kernel_optimize_test/arch/arm/plat-s3c24xx/cpu-freq.c
Kay Sievers edbaa603eb driver-core: remove sysdev.h usage.
The sysdev.h file should not be needed by any in-kernel code, so remove
the .h file from these random files that seem to still want to include
it.

The sysdev code will be going away soon, so this include needs to be
removed no matter what.

Cc: Jiandong Zheng <jdzheng@broadcom.com>
Cc: Scott Branden <sbranden@broadcom.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Kukjin Kim <kgene.kim@samsung.com>
Cc: David Brown <davidb@codeaurora.org>
Cc: Daniel Walker <dwalker@fifo99.com>
Cc: Bryan Huntsman <bryanh@codeaurora.org>
Cc: Ben Dooks <ben-linux@fluff.org>
Cc: Wan ZongShun <mcuos.com@gmail.com>
Cc: Haavard Skinnemoen <hskinnemoen@gmail.com>
Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: "Venkatesh Pallipadi
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Grant Likely <grant.likely@secretlab.ca>
Cc: Richard Purdie <rpurdie@rpsys.net>
Cc: Matthew Garrett <mjg@redhat.com>
Signed-off-by: Kay Sievers <kay.sievers@vrfy.org>
2011-12-21 16:26:03 -08:00

717 lines
17 KiB
C

/* linux/arch/arm/plat-s3c24xx/cpu-freq.c
*
* Copyright (c) 2006-2008 Simtec Electronics
* http://armlinux.simtec.co.uk/
* Ben Dooks <ben@simtec.co.uk>
*
* S3C24XX CPU Frequency scaling
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/cpufreq.h>
#include <linux/cpu.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/device.h>
#include <linux/sysfs.h>
#include <linux/slab.h>
#include <asm/mach/arch.h>
#include <asm/mach/map.h>
#include <plat/cpu.h>
#include <plat/clock.h>
#include <plat/cpu-freq-core.h>
#include <mach/regs-clock.h>
/* note, cpufreq support deals in kHz, no Hz */
static struct cpufreq_driver s3c24xx_driver;
static struct s3c_cpufreq_config cpu_cur;
static struct s3c_iotimings s3c24xx_iotiming;
static struct cpufreq_frequency_table *pll_reg;
static unsigned int last_target = ~0;
static unsigned int ftab_size;
static struct cpufreq_frequency_table *ftab;
static struct clk *_clk_mpll;
static struct clk *_clk_xtal;
static struct clk *clk_fclk;
static struct clk *clk_hclk;
static struct clk *clk_pclk;
static struct clk *clk_arm;
#ifdef CONFIG_CPU_FREQ_S3C24XX_DEBUGFS
struct s3c_cpufreq_config *s3c_cpufreq_getconfig(void)
{
return &cpu_cur;
}
struct s3c_iotimings *s3c_cpufreq_getiotimings(void)
{
return &s3c24xx_iotiming;
}
#endif /* CONFIG_CPU_FREQ_S3C24XX_DEBUGFS */
static void s3c_cpufreq_getcur(struct s3c_cpufreq_config *cfg)
{
unsigned long fclk, pclk, hclk, armclk;
cfg->freq.fclk = fclk = clk_get_rate(clk_fclk);
cfg->freq.hclk = hclk = clk_get_rate(clk_hclk);
cfg->freq.pclk = pclk = clk_get_rate(clk_pclk);
cfg->freq.armclk = armclk = clk_get_rate(clk_arm);
cfg->pll.index = __raw_readl(S3C2410_MPLLCON);
cfg->pll.frequency = fclk;
cfg->freq.hclk_tns = 1000000000 / (cfg->freq.hclk / 10);
cfg->divs.h_divisor = fclk / hclk;
cfg->divs.p_divisor = fclk / pclk;
}
static inline void s3c_cpufreq_calc(struct s3c_cpufreq_config *cfg)
{
unsigned long pll = cfg->pll.frequency;
cfg->freq.fclk = pll;
cfg->freq.hclk = pll / cfg->divs.h_divisor;
cfg->freq.pclk = pll / cfg->divs.p_divisor;
/* convert hclk into 10ths of nanoseconds for io calcs */
cfg->freq.hclk_tns = 1000000000 / (cfg->freq.hclk / 10);
}
static inline int closer(unsigned int target, unsigned int n, unsigned int c)
{
int diff_cur = abs(target - c);
int diff_new = abs(target - n);
return (diff_new < diff_cur);
}
static void s3c_cpufreq_show(const char *pfx,
struct s3c_cpufreq_config *cfg)
{
s3c_freq_dbg("%s: Fvco=%u, F=%lu, A=%lu, H=%lu (%u), P=%lu (%u)\n",
pfx, cfg->pll.frequency, cfg->freq.fclk, cfg->freq.armclk,
cfg->freq.hclk, cfg->divs.h_divisor,
cfg->freq.pclk, cfg->divs.p_divisor);
}
/* functions to wrapper the driver info calls to do the cpu specific work */
static void s3c_cpufreq_setio(struct s3c_cpufreq_config *cfg)
{
if (cfg->info->set_iotiming)
(cfg->info->set_iotiming)(cfg, &s3c24xx_iotiming);
}
static int s3c_cpufreq_calcio(struct s3c_cpufreq_config *cfg)
{
if (cfg->info->calc_iotiming)
return (cfg->info->calc_iotiming)(cfg, &s3c24xx_iotiming);
return 0;
}
static void s3c_cpufreq_setrefresh(struct s3c_cpufreq_config *cfg)
{
(cfg->info->set_refresh)(cfg);
}
static void s3c_cpufreq_setdivs(struct s3c_cpufreq_config *cfg)
{
(cfg->info->set_divs)(cfg);
}
static int s3c_cpufreq_calcdivs(struct s3c_cpufreq_config *cfg)
{
return (cfg->info->calc_divs)(cfg);
}
static void s3c_cpufreq_setfvco(struct s3c_cpufreq_config *cfg)
{
(cfg->info->set_fvco)(cfg);
}
static inline void s3c_cpufreq_resume_clocks(void)
{
cpu_cur.info->resume_clocks();
}
static inline void s3c_cpufreq_updateclk(struct clk *clk,
unsigned int freq)
{
clk_set_rate(clk, freq);
}
static int s3c_cpufreq_settarget(struct cpufreq_policy *policy,
unsigned int target_freq,
struct cpufreq_frequency_table *pll)
{
struct s3c_cpufreq_freqs freqs;
struct s3c_cpufreq_config cpu_new;
unsigned long flags;
cpu_new = cpu_cur; /* copy new from current */
s3c_cpufreq_show("cur", &cpu_cur);
/* TODO - check for DMA currently outstanding */
cpu_new.pll = pll ? *pll : cpu_cur.pll;
if (pll)
freqs.pll_changing = 1;
/* update our frequencies */
cpu_new.freq.armclk = target_freq;
cpu_new.freq.fclk = cpu_new.pll.frequency;
if (s3c_cpufreq_calcdivs(&cpu_new) < 0) {
printk(KERN_ERR "no divisors for %d\n", target_freq);
goto err_notpossible;
}
s3c_freq_dbg("%s: got divs\n", __func__);
s3c_cpufreq_calc(&cpu_new);
s3c_freq_dbg("%s: calculated frequencies for new\n", __func__);
if (cpu_new.freq.hclk != cpu_cur.freq.hclk) {
if (s3c_cpufreq_calcio(&cpu_new) < 0) {
printk(KERN_ERR "%s: no IO timings\n", __func__);
goto err_notpossible;
}
}
s3c_cpufreq_show("new", &cpu_new);
/* setup our cpufreq parameters */
freqs.old = cpu_cur.freq;
freqs.new = cpu_new.freq;
freqs.freqs.cpu = 0;
freqs.freqs.old = cpu_cur.freq.armclk / 1000;
freqs.freqs.new = cpu_new.freq.armclk / 1000;
/* update f/h/p clock settings before we issue the change
* notification, so that drivers do not need to do anything
* special if they want to recalculate on CPUFREQ_PRECHANGE. */
s3c_cpufreq_updateclk(_clk_mpll, cpu_new.pll.frequency);
s3c_cpufreq_updateclk(clk_fclk, cpu_new.freq.fclk);
s3c_cpufreq_updateclk(clk_hclk, cpu_new.freq.hclk);
s3c_cpufreq_updateclk(clk_pclk, cpu_new.freq.pclk);
/* start the frequency change */
if (policy)
cpufreq_notify_transition(&freqs.freqs, CPUFREQ_PRECHANGE);
/* If hclk is staying the same, then we do not need to
* re-write the IO or the refresh timings whilst we are changing
* speed. */
local_irq_save(flags);
/* is our memory clock slowing down? */
if (cpu_new.freq.hclk < cpu_cur.freq.hclk) {
s3c_cpufreq_setrefresh(&cpu_new);
s3c_cpufreq_setio(&cpu_new);
}
if (cpu_new.freq.fclk == cpu_cur.freq.fclk) {
/* not changing PLL, just set the divisors */
s3c_cpufreq_setdivs(&cpu_new);
} else {
if (cpu_new.freq.fclk < cpu_cur.freq.fclk) {
/* slow the cpu down, then set divisors */
s3c_cpufreq_setfvco(&cpu_new);
s3c_cpufreq_setdivs(&cpu_new);
} else {
/* set the divisors, then speed up */
s3c_cpufreq_setdivs(&cpu_new);
s3c_cpufreq_setfvco(&cpu_new);
}
}
/* did our memory clock speed up */
if (cpu_new.freq.hclk > cpu_cur.freq.hclk) {
s3c_cpufreq_setrefresh(&cpu_new);
s3c_cpufreq_setio(&cpu_new);
}
/* update our current settings */
cpu_cur = cpu_new;
local_irq_restore(flags);
/* notify everyone we've done this */
if (policy)
cpufreq_notify_transition(&freqs.freqs, CPUFREQ_POSTCHANGE);
s3c_freq_dbg("%s: finished\n", __func__);
return 0;
err_notpossible:
printk(KERN_ERR "no compatible settings for %d\n", target_freq);
return -EINVAL;
}
/* s3c_cpufreq_target
*
* called by the cpufreq core to adjust the frequency that the CPU
* is currently running at.
*/
static int s3c_cpufreq_target(struct cpufreq_policy *policy,
unsigned int target_freq,
unsigned int relation)
{
struct cpufreq_frequency_table *pll;
unsigned int index;
/* avoid repeated calls which cause a needless amout of duplicated
* logging output (and CPU time as the calculation process is
* done) */
if (target_freq == last_target)
return 0;
last_target = target_freq;
s3c_freq_dbg("%s: policy %p, target %u, relation %u\n",
__func__, policy, target_freq, relation);
if (ftab) {
if (cpufreq_frequency_table_target(policy, ftab,
target_freq, relation,
&index)) {
s3c_freq_dbg("%s: table failed\n", __func__);
return -EINVAL;
}
s3c_freq_dbg("%s: adjust %d to entry %d (%u)\n", __func__,
target_freq, index, ftab[index].frequency);
target_freq = ftab[index].frequency;
}
target_freq *= 1000; /* convert target to Hz */
/* find the settings for our new frequency */
if (!pll_reg || cpu_cur.lock_pll) {
/* either we've not got any PLL values, or we've locked
* to the current one. */
pll = NULL;
} else {
struct cpufreq_policy tmp_policy;
int ret;
/* we keep the cpu pll table in Hz, to ensure we get an
* accurate value for the PLL output. */
tmp_policy.min = policy->min * 1000;
tmp_policy.max = policy->max * 1000;
tmp_policy.cpu = policy->cpu;
/* cpufreq_frequency_table_target uses a pointer to 'index'
* which is the number of the table entry, not the value of
* the table entry's index field. */
ret = cpufreq_frequency_table_target(&tmp_policy, pll_reg,
target_freq, relation,
&index);
if (ret < 0) {
printk(KERN_ERR "%s: no PLL available\n", __func__);
goto err_notpossible;
}
pll = pll_reg + index;
s3c_freq_dbg("%s: target %u => %u\n",
__func__, target_freq, pll->frequency);
target_freq = pll->frequency;
}
return s3c_cpufreq_settarget(policy, target_freq, pll);
err_notpossible:
printk(KERN_ERR "no compatible settings for %d\n", target_freq);
return -EINVAL;
}
static unsigned int s3c_cpufreq_get(unsigned int cpu)
{
return clk_get_rate(clk_arm) / 1000;
}
struct clk *s3c_cpufreq_clk_get(struct device *dev, const char *name)
{
struct clk *clk;
clk = clk_get(dev, name);
if (IS_ERR(clk))
printk(KERN_ERR "cpufreq: failed to get clock '%s'\n", name);
return clk;
}
static int s3c_cpufreq_init(struct cpufreq_policy *policy)
{
printk(KERN_INFO "%s: initialising policy %p\n", __func__, policy);
if (policy->cpu != 0)
return -EINVAL;
policy->cur = s3c_cpufreq_get(0);
policy->min = policy->cpuinfo.min_freq = 0;
policy->max = policy->cpuinfo.max_freq = cpu_cur.info->max.fclk / 1000;
policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
/* feed the latency information from the cpu driver */
policy->cpuinfo.transition_latency = cpu_cur.info->latency;
if (ftab)
cpufreq_frequency_table_cpuinfo(policy, ftab);
return 0;
}
static __init int s3c_cpufreq_initclks(void)
{
_clk_mpll = s3c_cpufreq_clk_get(NULL, "mpll");
_clk_xtal = s3c_cpufreq_clk_get(NULL, "xtal");
clk_fclk = s3c_cpufreq_clk_get(NULL, "fclk");
clk_hclk = s3c_cpufreq_clk_get(NULL, "hclk");
clk_pclk = s3c_cpufreq_clk_get(NULL, "pclk");
clk_arm = s3c_cpufreq_clk_get(NULL, "armclk");
if (IS_ERR(clk_fclk) || IS_ERR(clk_hclk) || IS_ERR(clk_pclk) ||
IS_ERR(_clk_mpll) || IS_ERR(clk_arm) || IS_ERR(_clk_xtal)) {
printk(KERN_ERR "%s: could not get clock(s)\n", __func__);
return -ENOENT;
}
printk(KERN_INFO "%s: clocks f=%lu,h=%lu,p=%lu,a=%lu\n", __func__,
clk_get_rate(clk_fclk) / 1000,
clk_get_rate(clk_hclk) / 1000,
clk_get_rate(clk_pclk) / 1000,
clk_get_rate(clk_arm) / 1000);
return 0;
}
static int s3c_cpufreq_verify(struct cpufreq_policy *policy)
{
if (policy->cpu != 0)
return -EINVAL;
return 0;
}
#ifdef CONFIG_PM
static struct cpufreq_frequency_table suspend_pll;
static unsigned int suspend_freq;
static int s3c_cpufreq_suspend(struct cpufreq_policy *policy)
{
suspend_pll.frequency = clk_get_rate(_clk_mpll);
suspend_pll.index = __raw_readl(S3C2410_MPLLCON);
suspend_freq = s3c_cpufreq_get(0) * 1000;
return 0;
}
static int s3c_cpufreq_resume(struct cpufreq_policy *policy)
{
int ret;
s3c_freq_dbg("%s: resuming with policy %p\n", __func__, policy);
last_target = ~0; /* invalidate last_target setting */
/* first, find out what speed we resumed at. */
s3c_cpufreq_resume_clocks();
/* whilst we will be called later on, we try and re-set the
* cpu frequencies as soon as possible so that we do not end
* up resuming devices and then immediately having to re-set
* a number of settings once these devices have restarted.
*
* as a note, it is expected devices are not used until they
* have been un-suspended and at that time they should have
* used the updated clock settings.
*/
ret = s3c_cpufreq_settarget(NULL, suspend_freq, &suspend_pll);
if (ret) {
printk(KERN_ERR "%s: failed to reset pll/freq\n", __func__);
return ret;
}
return 0;
}
#else
#define s3c_cpufreq_resume NULL
#define s3c_cpufreq_suspend NULL
#endif
static struct cpufreq_driver s3c24xx_driver = {
.flags = CPUFREQ_STICKY,
.verify = s3c_cpufreq_verify,
.target = s3c_cpufreq_target,
.get = s3c_cpufreq_get,
.init = s3c_cpufreq_init,
.suspend = s3c_cpufreq_suspend,
.resume = s3c_cpufreq_resume,
.name = "s3c24xx",
};
int __init s3c_cpufreq_register(struct s3c_cpufreq_info *info)
{
if (!info || !info->name) {
printk(KERN_ERR "%s: failed to pass valid information\n",
__func__);
return -EINVAL;
}
printk(KERN_INFO "S3C24XX CPU Frequency driver, %s cpu support\n",
info->name);
/* check our driver info has valid data */
BUG_ON(info->set_refresh == NULL);
BUG_ON(info->set_divs == NULL);
BUG_ON(info->calc_divs == NULL);
/* info->set_fvco is optional, depending on whether there
* is a need to set the clock code. */
cpu_cur.info = info;
/* Note, driver registering should probably update locktime */
return 0;
}
int __init s3c_cpufreq_setboard(struct s3c_cpufreq_board *board)
{
struct s3c_cpufreq_board *ours;
if (!board) {
printk(KERN_INFO "%s: no board data\n", __func__);
return -EINVAL;
}
/* Copy the board information so that each board can make this
* initdata. */
ours = kzalloc(sizeof(struct s3c_cpufreq_board), GFP_KERNEL);
if (ours == NULL) {
printk(KERN_ERR "%s: no memory\n", __func__);
return -ENOMEM;
}
*ours = *board;
cpu_cur.board = ours;
return 0;
}
int __init s3c_cpufreq_auto_io(void)
{
int ret;
if (!cpu_cur.info->get_iotiming) {
printk(KERN_ERR "%s: get_iotiming undefined\n", __func__);
return -ENOENT;
}
printk(KERN_INFO "%s: working out IO settings\n", __func__);
ret = (cpu_cur.info->get_iotiming)(&cpu_cur, &s3c24xx_iotiming);
if (ret)
printk(KERN_ERR "%s: failed to get timings\n", __func__);
return ret;
}
/* if one or is zero, then return the other, otherwise return the min */
#define do_min(_a, _b) ((_a) == 0 ? (_b) : (_b) == 0 ? (_a) : min(_a, _b))
/**
* s3c_cpufreq_freq_min - find the minimum settings for the given freq.
* @dst: The destination structure
* @a: One argument.
* @b: The other argument.
*
* Create a minimum of each frequency entry in the 'struct s3c_freq',
* unless the entry is zero when it is ignored and the non-zero argument
* used.
*/
static void s3c_cpufreq_freq_min(struct s3c_freq *dst,
struct s3c_freq *a, struct s3c_freq *b)
{
dst->fclk = do_min(a->fclk, b->fclk);
dst->hclk = do_min(a->hclk, b->hclk);
dst->pclk = do_min(a->pclk, b->pclk);
dst->armclk = do_min(a->armclk, b->armclk);
}
static inline u32 calc_locktime(u32 freq, u32 time_us)
{
u32 result;
result = freq * time_us;
result = DIV_ROUND_UP(result, 1000 * 1000);
return result;
}
static void s3c_cpufreq_update_loctkime(void)
{
unsigned int bits = cpu_cur.info->locktime_bits;
u32 rate = (u32)clk_get_rate(_clk_xtal);
u32 val;
if (bits == 0) {
WARN_ON(1);
return;
}
val = calc_locktime(rate, cpu_cur.info->locktime_u) << bits;
val |= calc_locktime(rate, cpu_cur.info->locktime_m);
printk(KERN_INFO "%s: new locktime is 0x%08x\n", __func__, val);
__raw_writel(val, S3C2410_LOCKTIME);
}
static int s3c_cpufreq_build_freq(void)
{
int size, ret;
if (!cpu_cur.info->calc_freqtable)
return -EINVAL;
kfree(ftab);
ftab = NULL;
size = cpu_cur.info->calc_freqtable(&cpu_cur, NULL, 0);
size++;
ftab = kmalloc(sizeof(struct cpufreq_frequency_table) * size, GFP_KERNEL);
if (!ftab) {
printk(KERN_ERR "%s: no memory for tables\n", __func__);
return -ENOMEM;
}
ftab_size = size;
ret = cpu_cur.info->calc_freqtable(&cpu_cur, ftab, size);
s3c_cpufreq_addfreq(ftab, ret, size, CPUFREQ_TABLE_END);
return 0;
}
static int __init s3c_cpufreq_initcall(void)
{
int ret = 0;
if (cpu_cur.info && cpu_cur.board) {
ret = s3c_cpufreq_initclks();
if (ret)
goto out;
/* get current settings */
s3c_cpufreq_getcur(&cpu_cur);
s3c_cpufreq_show("cur", &cpu_cur);
if (cpu_cur.board->auto_io) {
ret = s3c_cpufreq_auto_io();
if (ret) {
printk(KERN_ERR "%s: failed to get io timing\n",
__func__);
goto out;
}
}
if (cpu_cur.board->need_io && !cpu_cur.info->set_iotiming) {
printk(KERN_ERR "%s: no IO support registered\n",
__func__);
ret = -EINVAL;
goto out;
}
if (!cpu_cur.info->need_pll)
cpu_cur.lock_pll = 1;
s3c_cpufreq_update_loctkime();
s3c_cpufreq_freq_min(&cpu_cur.max, &cpu_cur.board->max,
&cpu_cur.info->max);
if (cpu_cur.info->calc_freqtable)
s3c_cpufreq_build_freq();
ret = cpufreq_register_driver(&s3c24xx_driver);
}
out:
return ret;
}
late_initcall(s3c_cpufreq_initcall);
/**
* s3c_plltab_register - register CPU PLL table.
* @plls: The list of PLL entries.
* @plls_no: The size of the PLL entries @plls.
*
* Register the given set of PLLs with the system.
*/
int __init s3c_plltab_register(struct cpufreq_frequency_table *plls,
unsigned int plls_no)
{
struct cpufreq_frequency_table *vals;
unsigned int size;
size = sizeof(struct cpufreq_frequency_table) * (plls_no + 1);
vals = kmalloc(size, GFP_KERNEL);
if (vals) {
memcpy(vals, plls, size);
pll_reg = vals;
/* write a terminating entry, we don't store it in the
* table that is stored in the kernel */
vals += plls_no;
vals->frequency = CPUFREQ_TABLE_END;
printk(KERN_INFO "cpufreq: %d PLL entries\n", plls_no);
} else
printk(KERN_ERR "cpufreq: no memory for PLL tables\n");
return vals ? 0 : -ENOMEM;
}