kernel_optimize_test/drivers/char/hpet.c
Nils Carlson ae21cf9248 hpet: hpet driver periodic timer setup bug fixes
The periodic interrupt from drivers/char/hpet.c does not work correctly,
both when using the periodic capability of the hardware and while
emulating the periodic interrupt (when hardware does not support periodic
mode).

With timers capable of periodic interrupts, the comparator field is first
set with the period value followed by set of hidden accumulator, which has
the side effect of overwriting the comparator value.  This results in
wrong periodicity for the interrupts.  For, periodic interrupts to work,
following steps are necessary, in that order.

* Set config with Tn_VAL_SET_CNF bit

* Write to hidden accumulator, the value written is the time when the
  first interrupt should be generated

* Write compartor with period interval for subsequent interrupts
  (http://www.intel.com/hardwaredesign/hpetspec_1.pdf )

When emulating periodic timer with timers not capable of periodic
interrupt, driver is adding the period to counter value instead of
comparator value, which causes slow drift when using this emulation.

Also, driver seems to add hpetp->hp_delta both while setting up periodic
interrupt and while emulating periodic interrupts with timers not capable
of doing periodic interrupts.  This hp_delta will result in slower than
expected interrupt rate and should not be used while setting the interval.

Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Nils Carlson <nils.carlson@ericsson.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-24 07:21:03 -07:00

1039 lines
22 KiB
C

/*
* Intel & MS High Precision Event Timer Implementation.
*
* Copyright (C) 2003 Intel Corporation
* Venki Pallipadi
* (c) Copyright 2004 Hewlett-Packard Development Company, L.P.
* Bob Picco <robert.picco@hp.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/smp_lock.h>
#include <linux/types.h>
#include <linux/miscdevice.h>
#include <linux/major.h>
#include <linux/ioport.h>
#include <linux/fcntl.h>
#include <linux/init.h>
#include <linux/poll.h>
#include <linux/mm.h>
#include <linux/proc_fs.h>
#include <linux/spinlock.h>
#include <linux/sysctl.h>
#include <linux/wait.h>
#include <linux/bcd.h>
#include <linux/seq_file.h>
#include <linux/bitops.h>
#include <linux/clocksource.h>
#include <asm/current.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/div64.h>
#include <linux/acpi.h>
#include <acpi/acpi_bus.h>
#include <linux/hpet.h>
/*
* The High Precision Event Timer driver.
* This driver is closely modelled after the rtc.c driver.
* http://www.intel.com/hardwaredesign/hpetspec_1.pdf
*/
#define HPET_USER_FREQ (64)
#define HPET_DRIFT (500)
#define HPET_RANGE_SIZE 1024 /* from HPET spec */
/* WARNING -- don't get confused. These macros are never used
* to write the (single) counter, and rarely to read it.
* They're badly named; to fix, someday.
*/
#if BITS_PER_LONG == 64
#define write_counter(V, MC) writeq(V, MC)
#define read_counter(MC) readq(MC)
#else
#define write_counter(V, MC) writel(V, MC)
#define read_counter(MC) readl(MC)
#endif
static u32 hpet_nhpet, hpet_max_freq = HPET_USER_FREQ;
/* This clocksource driver currently only works on ia64 */
#ifdef CONFIG_IA64
static void __iomem *hpet_mctr;
static cycle_t read_hpet(struct clocksource *cs)
{
return (cycle_t)read_counter((void __iomem *)hpet_mctr);
}
static struct clocksource clocksource_hpet = {
.name = "hpet",
.rating = 250,
.read = read_hpet,
.mask = CLOCKSOURCE_MASK(64),
.mult = 0, /* to be calculated */
.shift = 10,
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
static struct clocksource *hpet_clocksource;
#endif
/* A lock for concurrent access by app and isr hpet activity. */
static DEFINE_SPINLOCK(hpet_lock);
#define HPET_DEV_NAME (7)
struct hpet_dev {
struct hpets *hd_hpets;
struct hpet __iomem *hd_hpet;
struct hpet_timer __iomem *hd_timer;
unsigned long hd_ireqfreq;
unsigned long hd_irqdata;
wait_queue_head_t hd_waitqueue;
struct fasync_struct *hd_async_queue;
unsigned int hd_flags;
unsigned int hd_irq;
unsigned int hd_hdwirq;
char hd_name[HPET_DEV_NAME];
};
struct hpets {
struct hpets *hp_next;
struct hpet __iomem *hp_hpet;
unsigned long hp_hpet_phys;
struct clocksource *hp_clocksource;
unsigned long long hp_tick_freq;
unsigned long hp_delta;
unsigned int hp_ntimer;
unsigned int hp_which;
struct hpet_dev hp_dev[1];
};
static struct hpets *hpets;
#define HPET_OPEN 0x0001
#define HPET_IE 0x0002 /* interrupt enabled */
#define HPET_PERIODIC 0x0004
#define HPET_SHARED_IRQ 0x0008
#ifndef readq
static inline unsigned long long readq(void __iomem *addr)
{
return readl(addr) | (((unsigned long long)readl(addr + 4)) << 32LL);
}
#endif
#ifndef writeq
static inline void writeq(unsigned long long v, void __iomem *addr)
{
writel(v & 0xffffffff, addr);
writel(v >> 32, addr + 4);
}
#endif
static irqreturn_t hpet_interrupt(int irq, void *data)
{
struct hpet_dev *devp;
unsigned long isr;
devp = data;
isr = 1 << (devp - devp->hd_hpets->hp_dev);
if ((devp->hd_flags & HPET_SHARED_IRQ) &&
!(isr & readl(&devp->hd_hpet->hpet_isr)))
return IRQ_NONE;
spin_lock(&hpet_lock);
devp->hd_irqdata++;
/*
* For non-periodic timers, increment the accumulator.
* This has the effect of treating non-periodic like periodic.
*/
if ((devp->hd_flags & (HPET_IE | HPET_PERIODIC)) == HPET_IE) {
unsigned long m, t;
t = devp->hd_ireqfreq;
m = read_counter(&devp->hd_timer->hpet_compare);
write_counter(t + m, &devp->hd_timer->hpet_compare);
}
if (devp->hd_flags & HPET_SHARED_IRQ)
writel(isr, &devp->hd_hpet->hpet_isr);
spin_unlock(&hpet_lock);
wake_up_interruptible(&devp->hd_waitqueue);
kill_fasync(&devp->hd_async_queue, SIGIO, POLL_IN);
return IRQ_HANDLED;
}
static void hpet_timer_set_irq(struct hpet_dev *devp)
{
unsigned long v;
int irq, gsi;
struct hpet_timer __iomem *timer;
spin_lock_irq(&hpet_lock);
if (devp->hd_hdwirq) {
spin_unlock_irq(&hpet_lock);
return;
}
timer = devp->hd_timer;
/* we prefer level triggered mode */
v = readl(&timer->hpet_config);
if (!(v & Tn_INT_TYPE_CNF_MASK)) {
v |= Tn_INT_TYPE_CNF_MASK;
writel(v, &timer->hpet_config);
}
spin_unlock_irq(&hpet_lock);
v = (readq(&timer->hpet_config) & Tn_INT_ROUTE_CAP_MASK) >>
Tn_INT_ROUTE_CAP_SHIFT;
/*
* In PIC mode, skip IRQ0-4, IRQ6-9, IRQ12-15 which is always used by
* legacy device. In IO APIC mode, we skip all the legacy IRQS.
*/
if (acpi_irq_model == ACPI_IRQ_MODEL_PIC)
v &= ~0xf3df;
else
v &= ~0xffff;
for (irq = find_first_bit(&v, HPET_MAX_IRQ); irq < HPET_MAX_IRQ;
irq = find_next_bit(&v, HPET_MAX_IRQ, 1 + irq)) {
if (irq >= nr_irqs) {
irq = HPET_MAX_IRQ;
break;
}
gsi = acpi_register_gsi(NULL, irq, ACPI_LEVEL_SENSITIVE,
ACPI_ACTIVE_LOW);
if (gsi > 0)
break;
/* FIXME: Setup interrupt source table */
}
if (irq < HPET_MAX_IRQ) {
spin_lock_irq(&hpet_lock);
v = readl(&timer->hpet_config);
v |= irq << Tn_INT_ROUTE_CNF_SHIFT;
writel(v, &timer->hpet_config);
devp->hd_hdwirq = gsi;
spin_unlock_irq(&hpet_lock);
}
return;
}
static int hpet_open(struct inode *inode, struct file *file)
{
struct hpet_dev *devp;
struct hpets *hpetp;
int i;
if (file->f_mode & FMODE_WRITE)
return -EINVAL;
lock_kernel();
spin_lock_irq(&hpet_lock);
for (devp = NULL, hpetp = hpets; hpetp && !devp; hpetp = hpetp->hp_next)
for (i = 0; i < hpetp->hp_ntimer; i++)
if (hpetp->hp_dev[i].hd_flags & HPET_OPEN)
continue;
else {
devp = &hpetp->hp_dev[i];
break;
}
if (!devp) {
spin_unlock_irq(&hpet_lock);
unlock_kernel();
return -EBUSY;
}
file->private_data = devp;
devp->hd_irqdata = 0;
devp->hd_flags |= HPET_OPEN;
spin_unlock_irq(&hpet_lock);
unlock_kernel();
hpet_timer_set_irq(devp);
return 0;
}
static ssize_t
hpet_read(struct file *file, char __user *buf, size_t count, loff_t * ppos)
{
DECLARE_WAITQUEUE(wait, current);
unsigned long data;
ssize_t retval;
struct hpet_dev *devp;
devp = file->private_data;
if (!devp->hd_ireqfreq)
return -EIO;
if (count < sizeof(unsigned long))
return -EINVAL;
add_wait_queue(&devp->hd_waitqueue, &wait);
for ( ; ; ) {
set_current_state(TASK_INTERRUPTIBLE);
spin_lock_irq(&hpet_lock);
data = devp->hd_irqdata;
devp->hd_irqdata = 0;
spin_unlock_irq(&hpet_lock);
if (data)
break;
else if (file->f_flags & O_NONBLOCK) {
retval = -EAGAIN;
goto out;
} else if (signal_pending(current)) {
retval = -ERESTARTSYS;
goto out;
}
schedule();
}
retval = put_user(data, (unsigned long __user *)buf);
if (!retval)
retval = sizeof(unsigned long);
out:
__set_current_state(TASK_RUNNING);
remove_wait_queue(&devp->hd_waitqueue, &wait);
return retval;
}
static unsigned int hpet_poll(struct file *file, poll_table * wait)
{
unsigned long v;
struct hpet_dev *devp;
devp = file->private_data;
if (!devp->hd_ireqfreq)
return 0;
poll_wait(file, &devp->hd_waitqueue, wait);
spin_lock_irq(&hpet_lock);
v = devp->hd_irqdata;
spin_unlock_irq(&hpet_lock);
if (v != 0)
return POLLIN | POLLRDNORM;
return 0;
}
static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
{
#ifdef CONFIG_HPET_MMAP
struct hpet_dev *devp;
unsigned long addr;
if (((vma->vm_end - vma->vm_start) != PAGE_SIZE) || vma->vm_pgoff)
return -EINVAL;
devp = file->private_data;
addr = devp->hd_hpets->hp_hpet_phys;
if (addr & (PAGE_SIZE - 1))
return -ENOSYS;
vma->vm_flags |= VM_IO;
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
if (io_remap_pfn_range(vma, vma->vm_start, addr >> PAGE_SHIFT,
PAGE_SIZE, vma->vm_page_prot)) {
printk(KERN_ERR "%s: io_remap_pfn_range failed\n",
__func__);
return -EAGAIN;
}
return 0;
#else
return -ENOSYS;
#endif
}
static int hpet_fasync(int fd, struct file *file, int on)
{
struct hpet_dev *devp;
devp = file->private_data;
if (fasync_helper(fd, file, on, &devp->hd_async_queue) >= 0)
return 0;
else
return -EIO;
}
static int hpet_release(struct inode *inode, struct file *file)
{
struct hpet_dev *devp;
struct hpet_timer __iomem *timer;
int irq = 0;
devp = file->private_data;
timer = devp->hd_timer;
spin_lock_irq(&hpet_lock);
writeq((readq(&timer->hpet_config) & ~Tn_INT_ENB_CNF_MASK),
&timer->hpet_config);
irq = devp->hd_irq;
devp->hd_irq = 0;
devp->hd_ireqfreq = 0;
if (devp->hd_flags & HPET_PERIODIC
&& readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
unsigned long v;
v = readq(&timer->hpet_config);
v ^= Tn_TYPE_CNF_MASK;
writeq(v, &timer->hpet_config);
}
devp->hd_flags &= ~(HPET_OPEN | HPET_IE | HPET_PERIODIC);
spin_unlock_irq(&hpet_lock);
if (irq)
free_irq(irq, devp);
file->private_data = NULL;
return 0;
}
static int hpet_ioctl_common(struct hpet_dev *, int, unsigned long, int);
static int
hpet_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
unsigned long arg)
{
struct hpet_dev *devp;
devp = file->private_data;
return hpet_ioctl_common(devp, cmd, arg, 0);
}
static int hpet_ioctl_ieon(struct hpet_dev *devp)
{
struct hpet_timer __iomem *timer;
struct hpet __iomem *hpet;
struct hpets *hpetp;
int irq;
unsigned long g, v, t, m;
unsigned long flags, isr;
timer = devp->hd_timer;
hpet = devp->hd_hpet;
hpetp = devp->hd_hpets;
if (!devp->hd_ireqfreq)
return -EIO;
spin_lock_irq(&hpet_lock);
if (devp->hd_flags & HPET_IE) {
spin_unlock_irq(&hpet_lock);
return -EBUSY;
}
devp->hd_flags |= HPET_IE;
if (readl(&timer->hpet_config) & Tn_INT_TYPE_CNF_MASK)
devp->hd_flags |= HPET_SHARED_IRQ;
spin_unlock_irq(&hpet_lock);
irq = devp->hd_hdwirq;
if (irq) {
unsigned long irq_flags;
sprintf(devp->hd_name, "hpet%d", (int)(devp - hpetp->hp_dev));
irq_flags = devp->hd_flags & HPET_SHARED_IRQ
? IRQF_SHARED : IRQF_DISABLED;
if (request_irq(irq, hpet_interrupt, irq_flags,
devp->hd_name, (void *)devp)) {
printk(KERN_ERR "hpet: IRQ %d is not free\n", irq);
irq = 0;
}
}
if (irq == 0) {
spin_lock_irq(&hpet_lock);
devp->hd_flags ^= HPET_IE;
spin_unlock_irq(&hpet_lock);
return -EIO;
}
devp->hd_irq = irq;
t = devp->hd_ireqfreq;
v = readq(&timer->hpet_config);
/* 64-bit comparators are not yet supported through the ioctls,
* so force this into 32-bit mode if it supports both modes
*/
g = v | Tn_32MODE_CNF_MASK | Tn_INT_ENB_CNF_MASK;
if (devp->hd_flags & HPET_PERIODIC) {
g |= Tn_TYPE_CNF_MASK;
v |= Tn_TYPE_CNF_MASK | Tn_VAL_SET_CNF_MASK;
writeq(v, &timer->hpet_config);
local_irq_save(flags);
/*
* NOTE: First we modify the hidden accumulator
* register supported by periodic-capable comparators.
* We never want to modify the (single) counter; that
* would affect all the comparators. The value written
* is the counter value when the first interrupt is due.
*/
m = read_counter(&hpet->hpet_mc);
write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
/*
* Then we modify the comparator, indicating the period
* for subsequent interrupt.
*/
write_counter(t, &timer->hpet_compare);
} else {
local_irq_save(flags);
m = read_counter(&hpet->hpet_mc);
write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
}
if (devp->hd_flags & HPET_SHARED_IRQ) {
isr = 1 << (devp - devp->hd_hpets->hp_dev);
writel(isr, &hpet->hpet_isr);
}
writeq(g, &timer->hpet_config);
local_irq_restore(flags);
return 0;
}
/* converts Hz to number of timer ticks */
static inline unsigned long hpet_time_div(struct hpets *hpets,
unsigned long dis)
{
unsigned long long m;
m = hpets->hp_tick_freq + (dis >> 1);
do_div(m, dis);
return (unsigned long)m;
}
static int
hpet_ioctl_common(struct hpet_dev *devp, int cmd, unsigned long arg, int kernel)
{
struct hpet_timer __iomem *timer;
struct hpet __iomem *hpet;
struct hpets *hpetp;
int err;
unsigned long v;
switch (cmd) {
case HPET_IE_OFF:
case HPET_INFO:
case HPET_EPI:
case HPET_DPI:
case HPET_IRQFREQ:
timer = devp->hd_timer;
hpet = devp->hd_hpet;
hpetp = devp->hd_hpets;
break;
case HPET_IE_ON:
return hpet_ioctl_ieon(devp);
default:
return -EINVAL;
}
err = 0;
switch (cmd) {
case HPET_IE_OFF:
if ((devp->hd_flags & HPET_IE) == 0)
break;
v = readq(&timer->hpet_config);
v &= ~Tn_INT_ENB_CNF_MASK;
writeq(v, &timer->hpet_config);
if (devp->hd_irq) {
free_irq(devp->hd_irq, devp);
devp->hd_irq = 0;
}
devp->hd_flags ^= HPET_IE;
break;
case HPET_INFO:
{
struct hpet_info info;
if (devp->hd_ireqfreq)
info.hi_ireqfreq =
hpet_time_div(hpetp, devp->hd_ireqfreq);
else
info.hi_ireqfreq = 0;
info.hi_flags =
readq(&timer->hpet_config) & Tn_PER_INT_CAP_MASK;
info.hi_hpet = hpetp->hp_which;
info.hi_timer = devp - hpetp->hp_dev;
if (kernel)
memcpy((void *)arg, &info, sizeof(info));
else
if (copy_to_user((void __user *)arg, &info,
sizeof(info)))
err = -EFAULT;
break;
}
case HPET_EPI:
v = readq(&timer->hpet_config);
if ((v & Tn_PER_INT_CAP_MASK) == 0) {
err = -ENXIO;
break;
}
devp->hd_flags |= HPET_PERIODIC;
break;
case HPET_DPI:
v = readq(&timer->hpet_config);
if ((v & Tn_PER_INT_CAP_MASK) == 0) {
err = -ENXIO;
break;
}
if (devp->hd_flags & HPET_PERIODIC &&
readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
v = readq(&timer->hpet_config);
v ^= Tn_TYPE_CNF_MASK;
writeq(v, &timer->hpet_config);
}
devp->hd_flags &= ~HPET_PERIODIC;
break;
case HPET_IRQFREQ:
if (!kernel && (arg > hpet_max_freq) &&
!capable(CAP_SYS_RESOURCE)) {
err = -EACCES;
break;
}
if (!arg) {
err = -EINVAL;
break;
}
devp->hd_ireqfreq = hpet_time_div(hpetp, arg);
}
return err;
}
static const struct file_operations hpet_fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.read = hpet_read,
.poll = hpet_poll,
.ioctl = hpet_ioctl,
.open = hpet_open,
.release = hpet_release,
.fasync = hpet_fasync,
.mmap = hpet_mmap,
};
static int hpet_is_known(struct hpet_data *hdp)
{
struct hpets *hpetp;
for (hpetp = hpets; hpetp; hpetp = hpetp->hp_next)
if (hpetp->hp_hpet_phys == hdp->hd_phys_address)
return 1;
return 0;
}
static ctl_table hpet_table[] = {
{
.ctl_name = CTL_UNNUMBERED,
.procname = "max-user-freq",
.data = &hpet_max_freq,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &proc_dointvec,
},
{.ctl_name = 0}
};
static ctl_table hpet_root[] = {
{
.ctl_name = CTL_UNNUMBERED,
.procname = "hpet",
.maxlen = 0,
.mode = 0555,
.child = hpet_table,
},
{.ctl_name = 0}
};
static ctl_table dev_root[] = {
{
.ctl_name = CTL_DEV,
.procname = "dev",
.maxlen = 0,
.mode = 0555,
.child = hpet_root,
},
{.ctl_name = 0}
};
static struct ctl_table_header *sysctl_header;
/*
* Adjustment for when arming the timer with
* initial conditions. That is, main counter
* ticks expired before interrupts are enabled.
*/
#define TICK_CALIBRATE (1000UL)
static unsigned long __hpet_calibrate(struct hpets *hpetp)
{
struct hpet_timer __iomem *timer = NULL;
unsigned long t, m, count, i, flags, start;
struct hpet_dev *devp;
int j;
struct hpet __iomem *hpet;
for (j = 0, devp = hpetp->hp_dev; j < hpetp->hp_ntimer; j++, devp++)
if ((devp->hd_flags & HPET_OPEN) == 0) {
timer = devp->hd_timer;
break;
}
if (!timer)
return 0;
hpet = hpetp->hp_hpet;
t = read_counter(&timer->hpet_compare);
i = 0;
count = hpet_time_div(hpetp, TICK_CALIBRATE);
local_irq_save(flags);
start = read_counter(&hpet->hpet_mc);
do {
m = read_counter(&hpet->hpet_mc);
write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
} while (i++, (m - start) < count);
local_irq_restore(flags);
return (m - start) / i;
}
static unsigned long hpet_calibrate(struct hpets *hpetp)
{
unsigned long ret = -1;
unsigned long tmp;
/*
* Try to calibrate until return value becomes stable small value.
* If SMI interruption occurs in calibration loop, the return value
* will be big. This avoids its impact.
*/
for ( ; ; ) {
tmp = __hpet_calibrate(hpetp);
if (ret <= tmp)
break;
ret = tmp;
}
return ret;
}
int hpet_alloc(struct hpet_data *hdp)
{
u64 cap, mcfg;
struct hpet_dev *devp;
u32 i, ntimer;
struct hpets *hpetp;
size_t siz;
struct hpet __iomem *hpet;
static struct hpets *last = NULL;
unsigned long period;
unsigned long long temp;
u32 remainder;
/*
* hpet_alloc can be called by platform dependent code.
* If platform dependent code has allocated the hpet that
* ACPI has also reported, then we catch it here.
*/
if (hpet_is_known(hdp)) {
printk(KERN_DEBUG "%s: duplicate HPET ignored\n",
__func__);
return 0;
}
siz = sizeof(struct hpets) + ((hdp->hd_nirqs - 1) *
sizeof(struct hpet_dev));
hpetp = kzalloc(siz, GFP_KERNEL);
if (!hpetp)
return -ENOMEM;
hpetp->hp_which = hpet_nhpet++;
hpetp->hp_hpet = hdp->hd_address;
hpetp->hp_hpet_phys = hdp->hd_phys_address;
hpetp->hp_ntimer = hdp->hd_nirqs;
for (i = 0; i < hdp->hd_nirqs; i++)
hpetp->hp_dev[i].hd_hdwirq = hdp->hd_irq[i];
hpet = hpetp->hp_hpet;
cap = readq(&hpet->hpet_cap);
ntimer = ((cap & HPET_NUM_TIM_CAP_MASK) >> HPET_NUM_TIM_CAP_SHIFT) + 1;
if (hpetp->hp_ntimer != ntimer) {
printk(KERN_WARNING "hpet: number irqs doesn't agree"
" with number of timers\n");
kfree(hpetp);
return -ENODEV;
}
if (last)
last->hp_next = hpetp;
else
hpets = hpetp;
last = hpetp;
period = (cap & HPET_COUNTER_CLK_PERIOD_MASK) >>
HPET_COUNTER_CLK_PERIOD_SHIFT; /* fs, 10^-15 */
temp = 1000000000000000uLL; /* 10^15 femtoseconds per second */
temp += period >> 1; /* round */
do_div(temp, period);
hpetp->hp_tick_freq = temp; /* ticks per second */
printk(KERN_INFO "hpet%d: at MMIO 0x%lx, IRQ%s",
hpetp->hp_which, hdp->hd_phys_address,
hpetp->hp_ntimer > 1 ? "s" : "");
for (i = 0; i < hpetp->hp_ntimer; i++)
printk("%s %d", i > 0 ? "," : "", hdp->hd_irq[i]);
printk("\n");
temp = hpetp->hp_tick_freq;
remainder = do_div(temp, 1000000);
printk(KERN_INFO
"hpet%u: %u comparators, %d-bit %u.%06u MHz counter\n",
hpetp->hp_which, hpetp->hp_ntimer,
cap & HPET_COUNTER_SIZE_MASK ? 64 : 32,
(unsigned) temp, remainder);
mcfg = readq(&hpet->hpet_config);
if ((mcfg & HPET_ENABLE_CNF_MASK) == 0) {
write_counter(0L, &hpet->hpet_mc);
mcfg |= HPET_ENABLE_CNF_MASK;
writeq(mcfg, &hpet->hpet_config);
}
for (i = 0, devp = hpetp->hp_dev; i < hpetp->hp_ntimer; i++, devp++) {
struct hpet_timer __iomem *timer;
timer = &hpet->hpet_timers[devp - hpetp->hp_dev];
devp->hd_hpets = hpetp;
devp->hd_hpet = hpet;
devp->hd_timer = timer;
/*
* If the timer was reserved by platform code,
* then make timer unavailable for opens.
*/
if (hdp->hd_state & (1 << i)) {
devp->hd_flags = HPET_OPEN;
continue;
}
init_waitqueue_head(&devp->hd_waitqueue);
}
hpetp->hp_delta = hpet_calibrate(hpetp);
/* This clocksource driver currently only works on ia64 */
#ifdef CONFIG_IA64
if (!hpet_clocksource) {
hpet_mctr = (void __iomem *)&hpetp->hp_hpet->hpet_mc;
CLKSRC_FSYS_MMIO_SET(clocksource_hpet.fsys_mmio, hpet_mctr);
clocksource_hpet.mult = clocksource_hz2mult(hpetp->hp_tick_freq,
clocksource_hpet.shift);
clocksource_register(&clocksource_hpet);
hpetp->hp_clocksource = &clocksource_hpet;
hpet_clocksource = &clocksource_hpet;
}
#endif
return 0;
}
static acpi_status hpet_resources(struct acpi_resource *res, void *data)
{
struct hpet_data *hdp;
acpi_status status;
struct acpi_resource_address64 addr;
hdp = data;
status = acpi_resource_to_address64(res, &addr);
if (ACPI_SUCCESS(status)) {
hdp->hd_phys_address = addr.minimum;
hdp->hd_address = ioremap(addr.minimum, addr.address_length);
if (hpet_is_known(hdp)) {
iounmap(hdp->hd_address);
return AE_ALREADY_EXISTS;
}
} else if (res->type == ACPI_RESOURCE_TYPE_FIXED_MEMORY32) {
struct acpi_resource_fixed_memory32 *fixmem32;
fixmem32 = &res->data.fixed_memory32;
if (!fixmem32)
return AE_NO_MEMORY;
hdp->hd_phys_address = fixmem32->address;
hdp->hd_address = ioremap(fixmem32->address,
HPET_RANGE_SIZE);
if (hpet_is_known(hdp)) {
iounmap(hdp->hd_address);
return AE_ALREADY_EXISTS;
}
} else if (res->type == ACPI_RESOURCE_TYPE_EXTENDED_IRQ) {
struct acpi_resource_extended_irq *irqp;
int i, irq;
irqp = &res->data.extended_irq;
for (i = 0; i < irqp->interrupt_count; i++) {
irq = acpi_register_gsi(NULL, irqp->interrupts[i],
irqp->triggering, irqp->polarity);
if (irq < 0)
return AE_ERROR;
hdp->hd_irq[hdp->hd_nirqs] = irq;
hdp->hd_nirqs++;
}
}
return AE_OK;
}
static int hpet_acpi_add(struct acpi_device *device)
{
acpi_status result;
struct hpet_data data;
memset(&data, 0, sizeof(data));
result =
acpi_walk_resources(device->handle, METHOD_NAME__CRS,
hpet_resources, &data);
if (ACPI_FAILURE(result))
return -ENODEV;
if (!data.hd_address || !data.hd_nirqs) {
printk("%s: no address or irqs in _CRS\n", __func__);
return -ENODEV;
}
return hpet_alloc(&data);
}
static int hpet_acpi_remove(struct acpi_device *device, int type)
{
/* XXX need to unregister clocksource, dealloc mem, etc */
return -EINVAL;
}
static const struct acpi_device_id hpet_device_ids[] = {
{"PNP0103", 0},
{"", 0},
};
MODULE_DEVICE_TABLE(acpi, hpet_device_ids);
static struct acpi_driver hpet_acpi_driver = {
.name = "hpet",
.ids = hpet_device_ids,
.ops = {
.add = hpet_acpi_add,
.remove = hpet_acpi_remove,
},
};
static struct miscdevice hpet_misc = { HPET_MINOR, "hpet", &hpet_fops };
static int __init hpet_init(void)
{
int result;
result = misc_register(&hpet_misc);
if (result < 0)
return -ENODEV;
sysctl_header = register_sysctl_table(dev_root);
result = acpi_bus_register_driver(&hpet_acpi_driver);
if (result < 0) {
if (sysctl_header)
unregister_sysctl_table(sysctl_header);
misc_deregister(&hpet_misc);
return result;
}
return 0;
}
static void __exit hpet_exit(void)
{
acpi_bus_unregister_driver(&hpet_acpi_driver);
if (sysctl_header)
unregister_sysctl_table(sysctl_header);
misc_deregister(&hpet_misc);
return;
}
module_init(hpet_init);
module_exit(hpet_exit);
MODULE_AUTHOR("Bob Picco <Robert.Picco@hp.com>");
MODULE_LICENSE("GPL");