
|
|
sg_len -= len;
|
|
addr += len;
|
|
}
|
|
}
|
|
|
|
if (idx)
|
|
ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
|
|
}
|
|
/**
|
|
* ata_check_atapi_dma - Check whether ATAPI DMA can be supported
|
|
* @qc: Metadata associated with taskfile to check
|
|
*
|
|
* Allow low-level driver to filter ATA PACKET commands, returning
|
|
* a status indicating whether or not it is OK to use DMA for the
|
|
* supplied PACKET command.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*
|
|
* RETURNS: 0 when ATAPI DMA can be used
|
|
* nonzero otherwise
|
|
*/
|
|
int ata_check_atapi_dma(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
int rc = 0; /* Assume ATAPI DMA is OK by default */
|
|
|
|
/* some drives can only do ATAPI DMA on read/write */
|
|
if (unlikely(qc->dev->horkage & ATA_HORKAGE_DMA_RW_ONLY)) {
|
|
struct scsi_cmnd *cmd = qc->scsicmd;
|
|
u8 *scsicmd = cmd->cmnd;
|
|
|
|
switch (scsicmd[0]) {
|
|
case READ_10:
|
|
case WRITE_10:
|
|
case READ_12:
|
|
case WRITE_12:
|
|
case READ_6:
|
|
case WRITE_6:
|
|
/* atapi dma maybe ok */
|
|
break;
|
|
default:
|
|
/* turn off atapi dma */
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
if (ap->ops->check_atapi_dma)
|
|
rc = ap->ops->check_atapi_dma(qc);
|
|
|
|
return rc;
|
|
}
|
|
/**
|
|
* ata_qc_prep - Prepare taskfile for submission
|
|
* @qc: Metadata associated with taskfile to be prepared
|
|
*
|
|
* Prepare ATA taskfile for submission.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*/
|
|
void ata_qc_prep(struct ata_queued_cmd *qc)
|
|
{
|
|
if (!(qc->flags & ATA_QCFLAG_DMAMAP))
|
|
return;
|
|
|
|
ata_fill_sg(qc);
|
|
}
|
|
|
|
void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
|
|
|
|
/**
|
|
* ata_sg_init_one - Associate command with memory buffer
|
|
* @qc: Command to be associated
|
|
* @buf: Memory buffer
|
|
* @buflen: Length of memory buffer, in bytes.
|
|
*
|
|
* Initialize the data-related elements of queued_cmd @qc
|
|
* to point to a single memory buffer, @buf of byte length @buflen.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*/
|
|
|
|
void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
|
|
{
|
|
qc->flags |= ATA_QCFLAG_SINGLE;
|
|
|
|
qc->__sg = &qc->sgent;
|
|
qc->n_elem = 1;
|
|
qc->orig_n_elem = 1;
|
|
qc->buf_virt = buf;
|
|
qc->nbytes = buflen;
|
|
|
|
sg_init_one(&qc->sgent, buf, buflen);
|
|
}
|
|
|
|
/**
|
|
* ata_sg_init - Associate command with scatter-gather table.
|
|
* @qc: Command to be associated
|
|
* @sg: Scatter-gather table.
|
|
* @n_elem: Number of elements in s/g table.
|
|
*
|
|
* Initialize the data-related elements of queued_cmd @qc
|
|
* to point to a scatter-gather table @sg, containing @n_elem
|
|
* elements.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*/
|
|
|
|
void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
|
|
unsigned int n_elem)
|
|
{
|
|
qc->flags |= ATA_QCFLAG_SG;
|
|
qc->__sg = sg;
|
|
qc->n_elem = n_elem;
|
|
qc->orig_n_elem = n_elem;
|
|
}
|
|
|
|
/**
|
|
* ata_sg_setup_one - DMA-map the memory buffer associated with a command.
|
|
* @qc: Command with memory buffer to be mapped.
|
|
*
|
|
* DMA-map the memory buffer associated with queued_cmd @qc.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*
|
|
* RETURNS:
|
|
* Zero on success, negative on error.
|
|
*/
|
|
|
|
static int ata_sg_setup_one(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
int dir = qc->dma_dir;
|
|
struct scatterlist *sg = qc->__sg;
|
|
dma_addr_t dma_address;
|
|
int trim_sg = 0;
|
|
|
|
/* we must lengthen transfers to end on a 32-bit boundary */
|
|
qc->pad_len = sg->length & 3;
|
|
if (qc->pad_len) {
|
|
void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
|
|
struct scatterlist *psg = &qc->pad_sgent;
|
|
|
|
WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
|
|
|
|
memset(pad_buf, 0, ATA_DMA_PAD_SZ);
|
|
|
|
if (qc->tf.flags & ATA_TFLAG_WRITE)
|
|
memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
|
|
qc->pad_len);
|
|
|
|
sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
|
|
sg_dma_len(psg) = ATA_DMA_PAD_SZ;
|
|
/* trim sg */
|
|
sg->length -= qc->pad_len;
|
|
if (sg->length == 0)
|
|
trim_sg = 1;
|
|
|
|
DPRINTK("padding done, sg->length=%u pad_len=%u\n",
|
|
sg->length, qc->pad_len);
|
|
}
|
|
|
|
if (trim_sg) {
|
|
qc->n_elem--;
|
|
goto skip_map;
|
|
}
|
|
|
|
dma_address = dma_map_single(ap->dev, qc->buf_virt,
|
|
sg->length, dir);
|
|
if (dma_mapping_error(dma_address)) {
|
|
/* restore sg */
|
|
sg->length += qc->pad_len;
|
|
return -1;
|
|
}
|
|
|
|
sg_dma_address(sg) = dma_address;
|
|
sg_dma_len(sg) = sg->length;
|
|
|
|
skip_map:
|
|
DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
|
|
qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ata_sg_setup - DMA-map the scatter-gather table associated with a command.
|
|
* @qc: Command with scatter-gather table to be mapped.
|
|
*
|
|
* DMA-map the scatter-gather table associated with queued_cmd @qc.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*
|
|
* RETURNS:
|
|
* Zero on success, negative on error.
|
|
*
|
|
*/
|
|
|
|
static int ata_sg_setup(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
struct scatterlist *sg = qc->__sg;
|
|
struct scatterlist *lsg = &sg[qc->n_elem - 1];
|
|
int n_elem, pre_n_elem, dir, trim_sg = 0;
|
|
|
|
VPRINTK("ENTER, ata%u\n", ap->print_id);
|
|
WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
|
|
|
|
/* we must lengthen transfers to end on a 32-bit boundary */
|
|
qc->pad_len = lsg->length & 3;
|
|
if (qc->pad_len) {
|
|
void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
|
|
struct scatterlist *psg = &qc->pad_sgent;
|
|
unsigned int offset;
|
|
|
|
WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
|
|
|
|
memset(pad_buf, 0, ATA_DMA_PAD_SZ);
|
|
|
|
/*
|
|
* psg->page/offset are used to copy to-be-written
|
|
* data in this function or read data in ata_sg_clean.
|
|
*/
|
|
offset = lsg->offset + lsg->length - qc->pad_len;
|
|
psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
|
|
psg->offset = offset_in_page(offset);
|
|
|
|
if (qc->tf.flags & ATA_TFLAG_WRITE) {
|
|
void *addr = kmap_atomic(psg->page, KM_IRQ0);
|
|
memcpy(pad_buf, addr + psg->offset, qc->pad_len);
|
|
kunmap_atomic(addr, KM_IRQ0);
|
|
}
|
|
|
|
sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
|
|
sg_dma_len(psg) = ATA_DMA_PAD_SZ;
|
|
/* trim last sg */
|
|
lsg->length -= qc->pad_len;
|
|
if (lsg->length == 0)
|
|
trim_sg = 1;
|
|
|
|
DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
|
|
qc->n_elem - 1, lsg->length, qc->pad_len);
|
|
}
|
|
|
|
pre_n_elem = qc->n_elem;
|
|
if (trim_sg && pre_n_elem)
|
|
pre_n_elem--;
|
|
|
|
if (!pre_n_elem) {
|
|
n_elem = 0;
|
|
goto skip_map;
|
|
}
|
|
|
|
dir = qc->dma_dir;
|
|
n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
|
|
if (n_elem < 1) {
|
|
/* restore last sg */
|
|
lsg->length += qc->pad_len;
|
|
return -1;
|
|
}
|
|
|
|
DPRINTK("%d sg elements mapped\n", n_elem);
|
|
|
|
skip_map:
|
|
qc->n_elem = n_elem;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* swap_buf_le16 - swap halves of 16-bit words in place
|
|
* @buf: Buffer to swap
|
|
* @buf_words: Number of 16-bit words in buffer.
|
|
*
|
|
* Swap halves of 16-bit words if needed to convert from
|
|
* little-endian byte order to native cpu byte order, or
|
|
* vice-versa.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
void swap_buf_le16(u16 *buf, unsigned int buf_words)
|
|
{
|
|
#ifdef __BIG_ENDIAN
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < buf_words; i++)
|
|
buf[i] = le16_to_cpu(buf[i]);
|
|
#endif /* __BIG_ENDIAN */
|
|
}
|
|
|
|
/**
|
|
* ata_data_xfer - Transfer data by PIO
|
|
* @adev: device to target
|
|
* @buf: data buffer
|
|
* @buflen: buffer length
|
|
* @write_data: read/write
|
|
*
|
|
* Transfer data from/to the device data register by PIO.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
|
|
unsigned int buflen, int write_data)
|
|
{
|
|
struct ata_port *ap = adev->ap;
|
|
unsigned int words = buflen >> 1;
|
|
|
|
/* Transfer multiple of 2 bytes */
|
|
if (write_data)
|
|
iowrite16_rep(ap->ioaddr.data_addr, buf, words);
|
|
else
|
|
ioread16_rep(ap->ioaddr.data_addr, buf, words);
|
|
|
|
/* Transfer trailing 1 byte, if any. */
|
|
if (unlikely(buflen & 0x01)) {
|
|
u16 align_buf[1] = { 0 };
|
|
unsigned char *trailing_buf = buf + buflen - 1;
|
|
|
|
if (write_data) {
|
|
memcpy(align_buf, trailing_buf, 1);
|
|
iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
|
|
} else {
|
|
align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
|
|
memcpy(trailing_buf, align_buf, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ata_data_xfer_noirq - Transfer data by PIO
|
|
* @adev: device to target
|
|
* @buf: data buffer
|
|
* @buflen: buffer length
|
|
* @write_data: read/write
|
|
*
|
|
* Transfer data from/to the device data register by PIO. Do the
|
|
* transfer with interrupts disabled.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
|
|
unsigned int buflen, int write_data)
|
|
{
|
|
unsigned long flags;
|
|
local_irq_save(flags);
|
|
ata_data_xfer(adev, buf, buflen, write_data);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
|
|
/**
|
|
* ata_pio_sector - Transfer a sector of data.
|
|
* @qc: Command on going
|
|
*
|
|
* Transfer qc->sect_size bytes of data from/to the ATA device.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
|
|
static void ata_pio_sector(struct ata_queued_cmd *qc)
|
|
{
|
|
int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
|
|
struct scatterlist *sg = qc->__sg;
|
|
struct ata_port *ap = qc->ap;
|
|
struct page *page;
|
|
unsigned int offset;
|
|
unsigned char *buf;
|
|
|
|
if (qc->curbytes == qc->nbytes - qc->sect_size)
|
|
ap->hsm_task_state = HSM_ST_LAST;
|
|
|
|
page = sg[qc->cursg].page;
|
|
offset = sg[qc->cursg].offset + qc->cursg_ofs;
|
|
|
|
/* get the current page and offset */
|
|
page = nth_page(page, (offset >> PAGE_SHIFT));
|
|
offset %= PAGE_SIZE;
|
|
|
|
DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
|
|
|
|
if (PageHighMem(page)) {
|
|
unsigned long flags;
|
|
|
|
/* FIXME: use a bounce buffer */
|
|
local_irq_save(flags);
|
|
buf = kmap_atomic(page, KM_IRQ0);
|
|
|
|
/* do the actual data transfer */
|
|
ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
|
|
|
|
kunmap_atomic(buf, KM_IRQ0);
|
|
local_irq_restore(flags);
|
|
} else {
|
|
buf = page_address(page);
|
|
ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
|
|
}
|
|
|
|
qc->curbytes += qc->sect_size;
|
|
qc->cursg_ofs += qc->sect_size;
|
|
|
|
if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
|
|
qc->cursg++;
|
|
qc->cursg_ofs = 0;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ata_pio_sectors - Transfer one or many sectors.
|
|
* @qc: Command on going
|
|
*
|
|
* Transfer one or many sectors of data from/to the
|
|
* ATA device for the DRQ request.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
|
|
static void ata_pio_sectors(struct ata_queued_cmd *qc)
|
|
{
|
|
if (is_multi_taskfile(&qc->tf)) {
|
|
/* READ/WRITE MULTIPLE */
|
|
unsigned int nsect;
|
|
|
|
WARN_ON(qc->dev->multi_count == 0);
|
|
|
|
nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
|
|
qc->dev->multi_count);
|
|
while (nsect--)
|
|
ata_pio_sector(qc);
|
|
} else
|
|
ata_pio_sector(qc);
|
|
}
|
|
|
|
/**
|
|
* atapi_send_cdb - Write CDB bytes to hardware
|
|
* @ap: Port to which ATAPI device is attached.
|
|
* @qc: Taskfile currently active
|
|
*
|
|
* When device has indicated its readiness to accept
|
|
* a CDB, this function is called. Send the CDB.
|
|
*
|
|
* LOCKING:
|
|
* caller.
|
|
*/
|
|
|
|
static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
|
|
{
|
|
/* send SCSI cdb */
|
|
DPRINTK("send cdb\n");
|
|
WARN_ON(qc->dev->cdb_len < 12);
|
|
|
|
ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
|
|
ata_altstatus(ap); /* flush */
|
|
|
|
switch (qc->tf.protocol) {
|
|
case ATA_PROT_ATAPI:
|
|
ap->hsm_task_state = HSM_ST;
|
|
break;
|
|
case ATA_PROT_ATAPI_NODATA:
|
|
ap->hsm_task_state = HSM_ST_LAST;
|
|
break;
|
|
case ATA_PROT_ATAPI_DMA:
|
|
ap->hsm_task_state = HSM_ST_LAST;
|
|
/* initiate bmdma */
|
|
ap->ops->bmdma_start(qc);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* __atapi_pio_bytes - Transfer data from/to the ATAPI device.
|
|
* @qc: Command on going
|
|
* @bytes: number of bytes
|
|
*
|
|
* Transfer Transfer data from/to the ATAPI device.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*
|
|
*/
|
|
|
|
static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
|
|
{
|
|
int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
|
|
struct scatterlist *sg = qc->__sg;
|
|
struct ata_port *ap = qc->ap;
|
|
struct page *page;
|
|
unsigned char *buf;
|
|
unsigned int offset, count;
|
|
|
|
if (qc->curbytes + bytes >= qc->nbytes)
|
|
ap->hsm_task_state = HSM_ST_LAST;
|
|
|
|
next_sg:
|
|
if (unlikely(qc->cursg >= qc->n_elem)) {
|
|
/*
|
|
* The end of qc->sg is reached and the device expects
|
|
* more data to transfer. In order not to overrun qc->sg
|
|
* and fulfill length specified in the byte count register,
|
|
* - for read case, discard trailing data from the device
|
|
* - for write case, padding zero data to the device
|
|
*/
|
|
u16 pad_buf[1] = { 0 };
|
|
unsigned int words = bytes >> 1;
|
|
unsigned int i;
|
|
|
|
if (words) /* warning if bytes > 1 */
|
|
ata_dev_printk(qc->dev, KERN_WARNING,
|
|
"%u bytes trailing data\n", bytes);
|
|
|
|
for (i = 0; i < words; i++)
|
|
ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
|
|
|
|
ap->hsm_task_state = HSM_ST_LAST;
|
|
return;
|
|
}
|
|
|
|
sg = &qc->__sg[qc->cursg];
|
|
|
|
page = sg->page;
|
|
offset = sg->offset + qc->cursg_ofs;
|
|
|
|
/* get the current page and offset */
|
|
page = nth_page(page, (offset >> PAGE_SHIFT));
|
|
offset %= PAGE_SIZE;
|
|
|
|
/* don't overrun current sg */
|
|
count = min(sg->length - qc->cursg_ofs, bytes);
|
|
|
|
/* don't cross page boundaries */
|
|
count = min(count, (unsigned int)PAGE_SIZE - offset);
|
|
|
|
DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
|
|
|
|
if (PageHighMem(page)) {
|
|
unsigned long flags;
|
|
|
|
/* FIXME: use bounce buffer */
|
|
local_irq_save(flags);
|
|
buf = kmap_atomic(page, KM_IRQ0);
|
|
|
|
/* do the actual data transfer */
|
|
ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
|
|
|
|
kunmap_atomic(buf, KM_IRQ0);
|
|
local_irq_restore(flags);
|
|
} else {
|
|
buf = page_address(page);
|
|
ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
|
|
}
|
|
|
|
bytes -= count;
|
|
qc->curbytes += count;
|
|
qc->cursg_ofs += count;
|
|
|
|
if (qc->cursg_ofs == sg->length) {
|
|
qc->cursg++;
|
|
qc->cursg_ofs = 0;
|
|
}
|
|
|
|
if (bytes)
|
|
goto next_sg;
|
|
}
|
|
|
|
/**
|
|
* atapi_pio_bytes - Transfer data from/to the ATAPI device.
|
|
* @qc: Command on going
|
|
*
|
|
* Transfer Transfer data from/to the ATAPI device.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
|
|
static void atapi_pio_bytes(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
struct ata_device *dev = qc->dev;
|
|
unsigned int ireason, bc_lo, bc_hi, bytes;
|
|
int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
|
|
|
|
/* Abuse qc->result_tf for temp storage of intermediate TF
|
|
* here to save some kernel stack usage.
|
|
* For normal completion, qc->result_tf is not relevant. For
|
|
* error, qc->result_tf is later overwritten by ata_qc_complete().
|
|
* So, the correctness of qc->result_tf is not affected.
|
|
*/
|
|
ap->ops->tf_read(ap, &qc->result_tf);
|
|
ireason = qc->result_tf.nsect;
|
|
bc_lo = qc->result_tf.lbam;
|
|
bc_hi = qc->result_tf.lbah;
|
|
bytes = (bc_hi << 8) | bc_lo;
|
|
|
|
/* shall be cleared to zero, indicating xfer of data */
|
|
if (ireason & (1 << 0))
|
|
goto err_out;
|
|
|
|
/* make sure transfer direction matches expected */
|
|
i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
|
|
if (do_write != i_write)
|
|
goto err_out;
|
|
|
|
VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
|
|
|
|
__atapi_pio_bytes(qc, bytes);
|
|
|
|
return;
|
|
|
|
err_out:
|
|
ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
|
|
qc->err_mask |= AC_ERR_HSM;
|
|
ap->hsm_task_state = HSM_ST_ERR;
|
|
}
|
|
|
|
/**
|
|
* ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
|
|
* @ap: the target ata_port
|
|
* @qc: qc on going
|
|
*
|
|
* RETURNS:
|
|
* 1 if ok in workqueue, 0 otherwise.
|
|
*/
|
|
|
|
static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
|
|
{
|
|
if (qc->tf.flags & ATA_TFLAG_POLLING)
|
|
return 1;
|
|
|
|
if (ap->hsm_task_state == HSM_ST_FIRST) {
|
|
if (qc->tf.protocol == ATA_PROT_PIO &&
|
|
(qc->tf.flags & ATA_TFLAG_WRITE))
|
|
return 1;
|
|
|
|
if (is_atapi_taskfile(&qc->tf) &&
|
|
!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ata_hsm_qc_complete - finish a qc running on standard HSM
|
|
* @qc: Command to complete
|
|
* @in_wq: 1 if called from workqueue, 0 otherwise
|
|
*
|
|
* Finish @qc which is running on standard HSM.
|
|
*
|
|
* LOCKING:
|
|
* If @in_wq is zero, spin_lock_irqsave(host lock).
|
|
* Otherwise, none on entry and grabs host lock.
|
|
*/
|
|
static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
unsigned long flags;
|
|
|
|
if (ap->ops->error_handler) {
|
|
if (in_wq) {
|
|
spin_lock_irqsave(ap->lock, flags);
|
|
|
|
/* EH might have kicked in while host lock is
|
|
* released.
|
|
*/
|
|
qc = ata_qc_from_tag(ap, qc->tag);
|
|
if (qc) {
|
|
if (likely(!(qc->err_mask & AC_ERR_HSM))) {
|
|
ap->ops->irq_on(ap);
|
|
ata_qc_complete(qc);
|
|
} else
|
|
ata_port_freeze(ap);
|
|
}
|
|
|
|
spin_unlock_irqrestore(ap->lock, flags);
|
|
} else {
|
|
if (likely(!(qc->err_mask & AC_ERR_HSM)))
|
|
ata_qc_complete(qc);
|
|
else
|
|
ata_port_freeze(ap);
|
|
}
|
|
} else {
|
|
if (in_wq) {
|
|
spin_lock_irqsave(ap->lock, flags);
|
|
ap->ops->irq_on(ap);
|
|
ata_qc_complete(qc);
|
|
spin_unlock_irqrestore(ap->lock, flags);
|
|
} else
|
|
ata_qc_complete(qc);
|
|
}
|
|
|
|
ata_altstatus(ap); /* flush */
|
|
}
|
|
|
|
/**
|
|
* ata_hsm_move - move the HSM to the next state.
|
|
* @ap: the target ata_port
|
|
* @qc: qc on going
|
|
* @status: current device status
|
|
* @in_wq: 1 if called from workqueue, 0 otherwise
|
|
*
|
|
* RETURNS:
|
|
* 1 when poll next status needed, 0 otherwise.
|
|
*/
|
|
int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
|
|
u8 status, int in_wq)
|
|
{
|
|
unsigned long flags = 0;
|
|
int poll_next;
|
|
|
|
WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
|
|
|
|
/* Make sure ata_qc_issue_prot() does not throw things
|
|
* like DMA polling into the workqueue. Notice that
|
|
* in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
|
|
*/
|
|
WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
|
|
|
|
fsm_start:
|
|
DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
|
|
ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
|
|
|
|
switch (ap->hsm_task_state) {
|
|
case HSM_ST_FIRST:
|
|
/* Send first data block or PACKET CDB */
|
|
|
|
/* If polling, we will stay in the work queue after
|
|
* sending the data. Otherwise, interrupt handler
|
|
* takes over after sending the data.
|
|
*/
|
|
poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
|
|
|
|
/* check device status */
|
|
if (unlikely((status & ATA_DRQ) == 0)) {
|
|
/* handle BSY=0, DRQ=0 as error */
|
|
if (likely(status & (ATA_ERR | ATA_DF)))
|
|
/* device stops HSM for abort/error */
|
|
qc->err_mask |= AC_ERR_DEV;
|
|
else
|
|
/* HSM violation. Let EH handle this */
|
|
qc->err_mask |= AC_ERR_HSM;
|
|
|
|
ap->hsm_task_state = HSM_ST_ERR;
|
|
goto fsm_start;
|
|
}
|
|
|
|
/* Device should not ask for data transfer (DRQ=1)
|
|
* when it finds something wrong.
|
|
* We ignore DRQ here and stop the HSM by
|
|
* changing hsm_task_state to HSM_ST_ERR and
|
|
* let the EH abort the command or reset the device.
|
|
*/
|
|
if (unlikely(status & (ATA_ERR | ATA_DF))) {
|
|
ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
|
|
"error, dev_stat 0x%X\n", status);
|
|
qc->err_mask |= AC_ERR_HSM;
|
|
ap->hsm_task_state = HSM_ST_ERR;
|
|
goto fsm_start;
|
|
}
|
|
|
|
/* Send the CDB (atapi) or the first data block (ata pio out).
|
|
* During the state transition, interrupt handler shouldn't
|
|
* be invoked before the data transfer is complete and
|
|
* hsm_task_state is changed. Hence, the following locking.
|
|
*/
|
|
if (in_wq)
|
|
spin_lock_irqsave(ap->lock, flags);
|
|
|
|
if (qc->tf.protocol == ATA_PROT_PIO) {
|
|
/* PIO data out protocol.
|
|
* send first data block.
|
|
*/
|
|
|
|
/* ata_pio_sectors() might change the state
|
|
* to HSM_ST_LAST. so, the state is changed here
|
|
* before ata_pio_sectors().
|
|
*/
|
|
ap->hsm_task_state = HSM_ST;
|
|
ata_pio_sectors(qc);
|
|
ata_altstatus(ap); /* flush */
|
|
} else
|
|
/* send CDB */
|
|
atapi_send_cdb(ap, qc);
|
|
|
|
if (in_wq)
|
|
spin_unlock_irqrestore(ap->lock, flags);
|
|
|
|
/* if polling, ata_pio_task() handles the rest.
|
|
* otherwise, interrupt handler takes over from here.
|
|
*/
|
|
break;
|
|
|
|
case HSM_ST:
|
|
/* complete command or read/write the data register */
|
|
if (qc->tf.protocol == ATA_PROT_ATAPI) {
|
|
/* ATAPI PIO protocol */
|
|
if ((status & ATA_DRQ) == 0) {
|
|
/* No more data to transfer or device error.
|
|
* Device error will be tagged in HSM_ST_LAST.
|
|
*/
|
|
ap->hsm_task_state = HSM_ST_LAST;
|
|
goto fsm_start;
|
|
}
|
|
|
|
/* Device should not ask for data transfer (DRQ=1)
|
|
* when it finds something wrong.
|
|
* We ignore DRQ here and stop the HSM by
|
|
* changing hsm_task_state to HSM_ST_ERR and
|
|
* let the EH abort the command or reset the device.
|
|
*/
|
|
if (unlikely(status & (ATA_ERR | ATA_DF))) {
|
|
ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
|
|
"device error, dev_stat 0x%X\n",
|
|
status);
|
|
qc->err_mask |= AC_ERR_HSM;
|
|
ap->hsm_task_state = HSM_ST_ERR;
|
|
goto fsm_start;
|
|
}
|
|
|
|
atapi_pio_bytes(qc);
|
|
|
|
if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
|
|
/* bad ireason reported by device */
|
|
goto fsm_start;
|
|
|
|
} else {
|
|
/* ATA PIO protocol */
|
|
if (unlikely((status & ATA_DRQ) == 0)) {
|
|
/* handle BSY=0, DRQ=0 as error */
|
|
if (likely(status & (ATA_ERR | ATA_DF)))
|
|
/* device stops HSM for abort/error */
|
|
qc->err_mask |= AC_ERR_DEV;
|
|
else
|
|
/* HSM violation. Let EH handle this.
|
|
* Phantom devices also trigger this
|
|
* condition. Mark hint.
|
|
*/
|
|
qc->err_mask |= AC_ERR_HSM |
|
|
AC_ERR_NODEV_HINT;
|
|
|
|
ap->hsm_task_state = HSM_ST_ERR;
|
|
goto fsm_start;
|
|
}
|
|
|
|
/* For PIO reads, some devices may ask for
|
|
* data transfer (DRQ=1) alone with ERR=1.
|
|
* We respect DRQ here and transfer one
|
|
* block of junk data before changing the
|
|
* hsm_task_state to HSM_ST_ERR.
|
|
*
|
|
* For PIO writes, ERR=1 DRQ=1 doesn't make
|
|
* sense since the data block has been
|
|
* transferred to the device.
|
|
*/
|
|
if (unlikely(status & (ATA_ERR | ATA_DF))) {
|
|
/* data might be corrputed */
|
|
qc->err_mask |= AC_ERR_DEV;
|
|
|
|
if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
|
|
ata_pio_sectors(qc);
|
|
ata_altstatus(ap);
|
|
status = ata_wait_idle(ap);
|
|
}
|
|
|
|
if (status & (ATA_BUSY | ATA_DRQ))
|
|
qc->err_mask |= AC_ERR_HSM;
|
|
|
|
/* ata_pio_sectors() might change the
|
|
* state to HSM_ST_LAST. so, the state
|
|
* is changed after ata_pio_sectors().
|
|
*/
|
|
ap->hsm_task_state = HSM_ST_ERR;
|
|
goto fsm_start;
|
|
}
|
|
|
|
ata_pio_sectors(qc);
|
|
|
|
if (ap->hsm_task_state == HSM_ST_LAST &&
|
|
(!(qc->tf.flags & ATA_TFLAG_WRITE))) {
|
|
/* all data read */
|
|
ata_altstatus(ap);
|
|
status = ata_wait_idle(ap);
|
|
goto fsm_start;
|
|
}
|
|
}
|
|
|
|
ata_altstatus(ap); /* flush */
|
|
poll_next = 1;
|
|
break;
|
|
|
|
case HSM_ST_LAST:
|
|
if (unlikely(!ata_ok(status))) {
|
|
qc->err_mask |= __ac_err_mask(status);
|
|
ap->hsm_task_state = HSM_ST_ERR;
|
|
goto fsm_start;
|
|
}
|
|
|
|
/* no more data to transfer */
|
|
DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
|
|
ap->print_id, qc->dev->devno, status);
|
|
|
|
WARN_ON(qc->err_mask);
|
|
|
|
ap->hsm_task_state = HSM_ST_IDLE;
|
|
|
|
/* complete taskfile transaction */
|
|
ata_hsm_qc_complete(qc, in_wq);
|
|
|
|
poll_next = 0;
|
|
break;
|
|
|
|
case HSM_ST_ERR:
|
|
/* make sure qc->err_mask is available to
|
|
* know what's wrong and recover
|
|
*/
|
|
WARN_ON(qc->err_mask == 0);
|
|
|
|
ap->hsm_task_state = HSM_ST_IDLE;
|
|
|
|
/* complete taskfile transaction */
|
|
ata_hsm_qc_complete(qc, in_wq);
|
|
|
|
poll_next = 0;
|
|
break;
|
|
default:
|
|
poll_next = 0;
|
|
BUG();
|
|
}
|
|
|
|
return poll_next;
|
|
}
|
|
|
|
static void ata_pio_task(struct work_struct *work)
|
|
{
|
|
struct ata_port *ap =
|
|
container_of(work, struct ata_port, port_task.work);
|
|
struct ata_queued_cmd *qc = ap->port_task_data;
|
|
u8 status;
|
|
int poll_next;
|
|
|
|
fsm_start:
|
|
WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
|
|
|
|
/*
|
|
* This is purely heuristic. This is a fast path.
|
|
* Sometimes when we enter, BSY will be cleared in
|
|
* a chk-status or two. If not, the drive is probably seeking
|
|
* or something. Snooze for a couple msecs, then
|
|
* chk-status again. If still busy, queue delayed work.
|
|
*/
|
|
status = ata_busy_wait(ap, ATA_BUSY, 5);
|
|
if (status & ATA_BUSY) {
|
|
msleep(2);
|
|
status = ata_busy_wait(ap, ATA_BUSY, 10);
|
|
if (status & ATA_BUSY) {
|
|
ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* move the HSM */
|
|
poll_next = ata_hsm_move(ap, qc, status, 1);
|
|
|
|
/* another command or interrupt handler
|
|
* may be running at this point.
|
|
*/
|
|
if (poll_next)
|
|
goto fsm_start;
|
|
}
|
|
|
|
/**
|
|
* ata_qc_new - Request an available ATA command, for queueing
|
|
* @ap: Port associated with device @dev
|
|
* @dev: Device from whom we request an available command structure
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*/
|
|
|
|
static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
|
|
{
|
|
struct ata_queued_cmd *qc = NULL;
|
|
unsigned int i;
|
|
|
|
/* no command while frozen */
|
|
if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
|
|
return NULL;
|
|
|
|
/* the last tag is reserved for internal command. */
|
|
for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
|
|
if (!test_and_set_bit(i, &ap->qc_allocated)) {
|
|
qc = __ata_qc_from_tag(ap, i);
|
|
break;
|
|
}
|
|
|
|
if (qc)
|
|
qc->tag = i;
|
|
|
|
return qc;
|
|
}
|
|
|
|
/**
|
|
* ata_qc_new_init - Request an available ATA command, and initialize it
|
|
* @dev: Device from whom we request an available command structure
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*/
|
|
|
|
struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
|
|
{
|
|
struct ata_port *ap = dev->ap;
|
|
struct ata_queued_cmd *qc;
|
|
|
|
qc = ata_qc_new(ap);
|
|
if (qc) {
|
|
qc->scsicmd = NULL;
|
|
qc->ap = ap;
|
|
qc->dev = dev;
|
|
|
|
ata_qc_reinit(qc);
|
|
}
|
|
|
|
return qc;
|
|
}
|
|
|
|
/**
|
|
* ata_qc_free - free unused ata_queued_cmd
|
|
* @qc: Command to complete
|
|
*
|
|
* Designed to free unused ata_queued_cmd object
|
|
* in case something prevents using it.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*/
|
|
void ata_qc_free(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
unsigned int tag;
|
|
|
|
WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
|
|
|
|
qc->flags = 0;
|
|
tag = qc->tag;
|
|
if (likely(ata_tag_valid(tag))) {
|
|
qc->tag = ATA_TAG_POISON;
|
|
clear_bit(tag, &ap->qc_allocated);
|
|
}
|
|
}
|
|
|
|
void __ata_qc_complete(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
|
|
WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
|
|
WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
|
|
|
|
if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
|
|
ata_sg_clean(qc);
|
|
|
|
/* command should be marked inactive atomically with qc completion */
|
|
if (qc->tf.protocol == ATA_PROT_NCQ)
|
|
ap->sactive &= ~(1 << qc->tag);
|
|
else
|
|
ap->active_tag = ATA_TAG_POISON;
|
|
|
|
/* atapi: mark qc as inactive to prevent the interrupt handler
|
|
* from completing the command twice later, before the error handler
|
|
* is called. (when rc != 0 and atapi request sense is needed)
|
|
*/
|
|
qc->flags &= ~ATA_QCFLAG_ACTIVE;
|
|
ap->qc_active &= ~(1 << qc->tag);
|
|
|
|
/* call completion callback */
|
|
qc->complete_fn(qc);
|
|
}
|
|
|
|
static void fill_result_tf(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
|
|
qc->result_tf.flags = qc->tf.flags;
|
|
ap->ops->tf_read(ap, &qc->result_tf);
|
|
}
|
|
|
|
/**
|
|
* ata_qc_complete - Complete an active ATA command
|
|
* @qc: Command to complete
|
|
* @err_mask: ATA Status register contents
|
|
*
|
|
* Indicate to the mid and upper layers that an ATA
|
|
* command has completed, with either an ok or not-ok status.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*/
|
|
void ata_qc_complete(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
|
|
/* XXX: New EH and old EH use different mechanisms to
|
|
* synchronize EH with regular execution path.
|
|
*
|
|
* In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
|
|
* Normal execution path is responsible for not accessing a
|
|
* failed qc. libata core enforces the rule by returning NULL
|
|
* from ata_qc_from_tag() for failed qcs.
|
|
*
|
|
* Old EH depends on ata_qc_complete() nullifying completion
|
|
* requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
|
|
* not synchronize with interrupt handler. Only PIO task is
|
|
* taken care of.
|
|
*/
|
|
if (ap->ops->error_handler) {
|
|
WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
|
|
|
|
if (unlikely(qc->err_mask))
|
|
qc->flags |= ATA_QCFLAG_FAILED;
|
|
|
|
if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
|
|
if (!ata_tag_internal(qc->tag)) {
|
|
/* always fill result TF for failed qc */
|
|
fill_result_tf(qc);
|
|
ata_qc_schedule_eh(qc);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* read result TF if requested */
|
|
if (qc->flags & ATA_QCFLAG_RESULT_TF)
|
|
fill_result_tf(qc);
|
|
|
|
__ata_qc_complete(qc);
|
|
} else {
|
|
if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
|
|
return;
|
|
|
|
/* read result TF if failed or requested */
|
|
if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
|
|
fill_result_tf(qc);
|
|
|
|
__ata_qc_complete(qc);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ata_qc_complete_multiple - Complete multiple qcs successfully
|
|
* @ap: port in question
|
|
* @qc_active: new qc_active mask
|
|
* @finish_qc: LLDD callback invoked before completing a qc
|
|
*
|
|
* Complete in-flight commands. This functions is meant to be
|
|
* called from low-level driver's interrupt routine to complete
|
|
* requests normally. ap->qc_active and @qc_active is compared
|
|
* and commands are completed accordingly.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*
|
|
* RETURNS:
|
|
* Number of completed commands on success, -errno otherwise.
|
|
*/
|
|
int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
|
|
void (*finish_qc)(struct ata_queued_cmd *))
|
|
{
|
|
int nr_done = 0;
|
|
u32 done_mask;
|
|
int i;
|
|
|
|
done_mask = ap->qc_active ^ qc_active;
|
|
|
|
if (unlikely(done_mask & qc_active)) {
|
|
ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
|
|
"(%08x->%08x)\n", ap->qc_active, qc_active);
|
|
return -EINVAL;
|
|
}
|
|
|
|
for (i = 0; i < ATA_MAX_QUEUE; i++) {
|
|
struct ata_queued_cmd *qc;
|
|
|
|
if (!(done_mask & (1 << i)))
|
|
continue;
|
|
|
|
if ((qc = ata_qc_from_tag(ap, i))) {
|
|
if (finish_qc)
|
|
finish_qc(qc);
|
|
ata_qc_complete(qc);
|
|
nr_done++;
|
|
}
|
|
}
|
|
|
|
return nr_done;
|
|
}
|
|
|
|
static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
|
|
switch (qc->tf.protocol) {
|
|
case ATA_PROT_NCQ:
|
|
case ATA_PROT_DMA:
|
|
case ATA_PROT_ATAPI_DMA:
|
|
return 1;
|
|
|
|
case ATA_PROT_ATAPI:
|
|
case ATA_PROT_PIO:
|
|
if (ap->flags & ATA_FLAG_PIO_DMA)
|
|
return 1;
|
|
|
|
/* fall through */
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
/* never reached */
|
|
}
|
|
|
|
/**
|
|
* ata_qc_issue - issue taskfile to device
|
|
* @qc: command to issue to device
|
|
*
|
|
* Prepare an ATA command to submission to device.
|
|
* This includes mapping the data into a DMA-able
|
|
* area, filling in the S/G table, and finally
|
|
* writing the taskfile to hardware, starting the command.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*/
|
|
void ata_qc_issue(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
|
|
/* Make sure only one non-NCQ command is outstanding. The
|
|
* check is skipped for old EH because it reuses active qc to
|
|
* request ATAPI sense.
|
|
*/
|
|
WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
|
|
|
|
if (qc->tf.protocol == ATA_PROT_NCQ) {
|
|
WARN_ON(ap->sactive & (1 << qc->tag));
|
|
ap->sactive |= 1 << qc->tag;
|
|
} else {
|
|
WARN_ON(ap->sactive);
|
|
ap->active_tag = qc->tag;
|
|
}
|
|
|
|
qc->flags |= ATA_QCFLAG_ACTIVE;
|
|
ap->qc_active |= 1 << qc->tag;
|
|
|
|
if (ata_should_dma_map(qc)) {
|
|
if (qc->flags & ATA_QCFLAG_SG) {
|
|
if (ata_sg_setup(qc))
|
|
goto sg_err;
|
|
} else if (qc->flags & ATA_QCFLAG_SINGLE) {
|
|
if (ata_sg_setup_one(qc))
|
|
goto sg_err;
|
|
}
|
|
} else {
|
|
qc->flags &= ~ATA_QCFLAG_DMAMAP;
|
|
}
|
|
|
|
ap->ops->qc_prep(qc);
|
|
|
|
qc->err_mask |= ap->ops->qc_issue(qc);
|
|
if (unlikely(qc->err_mask))
|
|
goto err;
|
|
return;
|
|
|
|
sg_err:
|
|
qc->flags &= ~ATA_QCFLAG_DMAMAP;
|
|
qc->err_mask |= AC_ERR_SYSTEM;
|
|
err:
|
|
ata_qc_complete(qc);
|
|
}
|
|
|
|
/**
|
|
* ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
|
|
* @qc: command to issue to device
|
|
*
|
|
* Using various libata functions and hooks, this function
|
|
* starts an ATA command. ATA commands are grouped into
|
|
* classes called "protocols", and issuing each type of protocol
|
|
* is slightly different.
|
|
*
|
|
* May be used as the qc_issue() entry in ata_port_operations.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*
|
|
* RETURNS:
|
|
* Zero on success, AC_ERR_* mask on failure
|
|
*/
|
|
|
|
unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
|
|
/* Use polling pio if the LLD doesn't handle
|
|
* interrupt driven pio and atapi CDB interrupt.
|
|
*/
|
|
if (ap->flags & ATA_FLAG_PIO_POLLING) {
|
|
switch (qc->tf.protocol) {
|
|
case ATA_PROT_PIO:
|
|
case ATA_PROT_NODATA:
|
|
case ATA_PROT_ATAPI:
|
|
case ATA_PROT_ATAPI_NODATA:
|
|
qc->tf.flags |= ATA_TFLAG_POLLING;
|
|
break;
|
|
case ATA_PROT_ATAPI_DMA:
|
|
if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
|
|
/* see ata_dma_blacklisted() */
|
|
BUG();
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Some controllers show flaky interrupt behavior after
|
|
* setting xfer mode. Use polling instead.
|
|
*/
|
|
if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES &&
|
|
qc->tf.feature == SETFEATURES_XFER) &&
|
|
(ap->flags & ATA_FLAG_SETXFER_POLLING))
|
|
qc->tf.flags |= ATA_TFLAG_POLLING;
|
|
|
|
/* select the device */
|
|
ata_dev_select(ap, qc->dev->devno, 1, 0);
|
|
|
|
/* start the command */
|
|
switch (qc->tf.protocol) {
|
|
case ATA_PROT_NODATA:
|
|
if (qc->tf.flags & ATA_TFLAG_POLLING)
|
|
ata_qc_set_polling(qc);
|
|
|
|
ata_tf_to_host(ap, &qc->tf);
|
|
ap->hsm_task_state = HSM_ST_LAST;
|
|
|
|
if (qc->tf.flags & ATA_TFLAG_POLLING)
|
|
ata_port_queue_task(ap, ata_pio_task, qc, 0);
|
|
|
|
break;
|
|
|
|
case ATA_PROT_DMA:
|
|
WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
|
|
|
|
ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
|
|
ap->ops->bmdma_setup(qc); /* set up bmdma */
|
|
ap->ops->bmdma_start(qc); /* initiate bmdma */
|
|
ap->hsm_task_state = HSM_ST_LAST;
|
|
break;
|
|
|
|
case ATA_PROT_PIO:
|
|
if (qc->tf.flags & ATA_TFLAG_POLLING)
|
|
ata_qc_set_polling(qc);
|
|
|
|
ata_tf_to_host(ap, &qc->tf);
|
|
|
|
if (qc->tf.flags & ATA_TFLAG_WRITE) {
|
|
/* PIO data out protocol */
|
|
ap->hsm_task_state = HSM_ST_FIRST;
|
|
ata_port_queue_task(ap, ata_pio_task, qc, 0);
|
|
|
|
/* always send first data block using
|
|
* the ata_pio_task() codepath.
|
|
*/
|
|
} else {
|
|
/* PIO data in protocol */
|
|
ap->hsm_task_state = HSM_ST;
|
|
|
|
if (qc->tf.flags & ATA_TFLAG_POLLING)
|
|
ata_port_queue_task(ap, ata_pio_task, qc, 0);
|
|
|
|
/* if polling, ata_pio_task() handles the rest.
|
|
* otherwise, interrupt handler takes over from here.
|
|
*/
|
|
}
|
|
|
|
break;
|
|
|
|
case ATA_PROT_ATAPI:
|
|
case ATA_PROT_ATAPI_NODATA:
|
|
if (qc->tf.flags & ATA_TFLAG_POLLING)
|
|
ata_qc_set_polling(qc);
|
|
|
|
ata_tf_to_host(ap, &qc->tf);
|
|
|
|
ap->hsm_task_state = HSM_ST_FIRST;
|
|
|
|
/* send cdb by polling if no cdb interrupt */
|
|
if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
|
|
(qc->tf.flags & ATA_TFLAG_POLLING))
|
|
ata_port_queue_task(ap, ata_pio_task, qc, 0);
|
|
break;
|
|
|
|
case ATA_PROT_ATAPI_DMA:
|
|
WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
|
|
|
|
ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
|
|
ap->ops->bmdma_setup(qc); /* set up bmdma */
|
|
ap->hsm_task_state = HSM_ST_FIRST;
|
|
|
|
/* send cdb by polling if no cdb interrupt */
|
|
if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
|
|
ata_port_queue_task(ap, ata_pio_task, qc, 0);
|
|
break;
|
|
|
|
default:
|
|
WARN_ON(1);
|
|
return AC_ERR_SYSTEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ata_host_intr - Handle host interrupt for given (port, task)
|
|
* @ap: Port on which interrupt arrived (possibly...)
|
|
* @qc: Taskfile currently active in engine
|
|
*
|
|
* Handle host interrupt for given queued command. Currently,
|
|
* only DMA interrupts are handled. All other commands are
|
|
* handled via polling with interrupts disabled (nIEN bit).
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*
|
|
* RETURNS:
|
|
* One if interrupt was handled, zero if not (shared irq).
|
|
*/
|
|
|
|
inline unsigned int ata_host_intr (struct ata_port *ap,
|
|
struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_eh_info *ehi = &ap->eh_info;
|
|
u8 status, host_stat = 0;
|
|
|
|
VPRINTK("ata%u: protocol %d task_state %d\n",
|
|
ap->print_id, qc->tf.protocol, ap->hsm_task_state);
|
|
|
|
/* Check whether we are expecting interrupt in this state */
|
|
switch (ap->hsm_task_state) {
|
|
case HSM_ST_FIRST:
|
|
/* Some pre-ATAPI-4 devices assert INTRQ
|
|
* at this state when ready to receive CDB.
|
|
*/
|
|
|
|
/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
|
|
* The flag was turned on only for atapi devices.
|
|
* No need to check is_atapi_taskfile(&qc->tf) again.
|
|
*/
|
|
if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
|
|
goto idle_irq;
|
|
break;
|
|
case HSM_ST_LAST:
|
|
if (qc->tf.protocol == ATA_PROT_DMA ||
|
|
qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
|
|
/* check status of DMA engine */
|
|
host_stat = ap->ops->bmdma_status(ap);
|
|
VPRINTK("ata%u: host_stat 0x%X\n",
|
|
ap->print_id, host_stat);
|
|
|
|
/* if it's not our irq... */
|
|
if (!(host_stat & ATA_DMA_INTR))
|
|
goto idle_irq;
|
|
|
|
/* before we do anything else, clear DMA-Start bit */
|
|
ap->ops->bmdma_stop(qc);
|
|
|
|
if (unlikely(host_stat & ATA_DMA_ERR)) {
|
|
/* error when transfering data to/from memory */
|
|
qc->err_mask |= AC_ERR_HOST_BUS;
|
|
ap->hsm_task_state = HSM_ST_ERR;
|
|
}
|
|
}
|
|
break;
|
|
case HSM_ST:
|
|
break;
|
|
default:
|
|
goto idle_irq;
|
|
}
|
|
|
|
/* check altstatus */
|
|
status = ata_altstatus(ap);
|
|
if (status & ATA_BUSY)
|
|
goto idle_irq;
|
|
|
|
/* check main status, clearing INTRQ */
|
|
status = ata_chk_status(ap);
|
|
if (unlikely(status & ATA_BUSY))
|
|
goto idle_irq;
|
|
|
|
/* ack bmdma irq events */
|
|
ap->ops->irq_clear(ap);
|
|
|
|
ata_hsm_move(ap, qc, status, 0);
|
|
|
|
if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
|
|
qc->tf.protocol == ATA_PROT_ATAPI_DMA))
|
|
ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
|
|
|
|
return 1; /* irq handled */
|
|
|
|
idle_irq:
|
|
ap->stats.idle_irq++;
|
|
|
|
#ifdef ATA_IRQ_TRAP
|
|
if ((ap->stats.idle_irq % 1000) == 0) {
|
|
ap->ops->irq_ack(ap, 0); /* debug trap */
|
|
ata_port_printk(ap, KERN_WARNING, "irq trap\n");
|
|
return 1;
|
|
}
|
|
#endif
|
|
return 0; /* irq not handled */
|
|
}
|
|
|
|
/**
|
|
* ata_interrupt - Default ATA host interrupt handler
|
|
* @irq: irq line (unused)
|
|
* @dev_instance: pointer to our ata_host information structure
|
|
*
|
|
* Default interrupt handler for PCI IDE devices. Calls
|
|
* ata_host_intr() for each port that is not disabled.
|
|
*
|
|
* LOCKING:
|
|
* Obtains host lock during operation.
|
|
*
|
|
* RETURNS:
|
|
* IRQ_NONE or IRQ_HANDLED.
|
|
*/
|
|
|
|
irqreturn_t ata_interrupt (int irq, void *dev_instance)
|
|
{
|
|
struct ata_host *host = dev_instance;
|
|
unsigned int i;
|
|
unsigned int handled = 0;
|
|
unsigned long flags;
|
|
|
|
/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
|
|
spin_lock_irqsave(&host->lock, flags);
|
|
|
|
for (i = 0; i < host->n_ports; i++) {
|
|
struct ata_port *ap;
|
|
|
|
ap = host->ports[i];
|
|
if (ap &&
|
|
!(ap->flags & ATA_FLAG_DISABLED)) {
|
|
struct ata_queued_cmd *qc;
|
|
|
|
qc = ata_qc_from_tag(ap, ap->active_tag);
|
|
if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
|
|
(qc->flags & ATA_QCFLAG_ACTIVE))
|
|
handled |= ata_host_intr(ap, qc);
|
|
}
|
|
}
|
|
|
|
spin_unlock_irqrestore(&host->lock, flags);
|
|
|
|
return IRQ_RETVAL(handled);
|
|
}
|
|
|
|
/**
|
|
* sata_scr_valid - test whether SCRs are accessible
|
|
* @ap: ATA port to test SCR accessibility for
|
|
*
|
|
* Test whether SCRs are accessible for @ap.
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*
|
|
* RETURNS:
|
|
* 1 if SCRs are accessible, 0 otherwise.
|
|
*/
|
|
int sata_scr_valid(struct ata_port *ap)
|
|
{
|
|
return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
|
|
}
|
|
|
|
/**
|
|
* sata_scr_read - read SCR register of the specified port
|
|
* @ap: ATA port to read SCR for
|
|
* @reg: SCR to read
|
|
* @val: Place to store read value
|
|
*
|
|
* Read SCR register @reg of @ap into *@val. This function is
|
|
* guaranteed to succeed if the cable type of the port is SATA
|
|
* and the port implements ->scr_read.
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, negative errno on failure.
|
|
*/
|
|
int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
|
|
{
|
|
if (sata_scr_valid(ap)) {
|
|
*val = ap->ops->scr_read(ap, reg);
|
|
return 0;
|
|
}
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
/**
|
|
* sata_scr_write - write SCR register of the specified port
|
|
* @ap: ATA port to write SCR for
|
|
* @reg: SCR to write
|
|
* @val: value to write
|
|
*
|
|
* Write @val to SCR register @reg of @ap. This function is
|
|
* guaranteed to succeed if the cable type of the port is SATA
|
|
* and the port implements ->scr_read.
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, negative errno on failure.
|
|
*/
|
|
int sata_scr_write(struct ata_port *ap, int reg, u32 val)
|
|
{
|
|
if (sata_scr_valid(ap)) {
|
|
ap->ops->scr_write(ap, reg, val);
|
|
return 0;
|
|
}
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
/**
|
|
* sata_scr_write_flush - write SCR register of the specified port and flush
|
|
* @ap: ATA port to write SCR for
|
|
* @reg: SCR to write
|
|
* @val: value to write
|
|
*
|
|
* This function is identical to sata_scr_write() except that this
|
|
* function performs flush after writing to the register.
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, negative errno on failure.
|
|
*/
|
|
int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
|
|
{
|
|
if (sata_scr_valid(ap)) {
|
|
ap->ops->scr_write(ap, reg, val);
|
|
ap->ops->scr_read(ap, reg);
|
|
return 0;
|
|
}
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
/**
|
|
* ata_port_online - test whether the given port is online
|
|
* @ap: ATA port to test
|
|
*
|
|
* Test whether @ap is online. Note that this function returns 0
|
|
* if online status of @ap cannot be obtained, so
|
|
* ata_port_online(ap) != !ata_port_offline(ap).
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*
|
|
* RETURNS:
|
|
* 1 if the port online status is available and online.
|
|
*/
|
|
int ata_port_online(struct ata_port *ap)
|
|
{
|
|
u32 sstatus;
|
|
|
|
if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ata_port_offline - test whether the given port is offline
|
|
* @ap: ATA port to test
|
|
*
|
|
* Test whether @ap is offline. Note that this function returns
|
|
* 0 if offline status of @ap cannot be obtained, so
|
|
* ata_port_online(ap) != !ata_port_offline(ap).
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*
|
|
* RETURNS:
|
|
* 1 if the port offline status is available and offline.
|
|
*/
|
|
int ata_port_offline(struct ata_port *ap)
|
|
{
|
|
u32 sstatus;
|
|
|
|
if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
int ata_flush_cache(struct ata_device *dev)
|
|
{
|
|
unsigned int err_mask;
|
|
u8 cmd;
|
|
|
|
if (!ata_try_flush_cache(dev))
|
|
return 0;
|
|
|
|
if (dev->flags & ATA_DFLAG_FLUSH_EXT)
|
|
cmd = ATA_CMD_FLUSH_EXT;
|
|
else
|
|
cmd = ATA_CMD_FLUSH;
|
|
|
|
err_mask = ata_do_simple_cmd(dev, cmd);
|
|
if (err_mask) {
|
|
ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
|
|
unsigned int action, unsigned int ehi_flags,
|
|
int wait)
|
|
{
|
|
unsigned long flags;
|
|
int i, rc;
|
|
|
|
for (i = 0; i < host->n_ports; i++) {
|
|
struct ata_port *ap = host->ports[i];
|
|
|
|
/* Previous resume operation might still be in
|
|
* progress. Wait for PM_PENDING to clear.
|
|
*/
|
|
if (ap->pflags & ATA_PFLAG_PM_PENDING) {
|
|
ata_port_wait_eh(ap);
|
|
WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
|
|
}
|
|
|
|
/* request PM ops to EH */
|
|
spin_lock_irqsave(ap->lock, flags);
|
|
|
|
ap->pm_mesg = mesg;
|
|
if (wait) {
|
|
rc = 0;
|
|
ap->pm_result = &rc;
|
|
}
|
|
|
|
ap->pflags |= ATA_PFLAG_PM_PENDING;
|
|
ap->eh_info.action |= action;
|
|
ap->eh_info.flags |= ehi_flags;
|
|
|
|
ata_port_schedule_eh(ap);
|
|
|
|
spin_unlock_irqrestore(ap->lock, flags);
|
|
|
|
/* wait and check result */
|
|
if (wait) {
|
|
ata_port_wait_eh(ap);
|
|
WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ata_host_suspend - suspend host
|
|
* @host: host to suspend
|
|
* @mesg: PM message
|
|
*
|
|
* Suspend @host. Actual operation is performed by EH. This
|
|
* function requests EH to perform PM operations and waits for EH
|
|
* to finish.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep).
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno on failure.
|
|
*/
|
|
int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
|
|
{
|
|
int i, j, rc;
|
|
|
|
rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
|
|
if (rc)
|
|
goto fail;
|
|
|
|
/* EH is quiescent now. Fail if we have any ready device.
|
|
* This happens if hotplug occurs between completion of device
|
|
* suspension and here.
|
|
*/
|
|
for (i = 0; i < host->n_ports; i++) {
|
|
struct ata_port *ap = host->ports[i];
|
|
|
|
for (j = 0; j < ATA_MAX_DEVICES; j++) {
|
|
struct ata_device *dev = &ap->device[j];
|
|
|
|
if (ata_dev_ready(dev)) {
|
|
ata_port_printk(ap, KERN_WARNING,
|
|
"suspend failed, device %d "
|
|
"still active\n", dev->devno);
|
|
rc = -EBUSY;
|
|
goto fail;
|
|
}
|
|
}
|
|
}
|
|
|
|
host->dev->power.power_state = mesg;
|
|
return 0;
|
|
|
|
fail:
|
|
ata_host_resume(host);
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* ata_host_resume - resume host
|
|
* @host: host to resume
|
|
*
|
|
* Resume @host. Actual operation is performed by EH. This
|
|
* function requests EH to perform PM operations and returns.
|
|
* Note that all resume operations are performed parallely.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep).
|
|
*/
|
|
void ata_host_resume(struct ata_host *host)
|
|
{
|
|
ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
|
|
ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
|
|
host->dev->power.power_state = PMSG_ON;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* ata_port_start - Set port up for dma.
|
|
* @ap: Port to initialize
|
|
*
|
|
* Called just after data structures for each port are
|
|
* initialized. Allocates space for PRD table.
|
|
*
|
|
* May be used as the port_start() entry in ata_port_operations.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
int ata_port_start(struct ata_port *ap)
|
|
{
|
|
struct device *dev = ap->dev;
|
|
int rc;
|
|
|
|
ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
|
|
GFP_KERNEL);
|
|
if (!ap->prd)
|
|
return -ENOMEM;
|
|
|
|
rc = ata_pad_alloc(ap, dev);
|
|
if (rc)
|
|
return rc;
|
|
|
|
DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
|
|
(unsigned long long)ap->prd_dma);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ata_dev_init - Initialize an ata_device structure
|
|
* @dev: Device structure to initialize
|
|
*
|
|
* Initialize @dev in preparation for probing.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
void ata_dev_init(struct ata_device *dev)
|
|
{
|
|
struct ata_port *ap = dev->ap;
|
|
unsigned long flags;
|
|
|
|
/* SATA spd limit is bound to the first device */
|
|
ap->sata_spd_limit = ap->hw_sata_spd_limit;
|
|
|
|
/* High bits of dev->flags are used to record warm plug
|
|
* requests which occur asynchronously. Synchronize using
|
|
* host lock.
|
|
*/
|
|
spin_lock_irqsave(ap->lock, flags);
|
|
dev->flags &= ~ATA_DFLAG_INIT_MASK;
|
|
spin_unlock_irqrestore(ap->lock, flags);
|
|
|
|
memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
|
|
sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
|
|
dev->pio_mask = UINT_MAX;
|
|
dev->mwdma_mask = UINT_MAX;
|
|
dev->udma_mask = UINT_MAX;
|
|
}
|
|
|
|
/**
|
|
* ata_port_alloc - allocate and initialize basic ATA port resources
|
|
* @host: ATA host this allocated port belongs to
|
|
*
|
|
* Allocate and initialize basic ATA port resources.
|
|
*
|
|
* RETURNS:
|
|
* Allocate ATA port on success, NULL on failure.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from calling layer (may sleep).
|
|
*/
|
|
struct ata_port *ata_port_alloc(struct ata_host *host)
|
|
{
|
|
struct ata_port *ap;
|
|
unsigned int i;
|
|
|
|
DPRINTK("ENTER\n");
|
|
|
|
ap = kzalloc(sizeof(*ap), GFP_KERNEL);
|
|
if (!ap)
|
|
return NULL;
|
|
|
|
ap->lock = &host->lock;
|
|
ap->flags = ATA_FLAG_DISABLED;
|
|
ap->print_id = -1;
|
|
ap->ctl = ATA_DEVCTL_OBS;
|
|
ap->host = host;
|
|
ap->dev = host->dev;
|
|
|
|
ap->hw_sata_spd_limit = UINT_MAX;
|
|
ap->active_tag = ATA_TAG_POISON;
|
|
ap->last_ctl = 0xFF;
|
|
|
|
#if defined(ATA_VERBOSE_DEBUG)
|
|
/* turn on all debugging levels */
|
|
ap->msg_enable = 0x00FF;
|
|
#elif defined(ATA_DEBUG)
|
|
ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
|
|
#else
|
|
ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
|
|
#endif
|
|
|
|
INIT_DELAYED_WORK(&ap->port_task, NULL);
|
|
INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
|
|
INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
|
|
INIT_LIST_HEAD(&ap->eh_done_q);
|
|
init_waitqueue_head(&ap->eh_wait_q);
|
|
|
|
ap->cbl = ATA_CBL_NONE;
|
|
|
|
for (i = 0; i < ATA_MAX_DEVICES; i++) {
|
|
struct ata_device *dev = &ap->device[i];
|
|
dev->ap = ap;
|
|
dev->devno = i;
|
|
ata_dev_init(dev);
|
|
}
|
|
|
|
#ifdef ATA_IRQ_TRAP
|
|
ap->stats.unhandled_irq = 1;
|
|
ap->stats.idle_irq = 1;
|
|
#endif
|
|
return ap;
|
|
}
|
|
|
|
static void ata_host_release(struct device *gendev, void *res)
|
|
{
|
|
struct ata_host *host = dev_get_drvdata(gendev);
|
|
int i;
|
|
|
|
for (i = 0; i < host->n_ports; i++) {
|
|
struct ata_port *ap = host->ports[i];
|
|
|
|
if (!ap)
|
|
continue;
|
|
|
|
if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
|
|
ap->ops->port_stop(ap);
|
|
}
|
|
|
|
if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
|
|
host->ops->host_stop(host);
|
|
|
|
for (i = 0; i < host->n_ports; i++) {
|
|
struct ata_port *ap = host->ports[i];
|
|
|
|
if (!ap)
|
|
continue;
|
|
|
|
if (ap->scsi_host)
|
|
scsi_host_put(ap->scsi_host);
|
|
|
|
kfree(ap);
|
|
host->ports[i] = NULL;
|
|
}
|
|
|
|
dev_set_drvdata(gendev, NULL);
|
|
}
|
|
|
|
/**
|
|
* ata_host_alloc - allocate and init basic ATA host resources
|
|
* @dev: generic device this host is associated with
|
|
* @max_ports: maximum number of ATA ports associated with this host
|
|
*
|
|
* Allocate and initialize basic ATA host resources. LLD calls
|
|
* this function to allocate a host, initializes it fully and
|
|
* attaches it using ata_host_register().
|
|
*
|
|
* @max_ports ports are allocated and host->n_ports is
|
|
* initialized to @max_ports. The caller is allowed to decrease
|
|
* host->n_ports before calling ata_host_register(). The unused
|
|
* ports will be automatically freed on registration.
|
|
*
|
|
* RETURNS:
|
|
* Allocate ATA host on success, NULL on failure.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from calling layer (may sleep).
|
|
*/
|
|
struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
|
|
{
|
|
struct ata_host *host;
|
|
size_t sz;
|
|
int i;
|
|
|
|
DPRINTK("ENTER\n");
|
|
|
|
if (!devres_open_group(dev, NULL, GFP_KERNEL))
|
|
return NULL;
|
|
|
|
/* alloc a container for our list of ATA ports (buses) */
|
|
sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
|
|
/* alloc a container for our list of ATA ports (buses) */
|
|
host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
|
|
if (!host)
|
|
goto err_out;
|
|
|
|
devres_add(dev, host);
|
|
dev_set_drvdata(dev, host);
|
|
|
|
spin_lock_init(&host->lock);
|
|
host->dev = dev;
|
|
host->n_ports = max_ports;
|
|
|
|
/* allocate ports bound to this host */
|
|
for (i = 0; i < max_ports; i++) {
|
|
struct ata_port *ap;
|
|
|
|
ap = ata_port_alloc(host);
|
|
if (!ap)
|
|
goto err_out;
|
|
|
|
ap->port_no = i;
|
|
host->ports[i] = ap;
|
|
}
|
|
|
|
devres_remove_group(dev, NULL);
|
|
return host;
|
|
|
|
err_out:
|
|
devres_release_group(dev, NULL);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* ata_host_alloc_pinfo - alloc host and init with port_info array
|
|
* @dev: generic device this host is associated with
|
|
* @ppi: array of ATA port_info to initialize host with
|
|
* @n_ports: number of ATA ports attached to this host
|
|
*
|
|
* Allocate ATA host and initialize with info from @ppi. If NULL
|
|
* terminated, @ppi may contain fewer entries than @n_ports. The
|
|
* last entry will be used for the remaining ports.
|
|
*
|
|
* RETURNS:
|
|
* Allocate ATA host on success, NULL on failure.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from calling layer (may sleep).
|
|
*/
|
|
struct ata_host *ata_host_alloc_pinfo(struct device *dev,
|
|
const struct ata_port_info * const * ppi,
|
|
int n_ports)
|
|
{
|
|
const struct ata_port_info *pi;
|
|
struct ata_host *host;
|
|
int i, j;
|
|
|
|
host = ata_host_alloc(dev, n_ports);
|
|
if (!host)
|
|
return NULL;
|
|
|
|
for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
|
|
struct ata_port *ap = host->ports[i];
|
|
|
|
if (ppi[j])
|
|
pi = ppi[j++];
|
|
|
|
ap->pio_mask = pi->pio_mask;
|
|
ap->mwdma_mask = pi->mwdma_mask;
|
|
ap->udma_mask = pi->udma_mask;
|
|
ap->flags |= pi->flags;
|
|
ap->ops = pi->port_ops;
|
|
|
|
if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
|
|
host->ops = pi->port_ops;
|
|
if (!host->private_data && pi->private_data)
|
|
host->private_data = pi->private_data;
|
|
}
|
|
|
|
return host;
|
|
}
|
|
|
|
/**
|
|
* ata_host_start - start and freeze ports of an ATA host
|
|
* @host: ATA host to start ports for
|
|
*
|
|
* Start and then freeze ports of @host. Started status is
|
|
* recorded in host->flags, so this function can be called
|
|
* multiple times. Ports are guaranteed to get started only
|
|
* once. If host->ops isn't initialized yet, its set to the
|
|
* first non-dummy port ops.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from calling layer (may sleep).
|
|
*
|
|
* RETURNS:
|
|
* 0 if all ports are started successfully, -errno otherwise.
|
|
*/
|
|
int ata_host_start(struct ata_host *host)
|
|
{
|
|
int i, rc;
|
|
|
|
if (host->flags & ATA_HOST_STARTED)
|
|
return 0;
|
|
|
|
for (i = 0; i < host->n_ports; i++) {
|
|
struct ata_port *ap = host->ports[i];
|
|
|
|
if (!host->ops && !ata_port_is_dummy(ap))
|
|
host->ops = ap->ops;
|
|
|
|
if (ap->ops->port_start) {
|
|
rc = ap->ops->port_start(ap);
|
|
if (rc) {
|
|
ata_port_printk(ap, KERN_ERR, "failed to "
|
|
"start port (errno=%d)\n", rc);
|
|
goto err_out;
|
|
}
|
|
}
|
|
|
|
ata_eh_freeze_port(ap);
|
|
}
|
|
|
|
host->flags |= ATA_HOST_STARTED;
|
|
return 0;
|
|
|
|
err_out:
|
|
while (--i >= 0) {
|
|
struct ata_port *ap = host->ports[i];
|
|
|
|
if (ap->ops->port_stop)
|
|
ap->ops->port_stop(ap);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* ata_sas_host_init - Initialize a host struct
|
|
* @host: host to initialize
|
|
* @dev: device host is attached to
|
|
* @flags: host flags
|
|
* @ops: port_ops
|
|
*
|
|
* LOCKING:
|
|
* PCI/etc. bus probe sem.
|
|
*
|
|
*/
|
|
/* KILLME - the only user left is ipr */
|
|
void ata_host_init(struct ata_host *host, struct device *dev,
|
|
unsigned long flags, const struct ata_port_operations *ops)
|
|
{
|
|
spin_lock_init(&host->lock);
|
|
host->dev = dev;
|
|
host->flags = flags;
|
|
host->ops = ops;
|
|
}
|
|
|
|
/**
|
|
* ata_host_register - register initialized ATA host
|
|
* @host: ATA host to register
|
|
* @sht: template for SCSI host
|
|
*
|
|
* Register initialized ATA host. @host is allocated using
|
|
* ata_host_alloc() and fully initialized by LLD. This function
|
|
* starts ports, registers @host with ATA and SCSI layers and
|
|
* probe registered devices.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from calling layer (may sleep).
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno otherwise.
|
|
*/
|
|
int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
|
|
{
|
|
int i, rc;
|
|
|
|
/* host must have been started */
|
|
if (!(host->flags & ATA_HOST_STARTED)) {
|
|
dev_printk(KERN_ERR, host->dev,
|
|
"BUG: trying to register unstarted host\n");
|
|
WARN_ON(1);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Blow away unused ports. This happens when LLD can't
|
|
* determine the exact number of ports to allocate at
|
|
* allocation time.
|
|
*/
|
|
for (i = host->n_ports; host->ports[i]; i++)
|
|
kfree(host->ports[i]);
|
|
|
|
/* give ports names and add SCSI hosts */
|
|
for (i = 0; i < host->n_ports; i++)
|
|
host->ports[i]->print_id = ata_print_id++;
|
|
|
|
rc = ata_scsi_add_hosts(host, sht);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* set cable, sata_spd_limit and report */
|
|
for (i = 0; i < host->n_ports; i++) {
|
|
struct ata_port *ap = host->ports[i];
|
|
int irq_line;
|
|
u32 scontrol;
|
|
unsigned long xfer_mask;
|
|
|
|
/* set SATA cable type if still unset */
|
|
if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
|
|
ap->cbl = ATA_CBL_SATA;
|
|
|
|
/* init sata_spd_limit to the current value */
|
|
if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
|
|
int spd = (scontrol >> 4) & 0xf;
|
|
ap->hw_sata_spd_limit &= (1 << spd) - 1;
|
|
}
|
|
ap->sata_spd_limit = ap->hw_sata_spd_limit;
|
|
|
|
/* report the secondary IRQ for second channel legacy */
|
|
irq_line = host->irq;
|
|
if (i == 1 && host->irq2)
|
|
irq_line = host->irq2;
|
|
|
|
xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
|
|
ap->udma_mask);
|
|
|
|
/* print per-port info to dmesg */
|
|
if (!ata_port_is_dummy(ap))
|
|
ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
|
|
"ctl 0x%p bmdma 0x%p irq %d\n",
|
|
ap->cbl == ATA_CBL_SATA ? 'S' : 'P',
|
|
ata_mode_string(xfer_mask),
|
|
ap->ioaddr.cmd_addr,
|
|
ap->ioaddr.ctl_addr,
|
|
ap->ioaddr.bmdma_addr,
|
|
irq_line);
|
|
else
|
|
ata_port_printk(ap, KERN_INFO, "DUMMY\n");
|
|
}
|
|
|
|
/* perform each probe synchronously */
|
|
DPRINTK("probe begin\n");
|
|
for (i = 0; i < host->n_ports; i++) {
|
|
struct ata_port *ap = host->ports[i];
|
|
int rc;
|
|
|
|
/* probe */
|
|
if (ap->ops->error_handler) {
|
|
struct ata_eh_info *ehi = &ap->eh_info;
|
|
unsigned long flags;
|
|
|
|
ata_port_probe(ap);
|
|
|
|
/* kick EH for boot probing */
|
|
spin_lock_irqsave(ap->lock, flags);
|
|
|
|
ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
|
|
ehi->action |= ATA_EH_SOFTRESET;
|
|
ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
|
|
|
|
ap->pflags |= ATA_PFLAG_LOADING;
|
|
ata_port_schedule_eh(ap);
|
|
|
|
spin_unlock_irqrestore(ap->lock, flags);
|
|
|
|
/* wait for EH to finish */
|
|
ata_port_wait_eh(ap);
|
|
} else {
|
|
DPRINTK("ata%u: bus probe begin\n", ap->print_id);
|
|
rc = ata_bus_probe(ap);
|
|
DPRINTK("ata%u: bus probe end\n", ap->print_id);
|
|
|
|
if (rc) {
|
|
/* FIXME: do something useful here?
|
|
* Current libata behavior will
|
|
* tear down everything when
|
|
* the module is removed
|
|
* or the h/w is unplugged.
|
|
*/
|
|
}
|
|
}
|
|
}
|
|
|
|
/* probes are done, now scan each port's disk(s) */
|
|
DPRINTK("host probe begin\n");
|
|
for (i = 0; i < host->n_ports; i++) {
|
|
struct ata_port *ap = host->ports[i];
|
|
|
|
ata_scsi_scan_host(ap);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ata_host_activate - start host, request IRQ and register it
|
|
* @host: target ATA host
|
|
* @irq: IRQ to request
|
|
* @irq_handler: irq_handler used when requesting IRQ
|
|
* @irq_flags: irq_flags used when requesting IRQ
|
|
* @sht: scsi_host_template to use when registering the host
|
|
*
|
|
* After allocating an ATA host and initializing it, most libata
|
|
* LLDs perform three steps to activate the host - start host,
|
|
* request IRQ and register it. This helper takes necessasry
|
|
* arguments and performs the three steps in one go.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from calling layer (may sleep).
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno otherwise.
|
|
*/
|
|
int ata_host_activate(struct ata_host *host, int irq,
|
|
irq_handler_t irq_handler, unsigned long irq_flags,
|
|
struct scsi_host_template *sht)
|
|
{
|
|
int rc;
|
|
|
|
rc = ata_host_start(host);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
|
|
dev_driver_string(host->dev), host);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = ata_host_register(host, sht);
|
|
/* if failed, just free the IRQ and leave ports alone */
|
|
if (rc)
|
|
devm_free_irq(host->dev, irq, host);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* ata_port_detach - Detach ATA port in prepration of device removal
|
|
* @ap: ATA port to be detached
|
|
*
|
|
* Detach all ATA devices and the associated SCSI devices of @ap;
|
|
* then, remove the associated SCSI host. @ap is guaranteed to
|
|
* be quiescent on return from this function.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep).
|
|
*/
|
|
void ata_port_detach(struct ata_port *ap)
|
|
{
|
|
unsigned long flags;
|
|
int i;
|
|
|
|
if (!ap->ops->error_handler)
|
|
goto skip_eh;
|
|
|
|
/* tell EH we're leaving & flush EH */
|
|
spin_lock_irqsave(ap->lock, flags);
|
|
ap->pflags |= ATA_PFLAG_UNLOADING;
|
|
spin_unlock_irqrestore(ap->lock, flags);
|
|
|
|
ata_port_wait_eh(ap);
|
|
|
|
/* EH is now guaranteed to see UNLOADING, so no new device
|
|
* will be attached. Disable all existing devices.
|
|
*/
|
|
spin_lock_irqsave(ap->lock, flags);
|
|
|
|
for (i = 0; i < ATA_MAX_DEVICES; i++)
|
|
ata_dev_disable(&ap->device[i]);
|
|
|
|
spin_unlock_irqrestore(ap->lock, flags);
|
|
|
|
/* Final freeze & EH. All in-flight commands are aborted. EH
|
|
* will be skipped and retrials will be terminated with bad
|
|
* target.
|
|
*/
|
|
spin_lock_irqsave(ap->lock, flags);
|
|
ata_port_freeze(ap); /* won't be thawed */
|
|
spin_unlock_irqrestore(ap->lock, flags);
|
|
|
|
ata_port_wait_eh(ap);
|
|
|
|
/* Flush hotplug task. The sequence is similar to
|
|
* ata_port_flush_task().
|
|
*/
|
|
cancel_work_sync(&ap->hotplug_task.work); /* akpm: why? */
|
|
cancel_delayed_work(&ap->hotplug_task);
|
|
cancel_work_sync(&ap->hotplug_task.work);
|
|
|
|
skip_eh:
|
|
/* remove the associated SCSI host */
|
|
scsi_remove_host(ap->scsi_host);
|
|
}
|
|
|
|
/**
|
|
* ata_host_detach - Detach all ports of an ATA host
|
|
* @host: Host to detach
|
|
*
|
|
* Detach all ports of @host.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep).
|
|
*/
|
|
void ata_host_detach(struct ata_host *host)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < host->n_ports; i++)
|
|
ata_port_detach(host->ports[i]);
|
|
}
|
|
|
|
/**
|
|
* ata_std_ports - initialize ioaddr with standard port offsets.
|
|
* @ioaddr: IO address structure to be initialized
|
|
*
|
|
* Utility function which initializes data_addr, error_addr,
|
|
* feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
|
|
* device_addr, status_addr, and command_addr to standard offsets
|
|
* relative to cmd_addr.
|
|
*
|
|
* Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
|
|
*/
|
|
|
|
void ata_std_ports(struct ata_ioports *ioaddr)
|
|
{
|
|
ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
|
|
ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
|
|
ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
|
|
ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
|
|
ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
|
|
ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
|
|
ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
|
|
ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
|
|
ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
|
|
ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
|
|
}
|
|
|
|
|
|
#ifdef CONFIG_PCI
|
|
|
|
/**
|
|
* ata_pci_remove_one - PCI layer callback for device removal
|
|
* @pdev: PCI device that was removed
|
|
*
|
|
* PCI layer indicates to libata via this hook that hot-unplug or
|
|
* module unload event has occurred. Detach all ports. Resource
|
|
* release is handled via devres.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from PCI layer (may sleep).
|
|
*/
|
|
void ata_pci_remove_one(struct pci_dev *pdev)
|
|
{
|
|
struct device *dev = pci_dev_to_dev(pdev);
|
|
struct ata_host *host = dev_get_drvdata(dev);
|
|
|
|
ata_host_detach(host);
|
|
}
|
|
|
|
/* move to PCI subsystem */
|
|
int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
|
|
{
|
|
unsigned long tmp = 0;
|
|
|
|
switch (bits->width) {
|
|
case 1: {
|
|
u8 tmp8 = 0;
|
|
pci_read_config_byte(pdev, bits->reg, &tmp8);
|
|
tmp = tmp8;
|
|
break;
|
|
}
|
|
case 2: {
|
|
u16 tmp16 = 0;
|
|
pci_read_config_word(pdev, bits->reg, &tmp16);
|
|
tmp = tmp16;
|
|
break;
|
|
}
|
|
case 4: {
|
|
u32 tmp32 = 0;
|
|
pci_read_config_dword(pdev, bits->reg, &tmp32);
|
|
tmp = tmp32;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
tmp &= bits->mask;
|
|
|
|
return (tmp == bits->val) ? 1 : 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
|
|
{
|
|
pci_save_state(pdev);
|
|
pci_disable_device(pdev);
|
|
|
|
if (mesg.event == PM_EVENT_SUSPEND)
|
|
pci_set_power_state(pdev, PCI_D3hot);
|
|
}
|
|
|
|
int ata_pci_device_do_resume(struct pci_dev *pdev)
|
|
{
|
|
int rc;
|
|
|
|
pci_set_power_state(pdev, PCI_D0);
|
|
pci_restore_state(pdev);
|
|
|
|
rc = pcim_enable_device(pdev);
|
|
if (rc) {
|
|
dev_printk(KERN_ERR, &pdev->dev,
|
|
"failed to enable device after resume (%d)\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
pci_set_master(pdev);
|
|
return 0;
|
|
}
|
|
|
|
int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
|
|
{
|
|
struct ata_host *host = dev_get_drvdata(&pdev->dev);
|
|
int rc = 0;
|
|
|
|
rc = ata_host_suspend(host, mesg);
|
|
if (rc)
|
|
return rc;
|
|
|
|
ata_pci_device_do_suspend(pdev, mesg);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int ata_pci_device_resume(struct pci_dev *pdev)
|
|
{
|
|
struct ata_host *host = dev_get_drvdata(&pdev->dev);
|
|
int rc;
|
|
|
|
rc = ata_pci_device_do_resume(pdev);
|
|
if (rc == 0)
|
|
ata_host_resume(host);
|
|
return rc;
|
|
}
|
|
#endif /* CONFIG_PM */
|
|
|
|
#endif /* CONFIG_PCI */
|
|
|
|
|
|
static int __init ata_init(void)
|
|
{
|
|
ata_probe_timeout *= HZ;
|
|
ata_wq = create_workqueue("ata");
|
|
if (!ata_wq)
|
|
return -ENOMEM;
|
|
|
|
ata_aux_wq = create_singlethread_workqueue("ata_aux");
|
|
if (!ata_aux_wq) {
|
|
destroy_workqueue(ata_wq);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
|
|
return 0;
|
|
}
|
|
|
|
static void __exit ata_exit(void)
|
|
{
|
|
destroy_workqueue(ata_wq);
|
|
destroy_workqueue(ata_aux_wq);
|
|
}
|
|
|
|
subsys_initcall(ata_init);
|
|
module_exit(ata_exit);
|
|
|
|
static unsigned long ratelimit_time;
|
|
static DEFINE_SPINLOCK(ata_ratelimit_lock);
|
|
|
|
int ata_ratelimit(void)
|
|
{
|
|
int rc;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&ata_ratelimit_lock, flags);
|
|
|
|
if (time_after(jiffies, ratelimit_time)) {
|
|
rc = 1;
|
|
ratelimit_time = jiffies + (HZ/5);
|
|
} else
|
|
rc = 0;
|
|
|
|
spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* ata_wait_register - wait until register value changes
|
|
* @reg: IO-mapped register
|
|
* @mask: Mask to apply to read register value
|
|
* @val: Wait condition
|
|
* @interval_msec: polling interval in milliseconds
|
|
* @timeout_msec: timeout in milliseconds
|
|
*
|
|
* Waiting for some bits of register to change is a common
|
|
* operation for ATA controllers. This function reads 32bit LE
|
|
* IO-mapped register @reg and tests for the following condition.
|
|
*
|
|
* (*@reg & mask) != val
|
|
*
|
|
* If the condition is met, it returns; otherwise, the process is
|
|
* repeated after @interval_msec until timeout.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep)
|
|
*
|
|
* RETURNS:
|
|
* The final register value.
|
|
*/
|
|
u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
|
|
unsigned long interval_msec,
|
|
unsigned long timeout_msec)
|
|
{
|
|
unsigned long timeout;
|
|
u32 tmp;
|
|
|
|
tmp = ioread32(reg);
|
|
|
|
/* Calculate timeout _after_ the first read to make sure
|
|
* preceding writes reach the controller before starting to
|
|
* eat away the timeout.
|
|
*/
|
|
timeout = jiffies + (timeout_msec * HZ) / 1000;
|
|
|
|
while ((tmp & mask) == val && time_before(jiffies, timeout)) {
|
|
msleep(interval_msec);
|
|
tmp = ioread32(reg);
|
|
}
|
|
|
|
return tmp;
|
|
}
|
|
|
|
/*
|
|
* Dummy port_ops
|
|
*/
|
|
static void ata_dummy_noret(struct ata_port *ap) { }
|
|
static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
|
|
static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
|
|
|
|
static u8 ata_dummy_check_status(struct ata_port *ap)
|
|
{
|
|
return ATA_DRDY;
|
|
}
|
|
|
|
static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
|
|
{
|
|
return AC_ERR_SYSTEM;
|
|
}
|
|
|
|
const struct ata_port_operations ata_dummy_port_ops = {
|
|
.port_disable = ata_port_disable,
|
|
.check_status = ata_dummy_check_status,
|
|
.check_altstatus = ata_dummy_check_status,
|
|
.dev_select = ata_noop_dev_select,
|
|
.qc_prep = ata_noop_qc_prep,
|
|
.qc_issue = ata_dummy_qc_issue,
|
|
.freeze = ata_dummy_noret,
|
|
.thaw = ata_dummy_noret,
|
|
.error_handler = ata_dummy_noret,
|
|
.post_internal_cmd = ata_dummy_qc_noret,
|
|
.irq_clear = ata_dummy_noret,
|
|
.port_start = ata_dummy_ret0,
|
|
.port_stop = ata_dummy_noret,
|
|
};
|
|
|
|
const struct ata_port_info ata_dummy_port_info = {
|
|
.port_ops = &ata_dummy_port_ops,
|
|
};
|
|
|
|
/*
|
|
* libata is essentially a library of internal helper functions for
|
|
* low-level ATA host controller drivers. As such, the API/ABI is
|
|
* likely to change as new drivers are added and updated.
|
|
* Do not depend on ABI/API stability.
|
|
*/
|
|
|
|
EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
|
|
EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
|
|
EXPORT_SYMBOL_GPL(sata_deb_timing_long);
|
|
EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
|
|
EXPORT_SYMBOL_GPL(ata_dummy_port_info);
|
|
EXPORT_SYMBOL_GPL(ata_std_bios_param);
|
|
EXPORT_SYMBOL_GPL(ata_std_ports);
|
|
EXPORT_SYMBOL_GPL(ata_host_init);
|
|
EXPORT_SYMBOL_GPL(ata_host_alloc);
|
|
EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
|
|
EXPORT_SYMBOL_GPL(ata_host_start);
|
|
EXPORT_SYMBOL_GPL(ata_host_register);
|
|
EXPORT_SYMBOL_GPL(ata_host_activate);
|
|
EXPORT_SYMBOL_GPL(ata_host_detach);
|
|
EXPORT_SYMBOL_GPL(ata_sg_init);
|
|
EXPORT_SYMBOL_GPL(ata_sg_init_one);
|
|
EXPORT_SYMBOL_GPL(ata_hsm_move);
|
|
EXPORT_SYMBOL_GPL(ata_qc_complete);
|
|
EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
|
|
EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
|
|
EXPORT_SYMBOL_GPL(ata_tf_load);
|
|
EXPORT_SYMBOL_GPL(ata_tf_read);
|
|
EXPORT_SYMBOL_GPL(ata_noop_dev_select);
|
|
EXPORT_SYMBOL_GPL(ata_std_dev_select);
|
|
EXPORT_SYMBOL_GPL(sata_print_link_status);
|
|
EXPORT_SYMBOL_GPL(ata_tf_to_fis);
|
|
EXPORT_SYMBOL_GPL(ata_tf_from_fis);
|
|
EXPORT_SYMBOL_GPL(ata_check_status);
|
|
EXPORT_SYMBOL_GPL(ata_altstatus);
|
|
EXPORT_SYMBOL_GPL(ata_exec_command);
|
|
EXPORT_SYMBOL_GPL(ata_port_start);
|
|
EXPORT_SYMBOL_GPL(ata_interrupt);
|
|
EXPORT_SYMBOL_GPL(ata_do_set_mode);
|
|
EXPORT_SYMBOL_GPL(ata_data_xfer);
|
|
EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
|
|
EXPORT_SYMBOL_GPL(ata_qc_prep);
|
|
EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
|
|
EXPORT_SYMBOL_GPL(ata_bmdma_setup);
|
|
EXPORT_SYMBOL_GPL(ata_bmdma_start);
|
|
EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
|
|
EXPORT_SYMBOL_GPL(ata_bmdma_status);
|
|
EXPORT_SYMBOL_GPL(ata_bmdma_stop);
|
|
EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
|
|
EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
|
|
EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
|
|
EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
|
|
EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
|
|
EXPORT_SYMBOL_GPL(ata_port_probe);
|
|
EXPORT_SYMBOL_GPL(ata_dev_disable);
|
|
EXPORT_SYMBOL_GPL(sata_set_spd);
|
|
EXPORT_SYMBOL_GPL(sata_phy_debounce);
|
|
EXPORT_SYMBOL_GPL(sata_phy_resume);
|
|
EXPORT_SYMBOL_GPL(sata_phy_reset);
|
|
EXPORT_SYMBOL_GPL(__sata_phy_reset);
|
|
EXPORT_SYMBOL_GPL(ata_bus_reset);
|
|
EXPORT_SYMBOL_GPL(ata_std_prereset);
|
|
EXPORT_SYMBOL_GPL(ata_std_softreset);
|
|
EXPORT_SYMBOL_GPL(sata_port_hardreset);
|
|
EXPORT_SYMBOL_GPL(sata_std_hardreset);
|
|
EXPORT_SYMBOL_GPL(ata_std_postreset);
|
|
EXPORT_SYMBOL_GPL(ata_dev_classify);
|
|
EXPORT_SYMBOL_GPL(ata_dev_pair);
|
|
EXPORT_SYMBOL_GPL(ata_port_disable);
|
|
EXPORT_SYMBOL_GPL(ata_ratelimit);
|
|
EXPORT_SYMBOL_GPL(ata_wait_register);
|
|
EXPORT_SYMBOL_GPL(ata_busy_sleep);
|
|
EXPORT_SYMBOL_GPL(ata_wait_ready);
|
|
EXPORT_SYMBOL_GPL(ata_port_queue_task);
|
|
EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
|
|
EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
|
|
EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
|
|
EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
|
|
EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
|
|
EXPORT_SYMBOL_GPL(ata_host_intr);
|
|
EXPORT_SYMBOL_GPL(sata_scr_valid);
|
|
EXPORT_SYMBOL_GPL(sata_scr_read);
|
|
EXPORT_SYMBOL_GPL(sata_scr_write);
|
|
EXPORT_SYMBOL_GPL(sata_scr_write_flush);
|
|
EXPORT_SYMBOL_GPL(ata_port_online);
|
|
EXPORT_SYMBOL_GPL(ata_port_offline);
|
|
#ifdef CONFIG_PM
|
|
EXPORT_SYMBOL_GPL(ata_host_suspend);
|
|
EXPORT_SYMBOL_GPL(ata_host_resume);
|
|
#endif /* CONFIG_PM */
|
|
EXPORT_SYMBOL_GPL(ata_id_string);
|
|
EXPORT_SYMBOL_GPL(ata_id_c_string);
|
|
EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
|
|
EXPORT_SYMBOL_GPL(ata_device_blacklisted);
|
|
EXPORT_SYMBOL_GPL(ata_scsi_simulate);
|
|
|
|
EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
|
|
EXPORT_SYMBOL_GPL(ata_timing_compute);
|
|
EXPORT_SYMBOL_GPL(ata_timing_merge);
|
|
|
|
#ifdef CONFIG_PCI
|
|
EXPORT_SYMBOL_GPL(pci_test_config_bits);
|
|
EXPORT_SYMBOL_GPL(ata_pci_init_native_host);
|
|
EXPORT_SYMBOL_GPL(ata_pci_prepare_native_host);
|
|
EXPORT_SYMBOL_GPL(ata_pci_init_one);
|
|
EXPORT_SYMBOL_GPL(ata_pci_remove_one);
|
|
#ifdef CONFIG_PM
|
|
EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
|
|
EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
|
|
EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
|
|
EXPORT_SYMBOL_GPL(ata_pci_device_resume);
|
|
#endif /* CONFIG_PM */
|
|
EXPORT_SYMBOL_GPL(ata_pci_default_filter);
|
|
EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
|
|
#endif /* CONFIG_PCI */
|
|
|
|
#ifdef CONFIG_PM
|
|
EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
|
|
EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
|
|
#endif /* CONFIG_PM */
|
|
|
|
EXPORT_SYMBOL_GPL(ata_eng_timeout);
|
|
EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
|
|
EXPORT_SYMBOL_GPL(ata_port_abort);
|
|
EXPORT_SYMBOL_GPL(ata_port_freeze);
|
|
EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
|
|
EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
|
|
EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
|
|
EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
|
|
EXPORT_SYMBOL_GPL(ata_do_eh);
|
|
EXPORT_SYMBOL_GPL(ata_irq_on);
|
|
EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
|
|
EXPORT_SYMBOL_GPL(ata_irq_ack);
|
|
EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
|
|
EXPORT_SYMBOL_GPL(ata_dev_try_classify);
|
|
|
|
EXPORT_SYMBOL_GPL(ata_cable_40wire);
|
|
EXPORT_SYMBOL_GPL(ata_cable_80wire);
|
|
EXPORT_SYMBOL_GPL(ata_cable_unknown);
|
|
EXPORT_SYMBOL_GPL(ata_cable_sata);
|