kernel_optimize_test/drivers/scsi/sun_esp.c
David S. Miller 334ae61477 sparc: Kill SBUS DVMA layer.
This thing was completely pointless.

Just find the OF device in the parent of drivers that want to program
this device, and map the DMA regs inside such drivers too.

This also moves the dummy claim_dma_lock() and release_dma_lock()
implementation to floppy_32.h, which makes it handle this issue
just like floppy_64.h does.

Signed-off-by: David S. Miller <davem@davemloft.net>
2008-08-29 02:13:10 -07:00

653 lines
14 KiB
C

/* sun_esp.c: ESP front-end for Sparc SBUS systems.
*
* Copyright (C) 2007, 2008 David S. Miller (davem@davemloft.net)
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/dma.h>
#include <asm/sbus.h>
#include <scsi/scsi_host.h>
#include "esp_scsi.h"
#define DRV_MODULE_NAME "sun_esp"
#define PFX DRV_MODULE_NAME ": "
#define DRV_VERSION "1.000"
#define DRV_MODULE_RELDATE "April 19, 2007"
#define dma_read32(REG) \
sbus_readl(esp->dma_regs + (REG))
#define dma_write32(VAL, REG) \
sbus_writel((VAL), esp->dma_regs + (REG))
/* DVMA chip revisions */
enum dvma_rev {
dvmarev0,
dvmaesc1,
dvmarev1,
dvmarev2,
dvmarev3,
dvmarevplus,
dvmahme
};
static int __devinit esp_sbus_setup_dma(struct esp *esp,
struct of_device *dma_of)
{
esp->dma = dma_of;
esp->dma_regs = of_ioremap(&dma_of->resource[0], 0,
resource_size(&dma_of->resource[0]),
"espdma");
if (!esp->dma_regs)
return -ENOMEM;
switch (dma_read32(DMA_CSR) & DMA_DEVICE_ID) {
case DMA_VERS0:
esp->dmarev = dvmarev0;
break;
case DMA_ESCV1:
esp->dmarev = dvmaesc1;
break;
case DMA_VERS1:
esp->dmarev = dvmarev1;
break;
case DMA_VERS2:
esp->dmarev = dvmarev2;
break;
case DMA_VERHME:
esp->dmarev = dvmahme;
break;
case DMA_VERSPLUS:
esp->dmarev = dvmarevplus;
break;
}
return 0;
}
static int __devinit esp_sbus_map_regs(struct esp *esp, int hme)
{
struct sbus_dev *sdev = esp->dev;
struct resource *res;
/* On HME, two reg sets exist, first is DVMA,
* second is ESP registers.
*/
if (hme)
res = &sdev->resource[1];
else
res = &sdev->resource[0];
esp->regs = sbus_ioremap(res, 0, SBUS_ESP_REG_SIZE, "ESP");
if (!esp->regs)
return -ENOMEM;
return 0;
}
static int __devinit esp_sbus_map_command_block(struct esp *esp)
{
struct sbus_dev *sdev = esp->dev;
esp->command_block = sbus_alloc_consistent(sdev, 16,
&esp->command_block_dma);
if (!esp->command_block)
return -ENOMEM;
return 0;
}
static int __devinit esp_sbus_register_irq(struct esp *esp)
{
struct Scsi_Host *host = esp->host;
struct sbus_dev *sdev = esp->dev;
host->irq = sdev->irqs[0];
return request_irq(host->irq, scsi_esp_intr, IRQF_SHARED, "ESP", esp);
}
static void __devinit esp_get_scsi_id(struct esp *esp)
{
struct sbus_dev *sdev = esp->dev;
struct device_node *dp = sdev->ofdev.node;
esp->scsi_id = of_getintprop_default(dp, "initiator-id", 0xff);
if (esp->scsi_id != 0xff)
goto done;
esp->scsi_id = of_getintprop_default(dp, "scsi-initiator-id", 0xff);
if (esp->scsi_id != 0xff)
goto done;
if (!sdev->bus) {
/* SUN4 */
esp->scsi_id = 7;
goto done;
}
esp->scsi_id = of_getintprop_default(sdev->bus->ofdev.node,
"scsi-initiator-id", 7);
done:
esp->host->this_id = esp->scsi_id;
esp->scsi_id_mask = (1 << esp->scsi_id);
}
static void __devinit esp_get_differential(struct esp *esp)
{
struct sbus_dev *sdev = esp->dev;
struct device_node *dp = sdev->ofdev.node;
if (of_find_property(dp, "differential", NULL))
esp->flags |= ESP_FLAG_DIFFERENTIAL;
else
esp->flags &= ~ESP_FLAG_DIFFERENTIAL;
}
static void __devinit esp_get_clock_params(struct esp *esp)
{
struct sbus_dev *sdev = esp->dev;
struct device_node *dp = sdev->ofdev.node;
struct device_node *bus_dp;
int fmhz;
bus_dp = NULL;
if (sdev != NULL && sdev->bus != NULL)
bus_dp = sdev->bus->ofdev.node;
fmhz = of_getintprop_default(dp, "clock-frequency", 0);
if (fmhz == 0)
fmhz = (!bus_dp) ? 0 :
of_getintprop_default(bus_dp, "clock-frequency", 0);
esp->cfreq = fmhz;
}
static void __devinit esp_get_bursts(struct esp *esp, struct of_device *dma_of)
{
struct device_node *dma_dp = dma_of->node;
struct sbus_dev *sdev = esp->dev;
struct device_node *dp;
u8 bursts, val;
dp = sdev->ofdev.node;
bursts = of_getintprop_default(dp, "burst-sizes", 0xff);
val = of_getintprop_default(dma_dp, "burst-sizes", 0xff);
if (val != 0xff)
bursts &= val;
if (sdev->bus) {
u8 val = of_getintprop_default(sdev->bus->ofdev.node,
"burst-sizes", 0xff);
if (val != 0xff)
bursts &= val;
}
if (bursts == 0xff ||
(bursts & DMA_BURST16) == 0 ||
(bursts & DMA_BURST32) == 0)
bursts = (DMA_BURST32 - 1);
esp->bursts = bursts;
}
static void __devinit esp_sbus_get_props(struct esp *esp, struct of_device *espdma)
{
esp_get_scsi_id(esp);
esp_get_differential(esp);
esp_get_clock_params(esp);
esp_get_bursts(esp, espdma);
}
static void sbus_esp_write8(struct esp *esp, u8 val, unsigned long reg)
{
sbus_writeb(val, esp->regs + (reg * 4UL));
}
static u8 sbus_esp_read8(struct esp *esp, unsigned long reg)
{
return sbus_readb(esp->regs + (reg * 4UL));
}
static dma_addr_t sbus_esp_map_single(struct esp *esp, void *buf,
size_t sz, int dir)
{
return sbus_map_single(esp->dev, buf, sz, dir);
}
static int sbus_esp_map_sg(struct esp *esp, struct scatterlist *sg,
int num_sg, int dir)
{
return sbus_map_sg(esp->dev, sg, num_sg, dir);
}
static void sbus_esp_unmap_single(struct esp *esp, dma_addr_t addr,
size_t sz, int dir)
{
sbus_unmap_single(esp->dev, addr, sz, dir);
}
static void sbus_esp_unmap_sg(struct esp *esp, struct scatterlist *sg,
int num_sg, int dir)
{
sbus_unmap_sg(esp->dev, sg, num_sg, dir);
}
static int sbus_esp_irq_pending(struct esp *esp)
{
if (dma_read32(DMA_CSR) & (DMA_HNDL_INTR | DMA_HNDL_ERROR))
return 1;
return 0;
}
static void sbus_esp_reset_dma(struct esp *esp)
{
int can_do_burst16, can_do_burst32, can_do_burst64;
int can_do_sbus64, lim;
u32 val;
can_do_burst16 = (esp->bursts & DMA_BURST16) != 0;
can_do_burst32 = (esp->bursts & DMA_BURST32) != 0;
can_do_burst64 = 0;
can_do_sbus64 = 0;
if (sbus_can_dma_64bit(esp->dev))
can_do_sbus64 = 1;
if (sbus_can_burst64(esp->sdev))
can_do_burst64 = (esp->bursts & DMA_BURST64) != 0;
/* Put the DVMA into a known state. */
if (esp->dmarev != dvmahme) {
val = dma_read32(DMA_CSR);
dma_write32(val | DMA_RST_SCSI, DMA_CSR);
dma_write32(val & ~DMA_RST_SCSI, DMA_CSR);
}
switch (esp->dmarev) {
case dvmahme:
dma_write32(DMA_RESET_FAS366, DMA_CSR);
dma_write32(DMA_RST_SCSI, DMA_CSR);
esp->prev_hme_dmacsr = (DMA_PARITY_OFF | DMA_2CLKS |
DMA_SCSI_DISAB | DMA_INT_ENAB);
esp->prev_hme_dmacsr &= ~(DMA_ENABLE | DMA_ST_WRITE |
DMA_BRST_SZ);
if (can_do_burst64)
esp->prev_hme_dmacsr |= DMA_BRST64;
else if (can_do_burst32)
esp->prev_hme_dmacsr |= DMA_BRST32;
if (can_do_sbus64) {
esp->prev_hme_dmacsr |= DMA_SCSI_SBUS64;
sbus_set_sbus64(esp->dev, esp->bursts);
}
lim = 1000;
while (dma_read32(DMA_CSR) & DMA_PEND_READ) {
if (--lim == 0) {
printk(KERN_ALERT PFX "esp%d: DMA_PEND_READ "
"will not clear!\n",
esp->host->unique_id);
break;
}
udelay(1);
}
dma_write32(0, DMA_CSR);
dma_write32(esp->prev_hme_dmacsr, DMA_CSR);
dma_write32(0, DMA_ADDR);
break;
case dvmarev2:
if (esp->rev != ESP100) {
val = dma_read32(DMA_CSR);
dma_write32(val | DMA_3CLKS, DMA_CSR);
}
break;
case dvmarev3:
val = dma_read32(DMA_CSR);
val &= ~DMA_3CLKS;
val |= DMA_2CLKS;
if (can_do_burst32) {
val &= ~DMA_BRST_SZ;
val |= DMA_BRST32;
}
dma_write32(val, DMA_CSR);
break;
case dvmaesc1:
val = dma_read32(DMA_CSR);
val |= DMA_ADD_ENABLE;
val &= ~DMA_BCNT_ENAB;
if (!can_do_burst32 && can_do_burst16) {
val |= DMA_ESC_BURST;
} else {
val &= ~(DMA_ESC_BURST);
}
dma_write32(val, DMA_CSR);
break;
default:
break;
}
/* Enable interrupts. */
val = dma_read32(DMA_CSR);
dma_write32(val | DMA_INT_ENAB, DMA_CSR);
}
static void sbus_esp_dma_drain(struct esp *esp)
{
u32 csr;
int lim;
if (esp->dmarev == dvmahme)
return;
csr = dma_read32(DMA_CSR);
if (!(csr & DMA_FIFO_ISDRAIN))
return;
if (esp->dmarev != dvmarev3 && esp->dmarev != dvmaesc1)
dma_write32(csr | DMA_FIFO_STDRAIN, DMA_CSR);
lim = 1000;
while (dma_read32(DMA_CSR) & DMA_FIFO_ISDRAIN) {
if (--lim == 0) {
printk(KERN_ALERT PFX "esp%d: DMA will not drain!\n",
esp->host->unique_id);
break;
}
udelay(1);
}
}
static void sbus_esp_dma_invalidate(struct esp *esp)
{
if (esp->dmarev == dvmahme) {
dma_write32(DMA_RST_SCSI, DMA_CSR);
esp->prev_hme_dmacsr = ((esp->prev_hme_dmacsr |
(DMA_PARITY_OFF | DMA_2CLKS |
DMA_SCSI_DISAB | DMA_INT_ENAB)) &
~(DMA_ST_WRITE | DMA_ENABLE));
dma_write32(0, DMA_CSR);
dma_write32(esp->prev_hme_dmacsr, DMA_CSR);
/* This is necessary to avoid having the SCSI channel
* engine lock up on us.
*/
dma_write32(0, DMA_ADDR);
} else {
u32 val;
int lim;
lim = 1000;
while ((val = dma_read32(DMA_CSR)) & DMA_PEND_READ) {
if (--lim == 0) {
printk(KERN_ALERT PFX "esp%d: DMA will not "
"invalidate!\n", esp->host->unique_id);
break;
}
udelay(1);
}
val &= ~(DMA_ENABLE | DMA_ST_WRITE | DMA_BCNT_ENAB);
val |= DMA_FIFO_INV;
dma_write32(val, DMA_CSR);
val &= ~DMA_FIFO_INV;
dma_write32(val, DMA_CSR);
}
}
static void sbus_esp_send_dma_cmd(struct esp *esp, u32 addr, u32 esp_count,
u32 dma_count, int write, u8 cmd)
{
u32 csr;
BUG_ON(!(cmd & ESP_CMD_DMA));
sbus_esp_write8(esp, (esp_count >> 0) & 0xff, ESP_TCLOW);
sbus_esp_write8(esp, (esp_count >> 8) & 0xff, ESP_TCMED);
if (esp->rev == FASHME) {
sbus_esp_write8(esp, (esp_count >> 16) & 0xff, FAS_RLO);
sbus_esp_write8(esp, 0, FAS_RHI);
scsi_esp_cmd(esp, cmd);
csr = esp->prev_hme_dmacsr;
csr |= DMA_SCSI_DISAB | DMA_ENABLE;
if (write)
csr |= DMA_ST_WRITE;
else
csr &= ~DMA_ST_WRITE;
esp->prev_hme_dmacsr = csr;
dma_write32(dma_count, DMA_COUNT);
dma_write32(addr, DMA_ADDR);
dma_write32(csr, DMA_CSR);
} else {
csr = dma_read32(DMA_CSR);
csr |= DMA_ENABLE;
if (write)
csr |= DMA_ST_WRITE;
else
csr &= ~DMA_ST_WRITE;
dma_write32(csr, DMA_CSR);
if (esp->dmarev == dvmaesc1) {
u32 end = PAGE_ALIGN(addr + dma_count + 16U);
dma_write32(end - addr, DMA_COUNT);
}
dma_write32(addr, DMA_ADDR);
scsi_esp_cmd(esp, cmd);
}
}
static int sbus_esp_dma_error(struct esp *esp)
{
u32 csr = dma_read32(DMA_CSR);
if (csr & DMA_HNDL_ERROR)
return 1;
return 0;
}
static const struct esp_driver_ops sbus_esp_ops = {
.esp_write8 = sbus_esp_write8,
.esp_read8 = sbus_esp_read8,
.map_single = sbus_esp_map_single,
.map_sg = sbus_esp_map_sg,
.unmap_single = sbus_esp_unmap_single,
.unmap_sg = sbus_esp_unmap_sg,
.irq_pending = sbus_esp_irq_pending,
.reset_dma = sbus_esp_reset_dma,
.dma_drain = sbus_esp_dma_drain,
.dma_invalidate = sbus_esp_dma_invalidate,
.send_dma_cmd = sbus_esp_send_dma_cmd,
.dma_error = sbus_esp_dma_error,
};
static int __devinit esp_sbus_probe_one(struct device *dev,
struct sbus_dev *esp_dev,
struct of_device *espdma,
struct sbus_bus *sbus,
int hme)
{
struct scsi_host_template *tpnt = &scsi_esp_template;
struct Scsi_Host *host;
struct esp *esp;
int err;
host = scsi_host_alloc(tpnt, sizeof(struct esp));
err = -ENOMEM;
if (!host)
goto fail;
host->max_id = (hme ? 16 : 8);
esp = shost_priv(host);
esp->host = host;
esp->dev = esp_dev;
esp->ops = &sbus_esp_ops;
if (hme)
esp->flags |= ESP_FLAG_WIDE_CAPABLE;
err = esp_sbus_setup_dma(esp, espdma);
if (err < 0)
goto fail_unlink;
err = esp_sbus_map_regs(esp, hme);
if (err < 0)
goto fail_unlink;
err = esp_sbus_map_command_block(esp);
if (err < 0)
goto fail_unmap_regs;
err = esp_sbus_register_irq(esp);
if (err < 0)
goto fail_unmap_command_block;
esp_sbus_get_props(esp, espdma);
/* Before we try to touch the ESP chip, ESC1 dma can
* come up with the reset bit set, so make sure that
* is clear first.
*/
if (esp->dmarev == dvmaesc1) {
u32 val = dma_read32(DMA_CSR);
dma_write32(val & ~DMA_RST_SCSI, DMA_CSR);
}
dev_set_drvdata(&esp_dev->ofdev.dev, esp);
err = scsi_esp_register(esp, dev);
if (err)
goto fail_free_irq;
return 0;
fail_free_irq:
free_irq(host->irq, esp);
fail_unmap_command_block:
sbus_free_consistent(esp->dev, 16,
esp->command_block,
esp->command_block_dma);
fail_unmap_regs:
sbus_iounmap(esp->regs, SBUS_ESP_REG_SIZE);
fail_unlink:
scsi_host_put(host);
fail:
return err;
}
static int __devinit esp_sbus_probe(struct of_device *dev, const struct of_device_id *match)
{
struct sbus_dev *sdev = to_sbus_device(&dev->dev);
struct device_node *dma_node = NULL;
struct device_node *dp = dev->node;
struct of_device *dma_of = NULL;
int hme = 0;
if (dp->parent &&
(!strcmp(dp->parent->name, "espdma") ||
!strcmp(dp->parent->name, "dma")))
dma_node = dp->parent;
else if (!strcmp(dp->name, "SUNW,fas")) {
dma_node = sdev->ofdev.node;
hme = 1;
}
if (dma_node)
dma_of = of_find_device_by_node(dma_node);
if (!dma_of)
return -ENODEV;
return esp_sbus_probe_one(&dev->dev, sdev, dma_of,
sdev->bus, hme);
}
static int __devexit esp_sbus_remove(struct of_device *dev)
{
struct esp *esp = dev_get_drvdata(&dev->dev);
struct of_device *dma_of = esp->dma;
unsigned int irq = esp->host->irq;
u32 val;
scsi_esp_unregister(esp);
/* Disable interrupts. */
val = dma_read32(DMA_CSR);
dma_write32(val & ~DMA_INT_ENAB, DMA_CSR);
free_irq(irq, esp);
sbus_free_consistent(esp->dev, 16,
esp->command_block,
esp->command_block_dma);
sbus_iounmap(esp->regs, SBUS_ESP_REG_SIZE);
of_iounmap(&dma_of->resource[0], esp->dma_regs,
resource_size(&dma_of->resource[0]));
scsi_host_put(esp->host);
return 0;
}
static struct of_device_id esp_match[] = {
{
.name = "SUNW,esp",
},
{
.name = "SUNW,fas",
},
{
.name = "esp",
},
{},
};
MODULE_DEVICE_TABLE(of, esp_match);
static struct of_platform_driver esp_sbus_driver = {
.name = "esp",
.match_table = esp_match,
.probe = esp_sbus_probe,
.remove = __devexit_p(esp_sbus_remove),
};
static int __init sunesp_init(void)
{
return of_register_driver(&esp_sbus_driver, &sbus_bus_type);
}
static void __exit sunesp_exit(void)
{
of_unregister_driver(&esp_sbus_driver);
}
MODULE_DESCRIPTION("Sun ESP SCSI driver");
MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
module_init(sunesp_init);
module_exit(sunesp_exit);