kernel_optimize_test/net/ipv6/addrconf.c
Brian Haley 56d417b12e IPv6: Add 'autoconf' and 'disable_ipv6' module parameters
Add 'autoconf' and 'disable_ipv6' parameters to the IPv6 module.

The first controls if IPv6 addresses are autoconfigured from
prefixes received in Router Advertisements.  The IPv6 loopback
(::1) and link-local addresses are still configured.

The second controls if IPv6 addresses are desired at all.  No
IPv6 addresses will be added to any interfaces.

Signed-off-by: Brian Haley <brian.haley@hp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-06-01 03:07:33 -07:00

4594 lines
110 KiB
C

/*
* IPv6 Address [auto]configuration
* Linux INET6 implementation
*
* Authors:
* Pedro Roque <roque@di.fc.ul.pt>
* Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
/*
* Changes:
*
* Janos Farkas : delete timer on ifdown
* <chexum@bankinf.banki.hu>
* Andi Kleen : kill double kfree on module
* unload.
* Maciej W. Rozycki : FDDI support
* sekiya@USAGI : Don't send too many RS
* packets.
* yoshfuji@USAGI : Fixed interval between DAD
* packets.
* YOSHIFUJI Hideaki @USAGI : improved accuracy of
* address validation timer.
* YOSHIFUJI Hideaki @USAGI : Privacy Extensions (RFC3041)
* support.
* Yuji SEKIYA @USAGI : Don't assign a same IPv6
* address on a same interface.
* YOSHIFUJI Hideaki @USAGI : ARCnet support
* YOSHIFUJI Hideaki @USAGI : convert /proc/net/if_inet6 to
* seq_file.
* YOSHIFUJI Hideaki @USAGI : improved source address
* selection; consider scope,
* status etc.
*/
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/net.h>
#include <linux/in6.h>
#include <linux/netdevice.h>
#include <linux/if_addr.h>
#include <linux/if_arp.h>
#include <linux/if_arcnet.h>
#include <linux/if_infiniband.h>
#include <linux/route.h>
#include <linux/inetdevice.h>
#include <linux/init.h>
#ifdef CONFIG_SYSCTL
#include <linux/sysctl.h>
#endif
#include <linux/capability.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/string.h>
#include <net/net_namespace.h>
#include <net/sock.h>
#include <net/snmp.h>
#include <net/ipv6.h>
#include <net/protocol.h>
#include <net/ndisc.h>
#include <net/ip6_route.h>
#include <net/addrconf.h>
#include <net/tcp.h>
#include <net/ip.h>
#include <net/netlink.h>
#include <net/pkt_sched.h>
#include <linux/if_tunnel.h>
#include <linux/rtnetlink.h>
#ifdef CONFIG_IPV6_PRIVACY
#include <linux/random.h>
#endif
#include <asm/uaccess.h>
#include <asm/unaligned.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
/* Set to 3 to get tracing... */
#define ACONF_DEBUG 2
#if ACONF_DEBUG >= 3
#define ADBG(x) printk x
#else
#define ADBG(x)
#endif
#define INFINITY_LIFE_TIME 0xFFFFFFFF
#define TIME_DELTA(a,b) ((unsigned long)((long)(a) - (long)(b)))
#ifdef CONFIG_SYSCTL
static void addrconf_sysctl_register(struct inet6_dev *idev);
static void addrconf_sysctl_unregister(struct inet6_dev *idev);
#else
static inline void addrconf_sysctl_register(struct inet6_dev *idev)
{
}
static inline void addrconf_sysctl_unregister(struct inet6_dev *idev)
{
}
#endif
#ifdef CONFIG_IPV6_PRIVACY
static int __ipv6_regen_rndid(struct inet6_dev *idev);
static int __ipv6_try_regen_rndid(struct inet6_dev *idev, struct in6_addr *tmpaddr);
static void ipv6_regen_rndid(unsigned long data);
static int desync_factor = MAX_DESYNC_FACTOR * HZ;
#endif
static int ipv6_generate_eui64(u8 *eui, struct net_device *dev);
static int ipv6_count_addresses(struct inet6_dev *idev);
/*
* Configured unicast address hash table
*/
static struct inet6_ifaddr *inet6_addr_lst[IN6_ADDR_HSIZE];
static DEFINE_RWLOCK(addrconf_hash_lock);
static void addrconf_verify(unsigned long);
static DEFINE_TIMER(addr_chk_timer, addrconf_verify, 0, 0);
static DEFINE_SPINLOCK(addrconf_verify_lock);
static void addrconf_join_anycast(struct inet6_ifaddr *ifp);
static void addrconf_leave_anycast(struct inet6_ifaddr *ifp);
static int addrconf_ifdown(struct net_device *dev, int how);
static void addrconf_dad_start(struct inet6_ifaddr *ifp, u32 flags);
static void addrconf_dad_timer(unsigned long data);
static void addrconf_dad_completed(struct inet6_ifaddr *ifp);
static void addrconf_dad_run(struct inet6_dev *idev);
static void addrconf_rs_timer(unsigned long data);
static void __ipv6_ifa_notify(int event, struct inet6_ifaddr *ifa);
static void ipv6_ifa_notify(int event, struct inet6_ifaddr *ifa);
static void inet6_prefix_notify(int event, struct inet6_dev *idev,
struct prefix_info *pinfo);
static int ipv6_chk_same_addr(struct net *net, const struct in6_addr *addr,
struct net_device *dev);
static ATOMIC_NOTIFIER_HEAD(inet6addr_chain);
static struct ipv6_devconf ipv6_devconf __read_mostly = {
.forwarding = 0,
.hop_limit = IPV6_DEFAULT_HOPLIMIT,
.mtu6 = IPV6_MIN_MTU,
.accept_ra = 1,
.accept_redirects = 1,
.autoconf = 1,
.force_mld_version = 0,
.dad_transmits = 1,
.rtr_solicits = MAX_RTR_SOLICITATIONS,
.rtr_solicit_interval = RTR_SOLICITATION_INTERVAL,
.rtr_solicit_delay = MAX_RTR_SOLICITATION_DELAY,
#ifdef CONFIG_IPV6_PRIVACY
.use_tempaddr = 0,
.temp_valid_lft = TEMP_VALID_LIFETIME,
.temp_prefered_lft = TEMP_PREFERRED_LIFETIME,
.regen_max_retry = REGEN_MAX_RETRY,
.max_desync_factor = MAX_DESYNC_FACTOR,
#endif
.max_addresses = IPV6_MAX_ADDRESSES,
.accept_ra_defrtr = 1,
.accept_ra_pinfo = 1,
#ifdef CONFIG_IPV6_ROUTER_PREF
.accept_ra_rtr_pref = 1,
.rtr_probe_interval = 60 * HZ,
#ifdef CONFIG_IPV6_ROUTE_INFO
.accept_ra_rt_info_max_plen = 0,
#endif
#endif
.proxy_ndp = 0,
.accept_source_route = 0, /* we do not accept RH0 by default. */
.disable_ipv6 = 0,
.accept_dad = 1,
};
static struct ipv6_devconf ipv6_devconf_dflt __read_mostly = {
.forwarding = 0,
.hop_limit = IPV6_DEFAULT_HOPLIMIT,
.mtu6 = IPV6_MIN_MTU,
.accept_ra = 1,
.accept_redirects = 1,
.autoconf = 1,
.dad_transmits = 1,
.rtr_solicits = MAX_RTR_SOLICITATIONS,
.rtr_solicit_interval = RTR_SOLICITATION_INTERVAL,
.rtr_solicit_delay = MAX_RTR_SOLICITATION_DELAY,
#ifdef CONFIG_IPV6_PRIVACY
.use_tempaddr = 0,
.temp_valid_lft = TEMP_VALID_LIFETIME,
.temp_prefered_lft = TEMP_PREFERRED_LIFETIME,
.regen_max_retry = REGEN_MAX_RETRY,
.max_desync_factor = MAX_DESYNC_FACTOR,
#endif
.max_addresses = IPV6_MAX_ADDRESSES,
.accept_ra_defrtr = 1,
.accept_ra_pinfo = 1,
#ifdef CONFIG_IPV6_ROUTER_PREF
.accept_ra_rtr_pref = 1,
.rtr_probe_interval = 60 * HZ,
#ifdef CONFIG_IPV6_ROUTE_INFO
.accept_ra_rt_info_max_plen = 0,
#endif
#endif
.proxy_ndp = 0,
.accept_source_route = 0, /* we do not accept RH0 by default. */
.disable_ipv6 = 0,
.accept_dad = 1,
};
/* IPv6 Wildcard Address and Loopback Address defined by RFC2553 */
const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT;
const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT;
const struct in6_addr in6addr_linklocal_allnodes = IN6ADDR_LINKLOCAL_ALLNODES_INIT;
const struct in6_addr in6addr_linklocal_allrouters = IN6ADDR_LINKLOCAL_ALLROUTERS_INIT;
/* Check if a valid qdisc is available */
static inline bool addrconf_qdisc_ok(const struct net_device *dev)
{
return !qdisc_tx_is_noop(dev);
}
/* Check if a route is valid prefix route */
static inline int addrconf_is_prefix_route(const struct rt6_info *rt)
{
return ((rt->rt6i_flags & (RTF_GATEWAY | RTF_DEFAULT)) == 0);
}
static void addrconf_del_timer(struct inet6_ifaddr *ifp)
{
if (del_timer(&ifp->timer))
__in6_ifa_put(ifp);
}
enum addrconf_timer_t
{
AC_NONE,
AC_DAD,
AC_RS,
};
static void addrconf_mod_timer(struct inet6_ifaddr *ifp,
enum addrconf_timer_t what,
unsigned long when)
{
if (!del_timer(&ifp->timer))
in6_ifa_hold(ifp);
switch (what) {
case AC_DAD:
ifp->timer.function = addrconf_dad_timer;
break;
case AC_RS:
ifp->timer.function = addrconf_rs_timer;
break;
default:;
}
ifp->timer.expires = jiffies + when;
add_timer(&ifp->timer);
}
static int snmp6_alloc_dev(struct inet6_dev *idev)
{
if (snmp_mib_init((void **)idev->stats.ipv6,
sizeof(struct ipstats_mib)) < 0)
goto err_ip;
if (snmp_mib_init((void **)idev->stats.icmpv6,
sizeof(struct icmpv6_mib)) < 0)
goto err_icmp;
if (snmp_mib_init((void **)idev->stats.icmpv6msg,
sizeof(struct icmpv6msg_mib)) < 0)
goto err_icmpmsg;
return 0;
err_icmpmsg:
snmp_mib_free((void **)idev->stats.icmpv6);
err_icmp:
snmp_mib_free((void **)idev->stats.ipv6);
err_ip:
return -ENOMEM;
}
static void snmp6_free_dev(struct inet6_dev *idev)
{
snmp_mib_free((void **)idev->stats.icmpv6msg);
snmp_mib_free((void **)idev->stats.icmpv6);
snmp_mib_free((void **)idev->stats.ipv6);
}
/* Nobody refers to this device, we may destroy it. */
static void in6_dev_finish_destroy_rcu(struct rcu_head *head)
{
struct inet6_dev *idev = container_of(head, struct inet6_dev, rcu);
kfree(idev);
}
void in6_dev_finish_destroy(struct inet6_dev *idev)
{
struct net_device *dev = idev->dev;
WARN_ON(idev->addr_list != NULL);
WARN_ON(idev->mc_list != NULL);
#ifdef NET_REFCNT_DEBUG
printk(KERN_DEBUG "in6_dev_finish_destroy: %s\n", dev ? dev->name : "NIL");
#endif
dev_put(dev);
if (!idev->dead) {
printk("Freeing alive inet6 device %p\n", idev);
return;
}
snmp6_free_dev(idev);
call_rcu(&idev->rcu, in6_dev_finish_destroy_rcu);
}
EXPORT_SYMBOL(in6_dev_finish_destroy);
static struct inet6_dev * ipv6_add_dev(struct net_device *dev)
{
struct inet6_dev *ndev;
ASSERT_RTNL();
if (dev->mtu < IPV6_MIN_MTU)
return NULL;
ndev = kzalloc(sizeof(struct inet6_dev), GFP_KERNEL);
if (ndev == NULL)
return NULL;
rwlock_init(&ndev->lock);
ndev->dev = dev;
memcpy(&ndev->cnf, dev_net(dev)->ipv6.devconf_dflt, sizeof(ndev->cnf));
ndev->cnf.mtu6 = dev->mtu;
ndev->cnf.sysctl = NULL;
ndev->nd_parms = neigh_parms_alloc(dev, &nd_tbl);
if (ndev->nd_parms == NULL) {
kfree(ndev);
return NULL;
}
if (ndev->cnf.forwarding)
dev_disable_lro(dev);
/* We refer to the device */
dev_hold(dev);
if (snmp6_alloc_dev(ndev) < 0) {
ADBG((KERN_WARNING
"%s(): cannot allocate memory for statistics; dev=%s.\n",
__func__, dev->name));
neigh_parms_release(&nd_tbl, ndev->nd_parms);
ndev->dead = 1;
in6_dev_finish_destroy(ndev);
return NULL;
}
if (snmp6_register_dev(ndev) < 0) {
ADBG((KERN_WARNING
"%s(): cannot create /proc/net/dev_snmp6/%s\n",
__func__, dev->name));
neigh_parms_release(&nd_tbl, ndev->nd_parms);
ndev->dead = 1;
in6_dev_finish_destroy(ndev);
return NULL;
}
/* One reference from device. We must do this before
* we invoke __ipv6_regen_rndid().
*/
in6_dev_hold(ndev);
if (dev->flags & (IFF_NOARP | IFF_LOOPBACK))
ndev->cnf.accept_dad = -1;
#if defined(CONFIG_IPV6_SIT) || defined(CONFIG_IPV6_SIT_MODULE)
if (dev->type == ARPHRD_SIT && (dev->priv_flags & IFF_ISATAP)) {
printk(KERN_INFO
"%s: Disabled Multicast RS\n",
dev->name);
ndev->cnf.rtr_solicits = 0;
}
#endif
#ifdef CONFIG_IPV6_PRIVACY
setup_timer(&ndev->regen_timer, ipv6_regen_rndid, (unsigned long)ndev);
if ((dev->flags&IFF_LOOPBACK) ||
dev->type == ARPHRD_TUNNEL ||
dev->type == ARPHRD_TUNNEL6 ||
dev->type == ARPHRD_SIT ||
dev->type == ARPHRD_NONE) {
printk(KERN_INFO
"%s: Disabled Privacy Extensions\n",
dev->name);
ndev->cnf.use_tempaddr = -1;
} else {
in6_dev_hold(ndev);
ipv6_regen_rndid((unsigned long) ndev);
}
#endif
if (netif_running(dev) && addrconf_qdisc_ok(dev))
ndev->if_flags |= IF_READY;
ipv6_mc_init_dev(ndev);
ndev->tstamp = jiffies;
addrconf_sysctl_register(ndev);
/* protected by rtnl_lock */
rcu_assign_pointer(dev->ip6_ptr, ndev);
/* Join all-node multicast group */
ipv6_dev_mc_inc(dev, &in6addr_linklocal_allnodes);
return ndev;
}
static struct inet6_dev * ipv6_find_idev(struct net_device *dev)
{
struct inet6_dev *idev;
ASSERT_RTNL();
if ((idev = __in6_dev_get(dev)) == NULL) {
if ((idev = ipv6_add_dev(dev)) == NULL)
return NULL;
}
if (dev->flags&IFF_UP)
ipv6_mc_up(idev);
return idev;
}
#ifdef CONFIG_SYSCTL
static void dev_forward_change(struct inet6_dev *idev)
{
struct net_device *dev;
struct inet6_ifaddr *ifa;
if (!idev)
return;
dev = idev->dev;
if (idev->cnf.forwarding)
dev_disable_lro(dev);
if (dev && (dev->flags & IFF_MULTICAST)) {
if (idev->cnf.forwarding)
ipv6_dev_mc_inc(dev, &in6addr_linklocal_allrouters);
else
ipv6_dev_mc_dec(dev, &in6addr_linklocal_allrouters);
}
for (ifa=idev->addr_list; ifa; ifa=ifa->if_next) {
if (ifa->flags&IFA_F_TENTATIVE)
continue;
if (idev->cnf.forwarding)
addrconf_join_anycast(ifa);
else
addrconf_leave_anycast(ifa);
}
}
static void addrconf_forward_change(struct net *net, __s32 newf)
{
struct net_device *dev;
struct inet6_dev *idev;
read_lock(&dev_base_lock);
for_each_netdev(net, dev) {
rcu_read_lock();
idev = __in6_dev_get(dev);
if (idev) {
int changed = (!idev->cnf.forwarding) ^ (!newf);
idev->cnf.forwarding = newf;
if (changed)
dev_forward_change(idev);
}
rcu_read_unlock();
}
read_unlock(&dev_base_lock);
}
static int addrconf_fixup_forwarding(struct ctl_table *table, int *p, int old)
{
struct net *net;
net = (struct net *)table->extra2;
if (p == &net->ipv6.devconf_dflt->forwarding)
return 0;
if (!rtnl_trylock())
return restart_syscall();
if (p == &net->ipv6.devconf_all->forwarding) {
__s32 newf = net->ipv6.devconf_all->forwarding;
net->ipv6.devconf_dflt->forwarding = newf;
addrconf_forward_change(net, newf);
} else if ((!*p) ^ (!old))
dev_forward_change((struct inet6_dev *)table->extra1);
rtnl_unlock();
if (*p)
rt6_purge_dflt_routers(net);
return 1;
}
#endif
/* Nobody refers to this ifaddr, destroy it */
void inet6_ifa_finish_destroy(struct inet6_ifaddr *ifp)
{
WARN_ON(ifp->if_next != NULL);
WARN_ON(ifp->lst_next != NULL);
#ifdef NET_REFCNT_DEBUG
printk(KERN_DEBUG "inet6_ifa_finish_destroy\n");
#endif
in6_dev_put(ifp->idev);
if (del_timer(&ifp->timer))
printk("Timer is still running, when freeing ifa=%p\n", ifp);
if (!ifp->dead) {
printk("Freeing alive inet6 address %p\n", ifp);
return;
}
dst_release(&ifp->rt->u.dst);
kfree(ifp);
}
static void
ipv6_link_dev_addr(struct inet6_dev *idev, struct inet6_ifaddr *ifp)
{
struct inet6_ifaddr *ifa, **ifap;
int ifp_scope = ipv6_addr_src_scope(&ifp->addr);
/*
* Each device address list is sorted in order of scope -
* global before linklocal.
*/
for (ifap = &idev->addr_list; (ifa = *ifap) != NULL;
ifap = &ifa->if_next) {
if (ifp_scope >= ipv6_addr_src_scope(&ifa->addr))
break;
}
ifp->if_next = *ifap;
*ifap = ifp;
}
/*
* Hash function taken from net_alias.c
*/
static u8 ipv6_addr_hash(const struct in6_addr *addr)
{
__u32 word;
/*
* We perform the hash function over the last 64 bits of the address
* This will include the IEEE address token on links that support it.
*/
word = (__force u32)(addr->s6_addr32[2] ^ addr->s6_addr32[3]);
word ^= (word >> 16);
word ^= (word >> 8);
return ((word ^ (word >> 4)) & 0x0f);
}
/* On success it returns ifp with increased reference count */
static struct inet6_ifaddr *
ipv6_add_addr(struct inet6_dev *idev, const struct in6_addr *addr, int pfxlen,
int scope, u32 flags)
{
struct inet6_ifaddr *ifa = NULL;
struct rt6_info *rt;
int hash;
int err = 0;
int addr_type = ipv6_addr_type(addr);
if (addr_type == IPV6_ADDR_ANY ||
addr_type & IPV6_ADDR_MULTICAST ||
(!(idev->dev->flags & IFF_LOOPBACK) &&
addr_type & IPV6_ADDR_LOOPBACK))
return ERR_PTR(-EADDRNOTAVAIL);
rcu_read_lock_bh();
if (idev->dead) {
err = -ENODEV; /*XXX*/
goto out2;
}
if (idev->cnf.disable_ipv6) {
err = -EACCES;
goto out2;
}
write_lock(&addrconf_hash_lock);
/* Ignore adding duplicate addresses on an interface */
if (ipv6_chk_same_addr(dev_net(idev->dev), addr, idev->dev)) {
ADBG(("ipv6_add_addr: already assigned\n"));
err = -EEXIST;
goto out;
}
ifa = kzalloc(sizeof(struct inet6_ifaddr), GFP_ATOMIC);
if (ifa == NULL) {
ADBG(("ipv6_add_addr: malloc failed\n"));
err = -ENOBUFS;
goto out;
}
rt = addrconf_dst_alloc(idev, addr, 0);
if (IS_ERR(rt)) {
err = PTR_ERR(rt);
goto out;
}
ipv6_addr_copy(&ifa->addr, addr);
spin_lock_init(&ifa->lock);
init_timer(&ifa->timer);
ifa->timer.data = (unsigned long) ifa;
ifa->scope = scope;
ifa->prefix_len = pfxlen;
ifa->flags = flags | IFA_F_TENTATIVE;
ifa->cstamp = ifa->tstamp = jiffies;
ifa->rt = rt;
/*
* part one of RFC 4429, section 3.3
* We should not configure an address as
* optimistic if we do not yet know the link
* layer address of our nexhop router
*/
if (rt->rt6i_nexthop == NULL)
ifa->flags &= ~IFA_F_OPTIMISTIC;
ifa->idev = idev;
in6_dev_hold(idev);
/* For caller */
in6_ifa_hold(ifa);
/* Add to big hash table */
hash = ipv6_addr_hash(addr);
ifa->lst_next = inet6_addr_lst[hash];
inet6_addr_lst[hash] = ifa;
in6_ifa_hold(ifa);
write_unlock(&addrconf_hash_lock);
write_lock(&idev->lock);
/* Add to inet6_dev unicast addr list. */
ipv6_link_dev_addr(idev, ifa);
#ifdef CONFIG_IPV6_PRIVACY
if (ifa->flags&IFA_F_TEMPORARY) {
ifa->tmp_next = idev->tempaddr_list;
idev->tempaddr_list = ifa;
in6_ifa_hold(ifa);
}
#endif
in6_ifa_hold(ifa);
write_unlock(&idev->lock);
out2:
rcu_read_unlock_bh();
if (likely(err == 0))
atomic_notifier_call_chain(&inet6addr_chain, NETDEV_UP, ifa);
else {
kfree(ifa);
ifa = ERR_PTR(err);
}
return ifa;
out:
write_unlock(&addrconf_hash_lock);
goto out2;
}
/* This function wants to get referenced ifp and releases it before return */
static void ipv6_del_addr(struct inet6_ifaddr *ifp)
{
struct inet6_ifaddr *ifa, **ifap;
struct inet6_dev *idev = ifp->idev;
int hash;
int deleted = 0, onlink = 0;
unsigned long expires = jiffies;
hash = ipv6_addr_hash(&ifp->addr);
ifp->dead = 1;
write_lock_bh(&addrconf_hash_lock);
for (ifap = &inet6_addr_lst[hash]; (ifa=*ifap) != NULL;
ifap = &ifa->lst_next) {
if (ifa == ifp) {
*ifap = ifa->lst_next;
__in6_ifa_put(ifp);
ifa->lst_next = NULL;
break;
}
}
write_unlock_bh(&addrconf_hash_lock);
write_lock_bh(&idev->lock);
#ifdef CONFIG_IPV6_PRIVACY
if (ifp->flags&IFA_F_TEMPORARY) {
for (ifap = &idev->tempaddr_list; (ifa=*ifap) != NULL;
ifap = &ifa->tmp_next) {
if (ifa == ifp) {
*ifap = ifa->tmp_next;
if (ifp->ifpub) {
in6_ifa_put(ifp->ifpub);
ifp->ifpub = NULL;
}
__in6_ifa_put(ifp);
ifa->tmp_next = NULL;
break;
}
}
}
#endif
for (ifap = &idev->addr_list; (ifa=*ifap) != NULL;) {
if (ifa == ifp) {
*ifap = ifa->if_next;
__in6_ifa_put(ifp);
ifa->if_next = NULL;
if (!(ifp->flags & IFA_F_PERMANENT) || onlink > 0)
break;
deleted = 1;
continue;
} else if (ifp->flags & IFA_F_PERMANENT) {
if (ipv6_prefix_equal(&ifa->addr, &ifp->addr,
ifp->prefix_len)) {
if (ifa->flags & IFA_F_PERMANENT) {
onlink = 1;
if (deleted)
break;
} else {
unsigned long lifetime;
if (!onlink)
onlink = -1;
spin_lock(&ifa->lock);
lifetime = addrconf_timeout_fixup(ifa->valid_lft, HZ);
/*
* Note: Because this address is
* not permanent, lifetime <
* LONG_MAX / HZ here.
*/
if (time_before(expires,
ifa->tstamp + lifetime * HZ))
expires = ifa->tstamp + lifetime * HZ;
spin_unlock(&ifa->lock);
}
}
}
ifap = &ifa->if_next;
}
write_unlock_bh(&idev->lock);
addrconf_del_timer(ifp);
ipv6_ifa_notify(RTM_DELADDR, ifp);
atomic_notifier_call_chain(&inet6addr_chain, NETDEV_DOWN, ifp);
/*
* Purge or update corresponding prefix
*
* 1) we don't purge prefix here if address was not permanent.
* prefix is managed by its own lifetime.
* 2) if there're no addresses, delete prefix.
* 3) if there're still other permanent address(es),
* corresponding prefix is still permanent.
* 4) otherwise, update prefix lifetime to the
* longest valid lifetime among the corresponding
* addresses on the device.
* Note: subsequent RA will update lifetime.
*
* --yoshfuji
*/
if ((ifp->flags & IFA_F_PERMANENT) && onlink < 1) {
struct in6_addr prefix;
struct rt6_info *rt;
struct net *net = dev_net(ifp->idev->dev);
ipv6_addr_prefix(&prefix, &ifp->addr, ifp->prefix_len);
rt = rt6_lookup(net, &prefix, NULL, ifp->idev->dev->ifindex, 1);
if (rt && addrconf_is_prefix_route(rt)) {
if (onlink == 0) {
ip6_del_rt(rt);
rt = NULL;
} else if (!(rt->rt6i_flags & RTF_EXPIRES)) {
rt->rt6i_expires = expires;
rt->rt6i_flags |= RTF_EXPIRES;
}
}
dst_release(&rt->u.dst);
}
in6_ifa_put(ifp);
}
#ifdef CONFIG_IPV6_PRIVACY
static int ipv6_create_tempaddr(struct inet6_ifaddr *ifp, struct inet6_ifaddr *ift)
{
struct inet6_dev *idev = ifp->idev;
struct in6_addr addr, *tmpaddr;
unsigned long tmp_prefered_lft, tmp_valid_lft, tmp_cstamp, tmp_tstamp;
unsigned long regen_advance;
int tmp_plen;
int ret = 0;
int max_addresses;
u32 addr_flags;
write_lock(&idev->lock);
if (ift) {
spin_lock_bh(&ift->lock);
memcpy(&addr.s6_addr[8], &ift->addr.s6_addr[8], 8);
spin_unlock_bh(&ift->lock);
tmpaddr = &addr;
} else {
tmpaddr = NULL;
}
retry:
in6_dev_hold(idev);
if (idev->cnf.use_tempaddr <= 0) {
write_unlock(&idev->lock);
printk(KERN_INFO
"ipv6_create_tempaddr(): use_tempaddr is disabled.\n");
in6_dev_put(idev);
ret = -1;
goto out;
}
spin_lock_bh(&ifp->lock);
if (ifp->regen_count++ >= idev->cnf.regen_max_retry) {
idev->cnf.use_tempaddr = -1; /*XXX*/
spin_unlock_bh(&ifp->lock);
write_unlock(&idev->lock);
printk(KERN_WARNING
"ipv6_create_tempaddr(): regeneration time exceeded. disabled temporary address support.\n");
in6_dev_put(idev);
ret = -1;
goto out;
}
in6_ifa_hold(ifp);
memcpy(addr.s6_addr, ifp->addr.s6_addr, 8);
if (__ipv6_try_regen_rndid(idev, tmpaddr) < 0) {
spin_unlock_bh(&ifp->lock);
write_unlock(&idev->lock);
printk(KERN_WARNING
"ipv6_create_tempaddr(): regeneration of randomized interface id failed.\n");
in6_ifa_put(ifp);
in6_dev_put(idev);
ret = -1;
goto out;
}
memcpy(&addr.s6_addr[8], idev->rndid, 8);
tmp_valid_lft = min_t(__u32,
ifp->valid_lft,
idev->cnf.temp_valid_lft);
tmp_prefered_lft = min_t(__u32,
ifp->prefered_lft,
idev->cnf.temp_prefered_lft - desync_factor / HZ);
tmp_plen = ifp->prefix_len;
max_addresses = idev->cnf.max_addresses;
tmp_cstamp = ifp->cstamp;
tmp_tstamp = ifp->tstamp;
spin_unlock_bh(&ifp->lock);
regen_advance = idev->cnf.regen_max_retry *
idev->cnf.dad_transmits *
idev->nd_parms->retrans_time / HZ;
write_unlock(&idev->lock);
/* A temporary address is created only if this calculated Preferred
* Lifetime is greater than REGEN_ADVANCE time units. In particular,
* an implementation must not create a temporary address with a zero
* Preferred Lifetime.
*/
if (tmp_prefered_lft <= regen_advance) {
in6_ifa_put(ifp);
in6_dev_put(idev);
ret = -1;
goto out;
}
addr_flags = IFA_F_TEMPORARY;
/* set in addrconf_prefix_rcv() */
if (ifp->flags & IFA_F_OPTIMISTIC)
addr_flags |= IFA_F_OPTIMISTIC;
ift = !max_addresses ||
ipv6_count_addresses(idev) < max_addresses ?
ipv6_add_addr(idev, &addr, tmp_plen,
ipv6_addr_type(&addr)&IPV6_ADDR_SCOPE_MASK,
addr_flags) : NULL;
if (!ift || IS_ERR(ift)) {
in6_ifa_put(ifp);
in6_dev_put(idev);
printk(KERN_INFO
"ipv6_create_tempaddr(): retry temporary address regeneration.\n");
tmpaddr = &addr;
write_lock(&idev->lock);
goto retry;
}
spin_lock_bh(&ift->lock);
ift->ifpub = ifp;
ift->valid_lft = tmp_valid_lft;
ift->prefered_lft = tmp_prefered_lft;
ift->cstamp = tmp_cstamp;
ift->tstamp = tmp_tstamp;
spin_unlock_bh(&ift->lock);
addrconf_dad_start(ift, 0);
in6_ifa_put(ift);
in6_dev_put(idev);
out:
return ret;
}
#endif
/*
* Choose an appropriate source address (RFC3484)
*/
enum {
IPV6_SADDR_RULE_INIT = 0,
IPV6_SADDR_RULE_LOCAL,
IPV6_SADDR_RULE_SCOPE,
IPV6_SADDR_RULE_PREFERRED,
#ifdef CONFIG_IPV6_MIP6
IPV6_SADDR_RULE_HOA,
#endif
IPV6_SADDR_RULE_OIF,
IPV6_SADDR_RULE_LABEL,
#ifdef CONFIG_IPV6_PRIVACY
IPV6_SADDR_RULE_PRIVACY,
#endif
IPV6_SADDR_RULE_ORCHID,
IPV6_SADDR_RULE_PREFIX,
IPV6_SADDR_RULE_MAX
};
struct ipv6_saddr_score {
int rule;
int addr_type;
struct inet6_ifaddr *ifa;
DECLARE_BITMAP(scorebits, IPV6_SADDR_RULE_MAX);
int scopedist;
int matchlen;
};
struct ipv6_saddr_dst {
const struct in6_addr *addr;
int ifindex;
int scope;
int label;
unsigned int prefs;
};
static inline int ipv6_saddr_preferred(int type)
{
if (type & (IPV6_ADDR_MAPPED|IPV6_ADDR_COMPATv4|
IPV6_ADDR_LOOPBACK|IPV6_ADDR_RESERVED))
return 1;
return 0;
}
static int ipv6_get_saddr_eval(struct net *net,
struct ipv6_saddr_score *score,
struct ipv6_saddr_dst *dst,
int i)
{
int ret;
if (i <= score->rule) {
switch (i) {
case IPV6_SADDR_RULE_SCOPE:
ret = score->scopedist;
break;
case IPV6_SADDR_RULE_PREFIX:
ret = score->matchlen;
break;
default:
ret = !!test_bit(i, score->scorebits);
}
goto out;
}
switch (i) {
case IPV6_SADDR_RULE_INIT:
/* Rule 0: remember if hiscore is not ready yet */
ret = !!score->ifa;
break;
case IPV6_SADDR_RULE_LOCAL:
/* Rule 1: Prefer same address */
ret = ipv6_addr_equal(&score->ifa->addr, dst->addr);
break;
case IPV6_SADDR_RULE_SCOPE:
/* Rule 2: Prefer appropriate scope
*
* ret
* ^
* -1 | d 15
* ---+--+-+---> scope
* |
* | d is scope of the destination.
* B-d | \
* | \ <- smaller scope is better if
* B-15 | \ if scope is enough for destinaion.
* | ret = B - scope (-1 <= scope >= d <= 15).
* d-C-1 | /
* |/ <- greater is better
* -C / if scope is not enough for destination.
* /| ret = scope - C (-1 <= d < scope <= 15).
*
* d - C - 1 < B -15 (for all -1 <= d <= 15).
* C > d + 14 - B >= 15 + 14 - B = 29 - B.
* Assume B = 0 and we get C > 29.
*/
ret = __ipv6_addr_src_scope(score->addr_type);
if (ret >= dst->scope)
ret = -ret;
else
ret -= 128; /* 30 is enough */
score->scopedist = ret;
break;
case IPV6_SADDR_RULE_PREFERRED:
/* Rule 3: Avoid deprecated and optimistic addresses */
ret = ipv6_saddr_preferred(score->addr_type) ||
!(score->ifa->flags & (IFA_F_DEPRECATED|IFA_F_OPTIMISTIC));
break;
#ifdef CONFIG_IPV6_MIP6
case IPV6_SADDR_RULE_HOA:
{
/* Rule 4: Prefer home address */
int prefhome = !(dst->prefs & IPV6_PREFER_SRC_COA);
ret = !(score->ifa->flags & IFA_F_HOMEADDRESS) ^ prefhome;
break;
}
#endif
case IPV6_SADDR_RULE_OIF:
/* Rule 5: Prefer outgoing interface */
ret = (!dst->ifindex ||
dst->ifindex == score->ifa->idev->dev->ifindex);
break;
case IPV6_SADDR_RULE_LABEL:
/* Rule 6: Prefer matching label */
ret = ipv6_addr_label(net,
&score->ifa->addr, score->addr_type,
score->ifa->idev->dev->ifindex) == dst->label;
break;
#ifdef CONFIG_IPV6_PRIVACY
case IPV6_SADDR_RULE_PRIVACY:
{
/* Rule 7: Prefer public address
* Note: prefer temprary address if use_tempaddr >= 2
*/
int preftmp = dst->prefs & (IPV6_PREFER_SRC_PUBLIC|IPV6_PREFER_SRC_TMP) ?
!!(dst->prefs & IPV6_PREFER_SRC_TMP) :
score->ifa->idev->cnf.use_tempaddr >= 2;
ret = (!(score->ifa->flags & IFA_F_TEMPORARY)) ^ preftmp;
break;
}
#endif
case IPV6_SADDR_RULE_ORCHID:
/* Rule 8-: Prefer ORCHID vs ORCHID or
* non-ORCHID vs non-ORCHID
*/
ret = !(ipv6_addr_orchid(&score->ifa->addr) ^
ipv6_addr_orchid(dst->addr));
break;
case IPV6_SADDR_RULE_PREFIX:
/* Rule 8: Use longest matching prefix */
score->matchlen = ret = ipv6_addr_diff(&score->ifa->addr,
dst->addr);
break;
default:
ret = 0;
}
if (ret)
__set_bit(i, score->scorebits);
score->rule = i;
out:
return ret;
}
int ipv6_dev_get_saddr(struct net *net, struct net_device *dst_dev,
const struct in6_addr *daddr, unsigned int prefs,
struct in6_addr *saddr)
{
struct ipv6_saddr_score scores[2],
*score = &scores[0], *hiscore = &scores[1];
struct ipv6_saddr_dst dst;
struct net_device *dev;
int dst_type;
dst_type = __ipv6_addr_type(daddr);
dst.addr = daddr;
dst.ifindex = dst_dev ? dst_dev->ifindex : 0;
dst.scope = __ipv6_addr_src_scope(dst_type);
dst.label = ipv6_addr_label(net, daddr, dst_type, dst.ifindex);
dst.prefs = prefs;
hiscore->rule = -1;
hiscore->ifa = NULL;
read_lock(&dev_base_lock);
rcu_read_lock();
for_each_netdev(net, dev) {
struct inet6_dev *idev;
/* Candidate Source Address (section 4)
* - multicast and link-local destination address,
* the set of candidate source address MUST only
* include addresses assigned to interfaces
* belonging to the same link as the outgoing
* interface.
* (- For site-local destination addresses, the
* set of candidate source addresses MUST only
* include addresses assigned to interfaces
* belonging to the same site as the outgoing
* interface.)
*/
if (((dst_type & IPV6_ADDR_MULTICAST) ||
dst.scope <= IPV6_ADDR_SCOPE_LINKLOCAL) &&
dst.ifindex && dev->ifindex != dst.ifindex)
continue;
idev = __in6_dev_get(dev);
if (!idev)
continue;
read_lock_bh(&idev->lock);
for (score->ifa = idev->addr_list; score->ifa; score->ifa = score->ifa->if_next) {
int i;
/*
* - Tentative Address (RFC2462 section 5.4)
* - A tentative address is not considered
* "assigned to an interface" in the traditional
* sense, unless it is also flagged as optimistic.
* - Candidate Source Address (section 4)
* - In any case, anycast addresses, multicast
* addresses, and the unspecified address MUST
* NOT be included in a candidate set.
*/
if ((score->ifa->flags & IFA_F_TENTATIVE) &&
(!(score->ifa->flags & IFA_F_OPTIMISTIC)))
continue;
score->addr_type = __ipv6_addr_type(&score->ifa->addr);
if (unlikely(score->addr_type == IPV6_ADDR_ANY ||
score->addr_type & IPV6_ADDR_MULTICAST)) {
LIMIT_NETDEBUG(KERN_DEBUG
"ADDRCONF: unspecified / multicast address "
"assigned as unicast address on %s",
dev->name);
continue;
}
score->rule = -1;
bitmap_zero(score->scorebits, IPV6_SADDR_RULE_MAX);
for (i = 0; i < IPV6_SADDR_RULE_MAX; i++) {
int minihiscore, miniscore;
minihiscore = ipv6_get_saddr_eval(net, hiscore, &dst, i);
miniscore = ipv6_get_saddr_eval(net, score, &dst, i);
if (minihiscore > miniscore) {
if (i == IPV6_SADDR_RULE_SCOPE &&
score->scopedist > 0) {
/*
* special case:
* each remaining entry
* has too small (not enough)
* scope, because ifa entries
* are sorted by their scope
* values.
*/
goto try_nextdev;
}
break;
} else if (minihiscore < miniscore) {
if (hiscore->ifa)
in6_ifa_put(hiscore->ifa);
in6_ifa_hold(score->ifa);
swap(hiscore, score);
/* restore our iterator */
score->ifa = hiscore->ifa;
break;
}
}
}
try_nextdev:
read_unlock_bh(&idev->lock);
}
rcu_read_unlock();
read_unlock(&dev_base_lock);
if (!hiscore->ifa)
return -EADDRNOTAVAIL;
ipv6_addr_copy(saddr, &hiscore->ifa->addr);
in6_ifa_put(hiscore->ifa);
return 0;
}
EXPORT_SYMBOL(ipv6_dev_get_saddr);
int ipv6_get_lladdr(struct net_device *dev, struct in6_addr *addr,
unsigned char banned_flags)
{
struct inet6_dev *idev;
int err = -EADDRNOTAVAIL;
rcu_read_lock();
if ((idev = __in6_dev_get(dev)) != NULL) {
struct inet6_ifaddr *ifp;
read_lock_bh(&idev->lock);
for (ifp=idev->addr_list; ifp; ifp=ifp->if_next) {
if (ifp->scope == IFA_LINK && !(ifp->flags & banned_flags)) {
ipv6_addr_copy(addr, &ifp->addr);
err = 0;
break;
}
}
read_unlock_bh(&idev->lock);
}
rcu_read_unlock();
return err;
}
static int ipv6_count_addresses(struct inet6_dev *idev)
{
int cnt = 0;
struct inet6_ifaddr *ifp;
read_lock_bh(&idev->lock);
for (ifp=idev->addr_list; ifp; ifp=ifp->if_next)
cnt++;
read_unlock_bh(&idev->lock);
return cnt;
}
int ipv6_chk_addr(struct net *net, struct in6_addr *addr,
struct net_device *dev, int strict)
{
struct inet6_ifaddr * ifp;
u8 hash = ipv6_addr_hash(addr);
read_lock_bh(&addrconf_hash_lock);
for(ifp = inet6_addr_lst[hash]; ifp; ifp=ifp->lst_next) {
if (!net_eq(dev_net(ifp->idev->dev), net))
continue;
if (ipv6_addr_equal(&ifp->addr, addr) &&
!(ifp->flags&IFA_F_TENTATIVE)) {
if (dev == NULL || ifp->idev->dev == dev ||
!(ifp->scope&(IFA_LINK|IFA_HOST) || strict))
break;
}
}
read_unlock_bh(&addrconf_hash_lock);
return ifp != NULL;
}
EXPORT_SYMBOL(ipv6_chk_addr);
static
int ipv6_chk_same_addr(struct net *net, const struct in6_addr *addr,
struct net_device *dev)
{
struct inet6_ifaddr * ifp;
u8 hash = ipv6_addr_hash(addr);
for(ifp = inet6_addr_lst[hash]; ifp; ifp=ifp->lst_next) {
if (!net_eq(dev_net(ifp->idev->dev), net))
continue;
if (ipv6_addr_equal(&ifp->addr, addr)) {
if (dev == NULL || ifp->idev->dev == dev)
break;
}
}
return ifp != NULL;
}
int ipv6_chk_prefix(struct in6_addr *addr, struct net_device *dev)
{
struct inet6_dev *idev;
struct inet6_ifaddr *ifa;
int onlink;
onlink = 0;
rcu_read_lock();
idev = __in6_dev_get(dev);
if (idev) {
read_lock_bh(&idev->lock);
for (ifa = idev->addr_list; ifa; ifa = ifa->if_next) {
onlink = ipv6_prefix_equal(addr, &ifa->addr,
ifa->prefix_len);
if (onlink)
break;
}
read_unlock_bh(&idev->lock);
}
rcu_read_unlock();
return onlink;
}
EXPORT_SYMBOL(ipv6_chk_prefix);
struct inet6_ifaddr *ipv6_get_ifaddr(struct net *net, const struct in6_addr *addr,
struct net_device *dev, int strict)
{
struct inet6_ifaddr * ifp;
u8 hash = ipv6_addr_hash(addr);
read_lock_bh(&addrconf_hash_lock);
for(ifp = inet6_addr_lst[hash]; ifp; ifp=ifp->lst_next) {
if (!net_eq(dev_net(ifp->idev->dev), net))
continue;
if (ipv6_addr_equal(&ifp->addr, addr)) {
if (dev == NULL || ifp->idev->dev == dev ||
!(ifp->scope&(IFA_LINK|IFA_HOST) || strict)) {
in6_ifa_hold(ifp);
break;
}
}
}
read_unlock_bh(&addrconf_hash_lock);
return ifp;
}
/* Gets referenced address, destroys ifaddr */
static void addrconf_dad_stop(struct inet6_ifaddr *ifp)
{
if (ifp->flags&IFA_F_PERMANENT) {
spin_lock_bh(&ifp->lock);
addrconf_del_timer(ifp);
ifp->flags |= IFA_F_TENTATIVE;
spin_unlock_bh(&ifp->lock);
in6_ifa_put(ifp);
#ifdef CONFIG_IPV6_PRIVACY
} else if (ifp->flags&IFA_F_TEMPORARY) {
struct inet6_ifaddr *ifpub;
spin_lock_bh(&ifp->lock);
ifpub = ifp->ifpub;
if (ifpub) {
in6_ifa_hold(ifpub);
spin_unlock_bh(&ifp->lock);
ipv6_create_tempaddr(ifpub, ifp);
in6_ifa_put(ifpub);
} else {
spin_unlock_bh(&ifp->lock);
}
ipv6_del_addr(ifp);
#endif
} else
ipv6_del_addr(ifp);
}
void addrconf_dad_failure(struct inet6_ifaddr *ifp)
{
struct inet6_dev *idev = ifp->idev;
if (net_ratelimit())
printk(KERN_INFO "%s: IPv6 duplicate address detected!\n",
ifp->idev->dev->name);
if (idev->cnf.accept_dad > 1 && !idev->cnf.disable_ipv6) {
struct in6_addr addr;
addr.s6_addr32[0] = htonl(0xfe800000);
addr.s6_addr32[1] = 0;
if (!ipv6_generate_eui64(addr.s6_addr + 8, idev->dev) &&
ipv6_addr_equal(&ifp->addr, &addr)) {
/* DAD failed for link-local based on MAC address */
idev->cnf.disable_ipv6 = 1;
printk(KERN_INFO "%s: IPv6 being disabled!\n",
ifp->idev->dev->name);
}
}
addrconf_dad_stop(ifp);
}
/* Join to solicited addr multicast group. */
void addrconf_join_solict(struct net_device *dev, struct in6_addr *addr)
{
struct in6_addr maddr;
if (dev->flags&(IFF_LOOPBACK|IFF_NOARP))
return;
addrconf_addr_solict_mult(addr, &maddr);
ipv6_dev_mc_inc(dev, &maddr);
}
void addrconf_leave_solict(struct inet6_dev *idev, struct in6_addr *addr)
{
struct in6_addr maddr;
if (idev->dev->flags&(IFF_LOOPBACK|IFF_NOARP))
return;
addrconf_addr_solict_mult(addr, &maddr);
__ipv6_dev_mc_dec(idev, &maddr);
}
static void addrconf_join_anycast(struct inet6_ifaddr *ifp)
{
struct in6_addr addr;
ipv6_addr_prefix(&addr, &ifp->addr, ifp->prefix_len);
if (ipv6_addr_any(&addr))
return;
ipv6_dev_ac_inc(ifp->idev->dev, &addr);
}
static void addrconf_leave_anycast(struct inet6_ifaddr *ifp)
{
struct in6_addr addr;
ipv6_addr_prefix(&addr, &ifp->addr, ifp->prefix_len);
if (ipv6_addr_any(&addr))
return;
__ipv6_dev_ac_dec(ifp->idev, &addr);
}
static int addrconf_ifid_eui48(u8 *eui, struct net_device *dev)
{
if (dev->addr_len != ETH_ALEN)
return -1;
memcpy(eui, dev->dev_addr, 3);
memcpy(eui + 5, dev->dev_addr + 3, 3);
/*
* The zSeries OSA network cards can be shared among various
* OS instances, but the OSA cards have only one MAC address.
* This leads to duplicate address conflicts in conjunction
* with IPv6 if more than one instance uses the same card.
*
* The driver for these cards can deliver a unique 16-bit
* identifier for each instance sharing the same card. It is
* placed instead of 0xFFFE in the interface identifier. The
* "u" bit of the interface identifier is not inverted in this
* case. Hence the resulting interface identifier has local
* scope according to RFC2373.
*/
if (dev->dev_id) {
eui[3] = (dev->dev_id >> 8) & 0xFF;
eui[4] = dev->dev_id & 0xFF;
} else {
eui[3] = 0xFF;
eui[4] = 0xFE;
eui[0] ^= 2;
}
return 0;
}
static int addrconf_ifid_arcnet(u8 *eui, struct net_device *dev)
{
/* XXX: inherit EUI-64 from other interface -- yoshfuji */
if (dev->addr_len != ARCNET_ALEN)
return -1;
memset(eui, 0, 7);
eui[7] = *(u8*)dev->dev_addr;
return 0;
}
static int addrconf_ifid_infiniband(u8 *eui, struct net_device *dev)
{
if (dev->addr_len != INFINIBAND_ALEN)
return -1;
memcpy(eui, dev->dev_addr + 12, 8);
eui[0] |= 2;
return 0;
}
int __ipv6_isatap_ifid(u8 *eui, __be32 addr)
{
if (addr == 0)
return -1;
eui[0] = (ipv4_is_zeronet(addr) || ipv4_is_private_10(addr) ||
ipv4_is_loopback(addr) || ipv4_is_linklocal_169(addr) ||
ipv4_is_private_172(addr) || ipv4_is_test_192(addr) ||
ipv4_is_anycast_6to4(addr) || ipv4_is_private_192(addr) ||
ipv4_is_test_198(addr) || ipv4_is_multicast(addr) ||
ipv4_is_lbcast(addr)) ? 0x00 : 0x02;
eui[1] = 0;
eui[2] = 0x5E;
eui[3] = 0xFE;
memcpy(eui + 4, &addr, 4);
return 0;
}
EXPORT_SYMBOL(__ipv6_isatap_ifid);
static int addrconf_ifid_sit(u8 *eui, struct net_device *dev)
{
if (dev->priv_flags & IFF_ISATAP)
return __ipv6_isatap_ifid(eui, *(__be32 *)dev->dev_addr);
return -1;
}
static int ipv6_generate_eui64(u8 *eui, struct net_device *dev)
{
switch (dev->type) {
case ARPHRD_ETHER:
case ARPHRD_FDDI:
case ARPHRD_IEEE802_TR:
return addrconf_ifid_eui48(eui, dev);
case ARPHRD_ARCNET:
return addrconf_ifid_arcnet(eui, dev);
case ARPHRD_INFINIBAND:
return addrconf_ifid_infiniband(eui, dev);
case ARPHRD_SIT:
return addrconf_ifid_sit(eui, dev);
}
return -1;
}
static int ipv6_inherit_eui64(u8 *eui, struct inet6_dev *idev)
{
int err = -1;
struct inet6_ifaddr *ifp;
read_lock_bh(&idev->lock);
for (ifp=idev->addr_list; ifp; ifp=ifp->if_next) {
if (ifp->scope == IFA_LINK && !(ifp->flags&IFA_F_TENTATIVE)) {
memcpy(eui, ifp->addr.s6_addr+8, 8);
err = 0;
break;
}
}
read_unlock_bh(&idev->lock);
return err;
}
#ifdef CONFIG_IPV6_PRIVACY
/* (re)generation of randomized interface identifier (RFC 3041 3.2, 3.5) */
static int __ipv6_regen_rndid(struct inet6_dev *idev)
{
regen:
get_random_bytes(idev->rndid, sizeof(idev->rndid));
idev->rndid[0] &= ~0x02;
/*
* <draft-ietf-ipngwg-temp-addresses-v2-00.txt>:
* check if generated address is not inappropriate
*
* - Reserved subnet anycast (RFC 2526)
* 11111101 11....11 1xxxxxxx
* - ISATAP (RFC4214) 6.1
* 00-00-5E-FE-xx-xx-xx-xx
* - value 0
* - XXX: already assigned to an address on the device
*/
if (idev->rndid[0] == 0xfd &&
(idev->rndid[1]&idev->rndid[2]&idev->rndid[3]&idev->rndid[4]&idev->rndid[5]&idev->rndid[6]) == 0xff &&
(idev->rndid[7]&0x80))
goto regen;
if ((idev->rndid[0]|idev->rndid[1]) == 0) {
if (idev->rndid[2] == 0x5e && idev->rndid[3] == 0xfe)
goto regen;
if ((idev->rndid[2]|idev->rndid[3]|idev->rndid[4]|idev->rndid[5]|idev->rndid[6]|idev->rndid[7]) == 0x00)
goto regen;
}
return 0;
}
static void ipv6_regen_rndid(unsigned long data)
{
struct inet6_dev *idev = (struct inet6_dev *) data;
unsigned long expires;
rcu_read_lock_bh();
write_lock_bh(&idev->lock);
if (idev->dead)
goto out;
if (__ipv6_regen_rndid(idev) < 0)
goto out;
expires = jiffies +
idev->cnf.temp_prefered_lft * HZ -
idev->cnf.regen_max_retry * idev->cnf.dad_transmits * idev->nd_parms->retrans_time - desync_factor;
if (time_before(expires, jiffies)) {
printk(KERN_WARNING
"ipv6_regen_rndid(): too short regeneration interval; timer disabled for %s.\n",
idev->dev->name);
goto out;
}
if (!mod_timer(&idev->regen_timer, expires))
in6_dev_hold(idev);
out:
write_unlock_bh(&idev->lock);
rcu_read_unlock_bh();
in6_dev_put(idev);
}
static int __ipv6_try_regen_rndid(struct inet6_dev *idev, struct in6_addr *tmpaddr) {
int ret = 0;
if (tmpaddr && memcmp(idev->rndid, &tmpaddr->s6_addr[8], 8) == 0)
ret = __ipv6_regen_rndid(idev);
return ret;
}
#endif
/*
* Add prefix route.
*/
static void
addrconf_prefix_route(struct in6_addr *pfx, int plen, struct net_device *dev,
unsigned long expires, u32 flags)
{
struct fib6_config cfg = {
.fc_table = RT6_TABLE_PREFIX,
.fc_metric = IP6_RT_PRIO_ADDRCONF,
.fc_ifindex = dev->ifindex,
.fc_expires = expires,
.fc_dst_len = plen,
.fc_flags = RTF_UP | flags,
.fc_nlinfo.nl_net = dev_net(dev),
.fc_protocol = RTPROT_KERNEL,
};
ipv6_addr_copy(&cfg.fc_dst, pfx);
/* Prevent useless cloning on PtP SIT.
This thing is done here expecting that the whole
class of non-broadcast devices need not cloning.
*/
#if defined(CONFIG_IPV6_SIT) || defined(CONFIG_IPV6_SIT_MODULE)
if (dev->type == ARPHRD_SIT && (dev->flags & IFF_POINTOPOINT))
cfg.fc_flags |= RTF_NONEXTHOP;
#endif
ip6_route_add(&cfg);
}
/* Create "default" multicast route to the interface */
static void addrconf_add_mroute(struct net_device *dev)
{
struct fib6_config cfg = {
.fc_table = RT6_TABLE_LOCAL,
.fc_metric = IP6_RT_PRIO_ADDRCONF,
.fc_ifindex = dev->ifindex,
.fc_dst_len = 8,
.fc_flags = RTF_UP,
.fc_nlinfo.nl_net = dev_net(dev),
};
ipv6_addr_set(&cfg.fc_dst, htonl(0xFF000000), 0, 0, 0);
ip6_route_add(&cfg);
}
#if defined(CONFIG_IPV6_SIT) || defined(CONFIG_IPV6_SIT_MODULE)
static void sit_route_add(struct net_device *dev)
{
struct fib6_config cfg = {
.fc_table = RT6_TABLE_MAIN,
.fc_metric = IP6_RT_PRIO_ADDRCONF,
.fc_ifindex = dev->ifindex,
.fc_dst_len = 96,
.fc_flags = RTF_UP | RTF_NONEXTHOP,
.fc_nlinfo.nl_net = dev_net(dev),
};
/* prefix length - 96 bits "::d.d.d.d" */
ip6_route_add(&cfg);
}
#endif
static void addrconf_add_lroute(struct net_device *dev)
{
struct in6_addr addr;
ipv6_addr_set(&addr, htonl(0xFE800000), 0, 0, 0);
addrconf_prefix_route(&addr, 64, dev, 0, 0);
}
static struct inet6_dev *addrconf_add_dev(struct net_device *dev)
{
struct inet6_dev *idev;
ASSERT_RTNL();
if ((idev = ipv6_find_idev(dev)) == NULL)
return NULL;
/* Add default multicast route */
addrconf_add_mroute(dev);
/* Add link local route */
addrconf_add_lroute(dev);
return idev;
}
void addrconf_prefix_rcv(struct net_device *dev, u8 *opt, int len)
{
struct prefix_info *pinfo;
__u32 valid_lft;
__u32 prefered_lft;
int addr_type;
struct inet6_dev *in6_dev;
struct net *net = dev_net(dev);
pinfo = (struct prefix_info *) opt;
if (len < sizeof(struct prefix_info)) {
ADBG(("addrconf: prefix option too short\n"));
return;
}
/*
* Validation checks ([ADDRCONF], page 19)
*/
addr_type = ipv6_addr_type(&pinfo->prefix);
if (addr_type & (IPV6_ADDR_MULTICAST|IPV6_ADDR_LINKLOCAL))
return;
valid_lft = ntohl(pinfo->valid);
prefered_lft = ntohl(pinfo->prefered);
if (prefered_lft > valid_lft) {
if (net_ratelimit())
printk(KERN_WARNING "addrconf: prefix option has invalid lifetime\n");
return;
}
in6_dev = in6_dev_get(dev);
if (in6_dev == NULL) {
if (net_ratelimit())
printk(KERN_DEBUG "addrconf: device %s not configured\n", dev->name);
return;
}
/*
* Two things going on here:
* 1) Add routes for on-link prefixes
* 2) Configure prefixes with the auto flag set
*/
if (pinfo->onlink) {
struct rt6_info *rt;
unsigned long rt_expires;
/* Avoid arithmetic overflow. Really, we could
* save rt_expires in seconds, likely valid_lft,
* but it would require division in fib gc, that it
* not good.
*/
if (HZ > USER_HZ)
rt_expires = addrconf_timeout_fixup(valid_lft, HZ);
else
rt_expires = addrconf_timeout_fixup(valid_lft, USER_HZ);
if (addrconf_finite_timeout(rt_expires))
rt_expires *= HZ;
rt = rt6_lookup(net, &pinfo->prefix, NULL,
dev->ifindex, 1);
if (rt && addrconf_is_prefix_route(rt)) {
/* Autoconf prefix route */
if (valid_lft == 0) {
ip6_del_rt(rt);
rt = NULL;
} else if (addrconf_finite_timeout(rt_expires)) {
/* not infinity */
rt->rt6i_expires = jiffies + rt_expires;
rt->rt6i_flags |= RTF_EXPIRES;
} else {
rt->rt6i_flags &= ~RTF_EXPIRES;
rt->rt6i_expires = 0;
}
} else if (valid_lft) {
clock_t expires = 0;
int flags = RTF_ADDRCONF | RTF_PREFIX_RT;
if (addrconf_finite_timeout(rt_expires)) {
/* not infinity */
flags |= RTF_EXPIRES;
expires = jiffies_to_clock_t(rt_expires);
}
addrconf_prefix_route(&pinfo->prefix, pinfo->prefix_len,
dev, expires, flags);
}
if (rt)
dst_release(&rt->u.dst);
}
/* Try to figure out our local address for this prefix */
if (pinfo->autoconf && in6_dev->cnf.autoconf) {
struct inet6_ifaddr * ifp;
struct in6_addr addr;
int create = 0, update_lft = 0;
if (pinfo->prefix_len == 64) {
memcpy(&addr, &pinfo->prefix, 8);
if (ipv6_generate_eui64(addr.s6_addr + 8, dev) &&
ipv6_inherit_eui64(addr.s6_addr + 8, in6_dev)) {
in6_dev_put(in6_dev);
return;
}
goto ok;
}
if (net_ratelimit())
printk(KERN_DEBUG "IPv6 addrconf: prefix with wrong length %d\n",
pinfo->prefix_len);
in6_dev_put(in6_dev);
return;
ok:
ifp = ipv6_get_ifaddr(net, &addr, dev, 1);
if (ifp == NULL && valid_lft) {
int max_addresses = in6_dev->cnf.max_addresses;
u32 addr_flags = 0;
#ifdef CONFIG_IPV6_OPTIMISTIC_DAD
if (in6_dev->cnf.optimistic_dad &&
!net->ipv6.devconf_all->forwarding)
addr_flags = IFA_F_OPTIMISTIC;
#endif
/* Do not allow to create too much of autoconfigured
* addresses; this would be too easy way to crash kernel.
*/
if (!max_addresses ||
ipv6_count_addresses(in6_dev) < max_addresses)
ifp = ipv6_add_addr(in6_dev, &addr, pinfo->prefix_len,
addr_type&IPV6_ADDR_SCOPE_MASK,
addr_flags);
if (!ifp || IS_ERR(ifp)) {
in6_dev_put(in6_dev);
return;
}
update_lft = create = 1;
ifp->cstamp = jiffies;
addrconf_dad_start(ifp, RTF_ADDRCONF|RTF_PREFIX_RT);
}
if (ifp) {
int flags;
unsigned long now;
#ifdef CONFIG_IPV6_PRIVACY
struct inet6_ifaddr *ift;
#endif
u32 stored_lft;
/* update lifetime (RFC2462 5.5.3 e) */
spin_lock(&ifp->lock);
now = jiffies;
if (ifp->valid_lft > (now - ifp->tstamp) / HZ)
stored_lft = ifp->valid_lft - (now - ifp->tstamp) / HZ;
else
stored_lft = 0;
if (!update_lft && stored_lft) {
if (valid_lft > MIN_VALID_LIFETIME ||
valid_lft > stored_lft)
update_lft = 1;
else if (stored_lft <= MIN_VALID_LIFETIME) {
/* valid_lft <= stored_lft is always true */
/* XXX: IPsec */
update_lft = 0;
} else {
valid_lft = MIN_VALID_LIFETIME;
if (valid_lft < prefered_lft)
prefered_lft = valid_lft;
update_lft = 1;
}
}
if (update_lft) {
ifp->valid_lft = valid_lft;
ifp->prefered_lft = prefered_lft;
ifp->tstamp = now;
flags = ifp->flags;
ifp->flags &= ~IFA_F_DEPRECATED;
spin_unlock(&ifp->lock);
if (!(flags&IFA_F_TENTATIVE))
ipv6_ifa_notify(0, ifp);
} else
spin_unlock(&ifp->lock);
#ifdef CONFIG_IPV6_PRIVACY
read_lock_bh(&in6_dev->lock);
/* update all temporary addresses in the list */
for (ift=in6_dev->tempaddr_list; ift; ift=ift->tmp_next) {
/*
* When adjusting the lifetimes of an existing
* temporary address, only lower the lifetimes.
* Implementations must not increase the
* lifetimes of an existing temporary address
* when processing a Prefix Information Option.
*/
if (ifp != ift->ifpub)
continue;
spin_lock(&ift->lock);
flags = ift->flags;
if (ift->valid_lft > valid_lft &&
ift->valid_lft - valid_lft > (jiffies - ift->tstamp) / HZ)
ift->valid_lft = valid_lft + (jiffies - ift->tstamp) / HZ;
if (ift->prefered_lft > prefered_lft &&
ift->prefered_lft - prefered_lft > (jiffies - ift->tstamp) / HZ)
ift->prefered_lft = prefered_lft + (jiffies - ift->tstamp) / HZ;
spin_unlock(&ift->lock);
if (!(flags&IFA_F_TENTATIVE))
ipv6_ifa_notify(0, ift);
}
if (create && in6_dev->cnf.use_tempaddr > 0) {
/*
* When a new public address is created as described in [ADDRCONF],
* also create a new temporary address.
*/
read_unlock_bh(&in6_dev->lock);
ipv6_create_tempaddr(ifp, NULL);
} else {
read_unlock_bh(&in6_dev->lock);
}
#endif
in6_ifa_put(ifp);
addrconf_verify(0);
}
}
inet6_prefix_notify(RTM_NEWPREFIX, in6_dev, pinfo);
in6_dev_put(in6_dev);
}
/*
* Set destination address.
* Special case for SIT interfaces where we create a new "virtual"
* device.
*/
int addrconf_set_dstaddr(struct net *net, void __user *arg)
{
struct in6_ifreq ireq;
struct net_device *dev;
int err = -EINVAL;
rtnl_lock();
err = -EFAULT;
if (copy_from_user(&ireq, arg, sizeof(struct in6_ifreq)))
goto err_exit;
dev = __dev_get_by_index(net, ireq.ifr6_ifindex);
err = -ENODEV;
if (dev == NULL)
goto err_exit;
#if defined(CONFIG_IPV6_SIT) || defined(CONFIG_IPV6_SIT_MODULE)
if (dev->type == ARPHRD_SIT) {
const struct net_device_ops *ops = dev->netdev_ops;
struct ifreq ifr;
struct ip_tunnel_parm p;
err = -EADDRNOTAVAIL;
if (!(ipv6_addr_type(&ireq.ifr6_addr) & IPV6_ADDR_COMPATv4))
goto err_exit;
memset(&p, 0, sizeof(p));
p.iph.daddr = ireq.ifr6_addr.s6_addr32[3];
p.iph.saddr = 0;
p.iph.version = 4;
p.iph.ihl = 5;
p.iph.protocol = IPPROTO_IPV6;
p.iph.ttl = 64;
ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
if (ops->ndo_do_ioctl) {
mm_segment_t oldfs = get_fs();
set_fs(KERNEL_DS);
err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
set_fs(oldfs);
} else
err = -EOPNOTSUPP;
if (err == 0) {
err = -ENOBUFS;
dev = __dev_get_by_name(net, p.name);
if (!dev)
goto err_exit;
err = dev_open(dev);
}
}
#endif
err_exit:
rtnl_unlock();
return err;
}
/*
* Manual configuration of address on an interface
*/
static int inet6_addr_add(struct net *net, int ifindex, struct in6_addr *pfx,
unsigned int plen, __u8 ifa_flags, __u32 prefered_lft,
__u32 valid_lft)
{
struct inet6_ifaddr *ifp;
struct inet6_dev *idev;
struct net_device *dev;
int scope;
u32 flags;
clock_t expires;
unsigned long timeout;
ASSERT_RTNL();
if (plen > 128)
return -EINVAL;
/* check the lifetime */
if (!valid_lft || prefered_lft > valid_lft)
return -EINVAL;
dev = __dev_get_by_index(net, ifindex);
if (!dev)
return -ENODEV;
if ((idev = addrconf_add_dev(dev)) == NULL)
return -ENOBUFS;
scope = ipv6_addr_scope(pfx);
timeout = addrconf_timeout_fixup(valid_lft, HZ);
if (addrconf_finite_timeout(timeout)) {
expires = jiffies_to_clock_t(timeout * HZ);
valid_lft = timeout;
flags = RTF_EXPIRES;
} else {
expires = 0;
flags = 0;
ifa_flags |= IFA_F_PERMANENT;
}
timeout = addrconf_timeout_fixup(prefered_lft, HZ);
if (addrconf_finite_timeout(timeout)) {
if (timeout == 0)
ifa_flags |= IFA_F_DEPRECATED;
prefered_lft = timeout;
}
ifp = ipv6_add_addr(idev, pfx, plen, scope, ifa_flags);
if (!IS_ERR(ifp)) {
spin_lock_bh(&ifp->lock);
ifp->valid_lft = valid_lft;
ifp->prefered_lft = prefered_lft;
ifp->tstamp = jiffies;
spin_unlock_bh(&ifp->lock);
addrconf_prefix_route(&ifp->addr, ifp->prefix_len, dev,
expires, flags);
/*
* Note that section 3.1 of RFC 4429 indicates
* that the Optimistic flag should not be set for
* manually configured addresses
*/
addrconf_dad_start(ifp, 0);
in6_ifa_put(ifp);
addrconf_verify(0);
return 0;
}
return PTR_ERR(ifp);
}
static int inet6_addr_del(struct net *net, int ifindex, struct in6_addr *pfx,
unsigned int plen)
{
struct inet6_ifaddr *ifp;
struct inet6_dev *idev;
struct net_device *dev;
if (plen > 128)
return -EINVAL;
dev = __dev_get_by_index(net, ifindex);
if (!dev)
return -ENODEV;
if ((idev = __in6_dev_get(dev)) == NULL)
return -ENXIO;
read_lock_bh(&idev->lock);
for (ifp = idev->addr_list; ifp; ifp=ifp->if_next) {
if (ifp->prefix_len == plen &&
ipv6_addr_equal(pfx, &ifp->addr)) {
in6_ifa_hold(ifp);
read_unlock_bh(&idev->lock);
ipv6_del_addr(ifp);
/* If the last address is deleted administratively,
disable IPv6 on this interface.
*/
if (idev->addr_list == NULL)
addrconf_ifdown(idev->dev, 1);
return 0;
}
}
read_unlock_bh(&idev->lock);
return -EADDRNOTAVAIL;
}
int addrconf_add_ifaddr(struct net *net, void __user *arg)
{
struct in6_ifreq ireq;
int err;
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (copy_from_user(&ireq, arg, sizeof(struct in6_ifreq)))
return -EFAULT;
rtnl_lock();
err = inet6_addr_add(net, ireq.ifr6_ifindex, &ireq.ifr6_addr,
ireq.ifr6_prefixlen, IFA_F_PERMANENT,
INFINITY_LIFE_TIME, INFINITY_LIFE_TIME);
rtnl_unlock();
return err;
}
int addrconf_del_ifaddr(struct net *net, void __user *arg)
{
struct in6_ifreq ireq;
int err;
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (copy_from_user(&ireq, arg, sizeof(struct in6_ifreq)))
return -EFAULT;
rtnl_lock();
err = inet6_addr_del(net, ireq.ifr6_ifindex, &ireq.ifr6_addr,
ireq.ifr6_prefixlen);
rtnl_unlock();
return err;
}
static void add_addr(struct inet6_dev *idev, const struct in6_addr *addr,
int plen, int scope)
{
struct inet6_ifaddr *ifp;
ifp = ipv6_add_addr(idev, addr, plen, scope, IFA_F_PERMANENT);
if (!IS_ERR(ifp)) {
spin_lock_bh(&ifp->lock);
ifp->flags &= ~IFA_F_TENTATIVE;
spin_unlock_bh(&ifp->lock);
ipv6_ifa_notify(RTM_NEWADDR, ifp);
in6_ifa_put(ifp);
}
}
#if defined(CONFIG_IPV6_SIT) || defined(CONFIG_IPV6_SIT_MODULE)
static void sit_add_v4_addrs(struct inet6_dev *idev)
{
struct in6_addr addr;
struct net_device *dev;
struct net *net = dev_net(idev->dev);
int scope;
ASSERT_RTNL();
memset(&addr, 0, sizeof(struct in6_addr));
memcpy(&addr.s6_addr32[3], idev->dev->dev_addr, 4);
if (idev->dev->flags&IFF_POINTOPOINT) {
addr.s6_addr32[0] = htonl(0xfe800000);
scope = IFA_LINK;
} else {
scope = IPV6_ADDR_COMPATv4;
}
if (addr.s6_addr32[3]) {
add_addr(idev, &addr, 128, scope);
return;
}
for_each_netdev(net, dev) {
struct in_device * in_dev = __in_dev_get_rtnl(dev);
if (in_dev && (dev->flags & IFF_UP)) {
struct in_ifaddr * ifa;
int flag = scope;
for (ifa = in_dev->ifa_list; ifa; ifa = ifa->ifa_next) {
int plen;
addr.s6_addr32[3] = ifa->ifa_local;
if (ifa->ifa_scope == RT_SCOPE_LINK)
continue;
if (ifa->ifa_scope >= RT_SCOPE_HOST) {
if (idev->dev->flags&IFF_POINTOPOINT)
continue;
flag |= IFA_HOST;
}
if (idev->dev->flags&IFF_POINTOPOINT)
plen = 64;
else
plen = 96;
add_addr(idev, &addr, plen, flag);
}
}
}
}
#endif
static void init_loopback(struct net_device *dev)
{
struct inet6_dev *idev;
/* ::1 */
ASSERT_RTNL();
if ((idev = ipv6_find_idev(dev)) == NULL) {
printk(KERN_DEBUG "init loopback: add_dev failed\n");
return;
}
add_addr(idev, &in6addr_loopback, 128, IFA_HOST);
}
static void addrconf_add_linklocal(struct inet6_dev *idev, struct in6_addr *addr)
{
struct inet6_ifaddr * ifp;
u32 addr_flags = IFA_F_PERMANENT;
#ifdef CONFIG_IPV6_OPTIMISTIC_DAD
if (idev->cnf.optimistic_dad &&
!dev_net(idev->dev)->ipv6.devconf_all->forwarding)
addr_flags |= IFA_F_OPTIMISTIC;
#endif
ifp = ipv6_add_addr(idev, addr, 64, IFA_LINK, addr_flags);
if (!IS_ERR(ifp)) {
addrconf_prefix_route(&ifp->addr, ifp->prefix_len, idev->dev, 0, 0);
addrconf_dad_start(ifp, 0);
in6_ifa_put(ifp);
}
}
static void addrconf_dev_config(struct net_device *dev)
{
struct in6_addr addr;
struct inet6_dev * idev;
ASSERT_RTNL();
if ((dev->type != ARPHRD_ETHER) &&
(dev->type != ARPHRD_FDDI) &&
(dev->type != ARPHRD_IEEE802_TR) &&
(dev->type != ARPHRD_ARCNET) &&
(dev->type != ARPHRD_INFINIBAND)) {
/* Alas, we support only Ethernet autoconfiguration. */
return;
}
idev = addrconf_add_dev(dev);
if (idev == NULL)
return;
memset(&addr, 0, sizeof(struct in6_addr));
addr.s6_addr32[0] = htonl(0xFE800000);
if (ipv6_generate_eui64(addr.s6_addr + 8, dev) == 0)
addrconf_add_linklocal(idev, &addr);
}
#if defined(CONFIG_IPV6_SIT) || defined(CONFIG_IPV6_SIT_MODULE)
static void addrconf_sit_config(struct net_device *dev)
{
struct inet6_dev *idev;
ASSERT_RTNL();
/*
* Configure the tunnel with one of our IPv4
* addresses... we should configure all of
* our v4 addrs in the tunnel
*/
if ((idev = ipv6_find_idev(dev)) == NULL) {
printk(KERN_DEBUG "init sit: add_dev failed\n");
return;
}
if (dev->priv_flags & IFF_ISATAP) {
struct in6_addr addr;
ipv6_addr_set(&addr, htonl(0xFE800000), 0, 0, 0);
addrconf_prefix_route(&addr, 64, dev, 0, 0);
if (!ipv6_generate_eui64(addr.s6_addr + 8, dev))
addrconf_add_linklocal(idev, &addr);
return;
}
sit_add_v4_addrs(idev);
if (dev->flags&IFF_POINTOPOINT) {
addrconf_add_mroute(dev);
addrconf_add_lroute(dev);
} else
sit_route_add(dev);
}
#endif
static inline int
ipv6_inherit_linklocal(struct inet6_dev *idev, struct net_device *link_dev)
{
struct in6_addr lladdr;
if (!ipv6_get_lladdr(link_dev, &lladdr, IFA_F_TENTATIVE)) {
addrconf_add_linklocal(idev, &lladdr);
return 0;
}
return -1;
}
static void ip6_tnl_add_linklocal(struct inet6_dev *idev)
{
struct net_device *link_dev;
struct net *net = dev_net(idev->dev);
/* first try to inherit the link-local address from the link device */
if (idev->dev->iflink &&
(link_dev = __dev_get_by_index(net, idev->dev->iflink))) {
if (!ipv6_inherit_linklocal(idev, link_dev))
return;
}
/* then try to inherit it from any device */
for_each_netdev(net, link_dev) {
if (!ipv6_inherit_linklocal(idev, link_dev))
return;
}
printk(KERN_DEBUG "init ip6-ip6: add_linklocal failed\n");
}
/*
* Autoconfigure tunnel with a link-local address so routing protocols,
* DHCPv6, MLD etc. can be run over the virtual link
*/
static void addrconf_ip6_tnl_config(struct net_device *dev)
{
struct inet6_dev *idev;
ASSERT_RTNL();
if ((idev = addrconf_add_dev(dev)) == NULL) {
printk(KERN_DEBUG "init ip6-ip6: add_dev failed\n");
return;
}
ip6_tnl_add_linklocal(idev);
}
static int addrconf_notify(struct notifier_block *this, unsigned long event,
void * data)
{
struct net_device *dev = (struct net_device *) data;
struct inet6_dev *idev = __in6_dev_get(dev);
int run_pending = 0;
int err;
switch(event) {
case NETDEV_REGISTER:
if (!idev && dev->mtu >= IPV6_MIN_MTU) {
idev = ipv6_add_dev(dev);
if (!idev)
return notifier_from_errno(-ENOMEM);
}
break;
case NETDEV_UP:
case NETDEV_CHANGE:
if (dev->flags & IFF_SLAVE)
break;
if (event == NETDEV_UP) {
if (!addrconf_qdisc_ok(dev)) {
/* device is not ready yet. */
printk(KERN_INFO
"ADDRCONF(NETDEV_UP): %s: "
"link is not ready\n",
dev->name);
break;
}
if (!idev && dev->mtu >= IPV6_MIN_MTU)
idev = ipv6_add_dev(dev);
if (idev) {
idev->if_flags |= IF_READY;
run_pending = 1;
}
} else {
if (!addrconf_qdisc_ok(dev)) {
/* device is still not ready. */
break;
}
if (idev) {
if (idev->if_flags & IF_READY) {
/* device is already configured. */
break;
}
idev->if_flags |= IF_READY;
}
printk(KERN_INFO
"ADDRCONF(NETDEV_CHANGE): %s: "
"link becomes ready\n",
dev->name);
run_pending = 1;
}
switch(dev->type) {
#if defined(CONFIG_IPV6_SIT) || defined(CONFIG_IPV6_SIT_MODULE)
case ARPHRD_SIT:
addrconf_sit_config(dev);
break;
#endif
case ARPHRD_TUNNEL6:
addrconf_ip6_tnl_config(dev);
break;
case ARPHRD_LOOPBACK:
init_loopback(dev);
break;
default:
addrconf_dev_config(dev);
break;
}
if (idev) {
if (run_pending)
addrconf_dad_run(idev);
/* If the MTU changed during the interface down, when the
interface up, the changed MTU must be reflected in the
idev as well as routers.
*/
if (idev->cnf.mtu6 != dev->mtu && dev->mtu >= IPV6_MIN_MTU) {
rt6_mtu_change(dev, dev->mtu);
idev->cnf.mtu6 = dev->mtu;
}
idev->tstamp = jiffies;
inet6_ifinfo_notify(RTM_NEWLINK, idev);
/* If the changed mtu during down is lower than IPV6_MIN_MTU
stop IPv6 on this interface.
*/
if (dev->mtu < IPV6_MIN_MTU)
addrconf_ifdown(dev, event != NETDEV_DOWN);
}
break;
case NETDEV_CHANGEMTU:
if (idev && dev->mtu >= IPV6_MIN_MTU) {
rt6_mtu_change(dev, dev->mtu);
idev->cnf.mtu6 = dev->mtu;
break;
}
if (!idev && dev->mtu >= IPV6_MIN_MTU) {
idev = ipv6_add_dev(dev);
if (idev)
break;
}
/* MTU falled under IPV6_MIN_MTU. Stop IPv6 on this interface. */
case NETDEV_DOWN:
case NETDEV_UNREGISTER:
/*
* Remove all addresses from this interface.
*/
addrconf_ifdown(dev, event != NETDEV_DOWN);
break;
case NETDEV_CHANGENAME:
if (idev) {
snmp6_unregister_dev(idev);
addrconf_sysctl_unregister(idev);
addrconf_sysctl_register(idev);
err = snmp6_register_dev(idev);
if (err)
return notifier_from_errno(err);
}
break;
}
return NOTIFY_OK;
}
/*
* addrconf module should be notified of a device going up
*/
static struct notifier_block ipv6_dev_notf = {
.notifier_call = addrconf_notify,
.priority = 0
};
static int addrconf_ifdown(struct net_device *dev, int how)
{
struct inet6_dev *idev;
struct inet6_ifaddr *ifa, **bifa;
struct net *net = dev_net(dev);
int i;
ASSERT_RTNL();
rt6_ifdown(net, dev);
neigh_ifdown(&nd_tbl, dev);
idev = __in6_dev_get(dev);
if (idev == NULL)
return -ENODEV;
/* Step 1: remove reference to ipv6 device from parent device.
Do not dev_put!
*/
if (how) {
idev->dead = 1;
/* protected by rtnl_lock */
rcu_assign_pointer(dev->ip6_ptr, NULL);
/* Step 1.5: remove snmp6 entry */
snmp6_unregister_dev(idev);
}
/* Step 2: clear hash table */
for (i=0; i<IN6_ADDR_HSIZE; i++) {
bifa = &inet6_addr_lst[i];
write_lock_bh(&addrconf_hash_lock);
while ((ifa = *bifa) != NULL) {
if (ifa->idev == idev) {
*bifa = ifa->lst_next;
ifa->lst_next = NULL;
addrconf_del_timer(ifa);
in6_ifa_put(ifa);
continue;
}
bifa = &ifa->lst_next;
}
write_unlock_bh(&addrconf_hash_lock);
}
write_lock_bh(&idev->lock);
/* Step 3: clear flags for stateless addrconf */
if (!how)
idev->if_flags &= ~(IF_RS_SENT|IF_RA_RCVD|IF_READY);
/* Step 4: clear address list */
#ifdef CONFIG_IPV6_PRIVACY
if (how && del_timer(&idev->regen_timer))
in6_dev_put(idev);
/* clear tempaddr list */
while ((ifa = idev->tempaddr_list) != NULL) {
idev->tempaddr_list = ifa->tmp_next;
ifa->tmp_next = NULL;
ifa->dead = 1;
write_unlock_bh(&idev->lock);
spin_lock_bh(&ifa->lock);
if (ifa->ifpub) {
in6_ifa_put(ifa->ifpub);
ifa->ifpub = NULL;
}
spin_unlock_bh(&ifa->lock);
in6_ifa_put(ifa);
write_lock_bh(&idev->lock);
}
#endif
while ((ifa = idev->addr_list) != NULL) {
idev->addr_list = ifa->if_next;
ifa->if_next = NULL;
ifa->dead = 1;
addrconf_del_timer(ifa);
write_unlock_bh(&idev->lock);
__ipv6_ifa_notify(RTM_DELADDR, ifa);
atomic_notifier_call_chain(&inet6addr_chain, NETDEV_DOWN, ifa);
in6_ifa_put(ifa);
write_lock_bh(&idev->lock);
}
write_unlock_bh(&idev->lock);
/* Step 5: Discard multicast list */
if (how)
ipv6_mc_destroy_dev(idev);
else
ipv6_mc_down(idev);
idev->tstamp = jiffies;
/* Shot the device (if unregistered) */
if (how) {
addrconf_sysctl_unregister(idev);
neigh_parms_release(&nd_tbl, idev->nd_parms);
neigh_ifdown(&nd_tbl, dev);
in6_dev_put(idev);
}
return 0;
}
static void addrconf_rs_timer(unsigned long data)
{
struct inet6_ifaddr *ifp = (struct inet6_ifaddr *) data;
if (ifp->idev->cnf.forwarding)
goto out;
if (ifp->idev->if_flags & IF_RA_RCVD) {
/*
* Announcement received after solicitation
* was sent
*/
goto out;
}
spin_lock(&ifp->lock);
if (ifp->probes++ < ifp->idev->cnf.rtr_solicits) {
/* The wait after the last probe can be shorter */
addrconf_mod_timer(ifp, AC_RS,
(ifp->probes == ifp->idev->cnf.rtr_solicits) ?
ifp->idev->cnf.rtr_solicit_delay :
ifp->idev->cnf.rtr_solicit_interval);
spin_unlock(&ifp->lock);
ndisc_send_rs(ifp->idev->dev, &ifp->addr, &in6addr_linklocal_allrouters);
} else {
spin_unlock(&ifp->lock);
/*
* Note: we do not support deprecated "all on-link"
* assumption any longer.
*/
printk(KERN_DEBUG "%s: no IPv6 routers present\n",
ifp->idev->dev->name);
}
out:
in6_ifa_put(ifp);
}
/*
* Duplicate Address Detection
*/
static void addrconf_dad_kick(struct inet6_ifaddr *ifp)
{
unsigned long rand_num;
struct inet6_dev *idev = ifp->idev;
if (ifp->flags & IFA_F_OPTIMISTIC)
rand_num = 0;
else
rand_num = net_random() % (idev->cnf.rtr_solicit_delay ? : 1);
ifp->probes = idev->cnf.dad_transmits;
addrconf_mod_timer(ifp, AC_DAD, rand_num);
}
static void addrconf_dad_start(struct inet6_ifaddr *ifp, u32 flags)
{
struct inet6_dev *idev = ifp->idev;
struct net_device *dev = idev->dev;
addrconf_join_solict(dev, &ifp->addr);
net_srandom(ifp->addr.s6_addr32[3]);
read_lock_bh(&idev->lock);
if (ifp->dead)
goto out;
spin_lock_bh(&ifp->lock);
if (dev->flags&(IFF_NOARP|IFF_LOOPBACK) ||
idev->cnf.accept_dad < 1 ||
!(ifp->flags&IFA_F_TENTATIVE) ||
ifp->flags & IFA_F_NODAD) {
ifp->flags &= ~(IFA_F_TENTATIVE|IFA_F_OPTIMISTIC);
spin_unlock_bh(&ifp->lock);
read_unlock_bh(&idev->lock);
addrconf_dad_completed(ifp);
return;
}
if (!(idev->if_flags & IF_READY)) {
spin_unlock_bh(&ifp->lock);
read_unlock_bh(&idev->lock);
/*
* If the defice is not ready:
* - keep it tentative if it is a permanent address.
* - otherwise, kill it.
*/
in6_ifa_hold(ifp);
addrconf_dad_stop(ifp);
return;
}
/*
* Optimistic nodes can start receiving
* Frames right away
*/
if(ifp->flags & IFA_F_OPTIMISTIC)
ip6_ins_rt(ifp->rt);
addrconf_dad_kick(ifp);
spin_unlock_bh(&ifp->lock);
out:
read_unlock_bh(&idev->lock);
}
static void addrconf_dad_timer(unsigned long data)
{
struct inet6_ifaddr *ifp = (struct inet6_ifaddr *) data;
struct inet6_dev *idev = ifp->idev;
struct in6_addr mcaddr;
read_lock_bh(&idev->lock);
if (idev->dead) {
read_unlock_bh(&idev->lock);
goto out;
}
spin_lock_bh(&ifp->lock);
if (ifp->probes == 0) {
/*
* DAD was successful
*/
ifp->flags &= ~(IFA_F_TENTATIVE|IFA_F_OPTIMISTIC);
spin_unlock_bh(&ifp->lock);
read_unlock_bh(&idev->lock);
addrconf_dad_completed(ifp);
goto out;
}
ifp->probes--;
addrconf_mod_timer(ifp, AC_DAD, ifp->idev->nd_parms->retrans_time);
spin_unlock_bh(&ifp->lock);
read_unlock_bh(&idev->lock);
/* send a neighbour solicitation for our addr */
addrconf_addr_solict_mult(&ifp->addr, &mcaddr);
ndisc_send_ns(ifp->idev->dev, NULL, &ifp->addr, &mcaddr, &in6addr_any);
out:
in6_ifa_put(ifp);
}
static void addrconf_dad_completed(struct inet6_ifaddr *ifp)
{
struct net_device * dev = ifp->idev->dev;
/*
* Configure the address for reception. Now it is valid.
*/
ipv6_ifa_notify(RTM_NEWADDR, ifp);
/* If added prefix is link local and forwarding is off,
start sending router solicitations.
*/
if (ifp->idev->cnf.forwarding == 0 &&
ifp->idev->cnf.rtr_solicits > 0 &&
(dev->flags&IFF_LOOPBACK) == 0 &&
(ipv6_addr_type(&ifp->addr) & IPV6_ADDR_LINKLOCAL)) {
/*
* If a host as already performed a random delay
* [...] as part of DAD [...] there is no need
* to delay again before sending the first RS
*/
ndisc_send_rs(ifp->idev->dev, &ifp->addr, &in6addr_linklocal_allrouters);
spin_lock_bh(&ifp->lock);
ifp->probes = 1;
ifp->idev->if_flags |= IF_RS_SENT;
addrconf_mod_timer(ifp, AC_RS, ifp->idev->cnf.rtr_solicit_interval);
spin_unlock_bh(&ifp->lock);
}
}
static void addrconf_dad_run(struct inet6_dev *idev) {
struct inet6_ifaddr *ifp;
read_lock_bh(&idev->lock);
for (ifp = idev->addr_list; ifp; ifp = ifp->if_next) {
spin_lock_bh(&ifp->lock);
if (!(ifp->flags & IFA_F_TENTATIVE)) {
spin_unlock_bh(&ifp->lock);
continue;
}
spin_unlock_bh(&ifp->lock);
addrconf_dad_kick(ifp);
}
read_unlock_bh(&idev->lock);
}
#ifdef CONFIG_PROC_FS
struct if6_iter_state {
struct seq_net_private p;
int bucket;
};
static struct inet6_ifaddr *if6_get_first(struct seq_file *seq)
{
struct inet6_ifaddr *ifa = NULL;
struct if6_iter_state *state = seq->private;
struct net *net = seq_file_net(seq);
for (state->bucket = 0; state->bucket < IN6_ADDR_HSIZE; ++state->bucket) {
ifa = inet6_addr_lst[state->bucket];
while (ifa && !net_eq(dev_net(ifa->idev->dev), net))
ifa = ifa->lst_next;
if (ifa)
break;
}
return ifa;
}
static struct inet6_ifaddr *if6_get_next(struct seq_file *seq, struct inet6_ifaddr *ifa)
{
struct if6_iter_state *state = seq->private;
struct net *net = seq_file_net(seq);
ifa = ifa->lst_next;
try_again:
if (ifa) {
if (!net_eq(dev_net(ifa->idev->dev), net)) {
ifa = ifa->lst_next;
goto try_again;
}
}
if (!ifa && ++state->bucket < IN6_ADDR_HSIZE) {
ifa = inet6_addr_lst[state->bucket];
goto try_again;
}
return ifa;
}
static struct inet6_ifaddr *if6_get_idx(struct seq_file *seq, loff_t pos)
{
struct inet6_ifaddr *ifa = if6_get_first(seq);
if (ifa)
while(pos && (ifa = if6_get_next(seq, ifa)) != NULL)
--pos;
return pos ? NULL : ifa;
}
static void *if6_seq_start(struct seq_file *seq, loff_t *pos)
__acquires(addrconf_hash_lock)
{
read_lock_bh(&addrconf_hash_lock);
return if6_get_idx(seq, *pos);
}
static void *if6_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
struct inet6_ifaddr *ifa;
ifa = if6_get_next(seq, v);
++*pos;
return ifa;
}
static void if6_seq_stop(struct seq_file *seq, void *v)
__releases(addrconf_hash_lock)
{
read_unlock_bh(&addrconf_hash_lock);
}
static int if6_seq_show(struct seq_file *seq, void *v)
{
struct inet6_ifaddr *ifp = (struct inet6_ifaddr *)v;
seq_printf(seq, "%pi6 %02x %02x %02x %02x %8s\n",
&ifp->addr,
ifp->idev->dev->ifindex,
ifp->prefix_len,
ifp->scope,
ifp->flags,
ifp->idev->dev->name);
return 0;
}
static const struct seq_operations if6_seq_ops = {
.start = if6_seq_start,
.next = if6_seq_next,
.show = if6_seq_show,
.stop = if6_seq_stop,
};
static int if6_seq_open(struct inode *inode, struct file *file)
{
return seq_open_net(inode, file, &if6_seq_ops,
sizeof(struct if6_iter_state));
}
static const struct file_operations if6_fops = {
.owner = THIS_MODULE,
.open = if6_seq_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release_net,
};
static int if6_proc_net_init(struct net *net)
{
if (!proc_net_fops_create(net, "if_inet6", S_IRUGO, &if6_fops))
return -ENOMEM;
return 0;
}
static void if6_proc_net_exit(struct net *net)
{
proc_net_remove(net, "if_inet6");
}
static struct pernet_operations if6_proc_net_ops = {
.init = if6_proc_net_init,
.exit = if6_proc_net_exit,
};
int __init if6_proc_init(void)
{
return register_pernet_subsys(&if6_proc_net_ops);
}
void if6_proc_exit(void)
{
unregister_pernet_subsys(&if6_proc_net_ops);
}
#endif /* CONFIG_PROC_FS */
#if defined(CONFIG_IPV6_MIP6) || defined(CONFIG_IPV6_MIP6_MODULE)
/* Check if address is a home address configured on any interface. */
int ipv6_chk_home_addr(struct net *net, struct in6_addr *addr)
{
int ret = 0;
struct inet6_ifaddr * ifp;
u8 hash = ipv6_addr_hash(addr);
read_lock_bh(&addrconf_hash_lock);
for (ifp = inet6_addr_lst[hash]; ifp; ifp = ifp->lst_next) {
if (!net_eq(dev_net(ifp->idev->dev), net))
continue;
if (ipv6_addr_equal(&ifp->addr, addr) &&
(ifp->flags & IFA_F_HOMEADDRESS)) {
ret = 1;
break;
}
}
read_unlock_bh(&addrconf_hash_lock);
return ret;
}
#endif
/*
* Periodic address status verification
*/
static void addrconf_verify(unsigned long foo)
{
struct inet6_ifaddr *ifp;
unsigned long now, next;
int i;
spin_lock_bh(&addrconf_verify_lock);
now = jiffies;
next = now + ADDR_CHECK_FREQUENCY;
del_timer(&addr_chk_timer);
for (i=0; i < IN6_ADDR_HSIZE; i++) {
restart:
read_lock(&addrconf_hash_lock);
for (ifp=inet6_addr_lst[i]; ifp; ifp=ifp->lst_next) {
unsigned long age;
#ifdef CONFIG_IPV6_PRIVACY
unsigned long regen_advance;
#endif
if (ifp->flags & IFA_F_PERMANENT)
continue;
spin_lock(&ifp->lock);
age = (now - ifp->tstamp) / HZ;
#ifdef CONFIG_IPV6_PRIVACY
regen_advance = ifp->idev->cnf.regen_max_retry *
ifp->idev->cnf.dad_transmits *
ifp->idev->nd_parms->retrans_time / HZ;
#endif
if (ifp->valid_lft != INFINITY_LIFE_TIME &&
age >= ifp->valid_lft) {
spin_unlock(&ifp->lock);
in6_ifa_hold(ifp);
read_unlock(&addrconf_hash_lock);
ipv6_del_addr(ifp);
goto restart;
} else if (ifp->prefered_lft == INFINITY_LIFE_TIME) {
spin_unlock(&ifp->lock);
continue;
} else if (age >= ifp->prefered_lft) {
/* jiffies - ifp->tsamp > age >= ifp->prefered_lft */
int deprecate = 0;
if (!(ifp->flags&IFA_F_DEPRECATED)) {
deprecate = 1;
ifp->flags |= IFA_F_DEPRECATED;
}
if (time_before(ifp->tstamp + ifp->valid_lft * HZ, next))
next = ifp->tstamp + ifp->valid_lft * HZ;
spin_unlock(&ifp->lock);
if (deprecate) {
in6_ifa_hold(ifp);
read_unlock(&addrconf_hash_lock);
ipv6_ifa_notify(0, ifp);
in6_ifa_put(ifp);
goto restart;
}
#ifdef CONFIG_IPV6_PRIVACY
} else if ((ifp->flags&IFA_F_TEMPORARY) &&
!(ifp->flags&IFA_F_TENTATIVE)) {
if (age >= ifp->prefered_lft - regen_advance) {
struct inet6_ifaddr *ifpub = ifp->ifpub;
if (time_before(ifp->tstamp + ifp->prefered_lft * HZ, next))
next = ifp->tstamp + ifp->prefered_lft * HZ;
if (!ifp->regen_count && ifpub) {
ifp->regen_count++;
in6_ifa_hold(ifp);
in6_ifa_hold(ifpub);
spin_unlock(&ifp->lock);
read_unlock(&addrconf_hash_lock);
spin_lock(&ifpub->lock);
ifpub->regen_count = 0;
spin_unlock(&ifpub->lock);
ipv6_create_tempaddr(ifpub, ifp);
in6_ifa_put(ifpub);
in6_ifa_put(ifp);
goto restart;
}
} else if (time_before(ifp->tstamp + ifp->prefered_lft * HZ - regen_advance * HZ, next))
next = ifp->tstamp + ifp->prefered_lft * HZ - regen_advance * HZ;
spin_unlock(&ifp->lock);
#endif
} else {
/* ifp->prefered_lft <= ifp->valid_lft */
if (time_before(ifp->tstamp + ifp->prefered_lft * HZ, next))
next = ifp->tstamp + ifp->prefered_lft * HZ;
spin_unlock(&ifp->lock);
}
}
read_unlock(&addrconf_hash_lock);
}
addr_chk_timer.expires = time_before(next, jiffies + HZ) ? jiffies + HZ : next;
add_timer(&addr_chk_timer);
spin_unlock_bh(&addrconf_verify_lock);
}
static struct in6_addr *extract_addr(struct nlattr *addr, struct nlattr *local)
{
struct in6_addr *pfx = NULL;
if (addr)
pfx = nla_data(addr);
if (local) {
if (pfx && nla_memcmp(local, pfx, sizeof(*pfx)))
pfx = NULL;
else
pfx = nla_data(local);
}
return pfx;
}
static const struct nla_policy ifa_ipv6_policy[IFA_MAX+1] = {
[IFA_ADDRESS] = { .len = sizeof(struct in6_addr) },
[IFA_LOCAL] = { .len = sizeof(struct in6_addr) },
[IFA_CACHEINFO] = { .len = sizeof(struct ifa_cacheinfo) },
};
static int
inet6_rtm_deladdr(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
{
struct net *net = sock_net(skb->sk);
struct ifaddrmsg *ifm;
struct nlattr *tb[IFA_MAX+1];
struct in6_addr *pfx;
int err;
err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFA_MAX, ifa_ipv6_policy);
if (err < 0)
return err;
ifm = nlmsg_data(nlh);
pfx = extract_addr(tb[IFA_ADDRESS], tb[IFA_LOCAL]);
if (pfx == NULL)
return -EINVAL;
return inet6_addr_del(net, ifm->ifa_index, pfx, ifm->ifa_prefixlen);
}
static int inet6_addr_modify(struct inet6_ifaddr *ifp, u8 ifa_flags,
u32 prefered_lft, u32 valid_lft)
{
u32 flags;
clock_t expires;
unsigned long timeout;
if (!valid_lft || (prefered_lft > valid_lft))
return -EINVAL;
timeout = addrconf_timeout_fixup(valid_lft, HZ);
if (addrconf_finite_timeout(timeout)) {
expires = jiffies_to_clock_t(timeout * HZ);
valid_lft = timeout;
flags = RTF_EXPIRES;
} else {
expires = 0;
flags = 0;
ifa_flags |= IFA_F_PERMANENT;
}
timeout = addrconf_timeout_fixup(prefered_lft, HZ);
if (addrconf_finite_timeout(timeout)) {
if (timeout == 0)
ifa_flags |= IFA_F_DEPRECATED;
prefered_lft = timeout;
}
spin_lock_bh(&ifp->lock);
ifp->flags = (ifp->flags & ~(IFA_F_DEPRECATED | IFA_F_PERMANENT | IFA_F_NODAD | IFA_F_HOMEADDRESS)) | ifa_flags;
ifp->tstamp = jiffies;
ifp->valid_lft = valid_lft;
ifp->prefered_lft = prefered_lft;
spin_unlock_bh(&ifp->lock);
if (!(ifp->flags&IFA_F_TENTATIVE))
ipv6_ifa_notify(0, ifp);
addrconf_prefix_route(&ifp->addr, ifp->prefix_len, ifp->idev->dev,
expires, flags);
addrconf_verify(0);
return 0;
}
static int
inet6_rtm_newaddr(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
{
struct net *net = sock_net(skb->sk);
struct ifaddrmsg *ifm;
struct nlattr *tb[IFA_MAX+1];
struct in6_addr *pfx;
struct inet6_ifaddr *ifa;
struct net_device *dev;
u32 valid_lft = INFINITY_LIFE_TIME, preferred_lft = INFINITY_LIFE_TIME;
u8 ifa_flags;
int err;
err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFA_MAX, ifa_ipv6_policy);
if (err < 0)
return err;
ifm = nlmsg_data(nlh);
pfx = extract_addr(tb[IFA_ADDRESS], tb[IFA_LOCAL]);
if (pfx == NULL)
return -EINVAL;
if (tb[IFA_CACHEINFO]) {
struct ifa_cacheinfo *ci;
ci = nla_data(tb[IFA_CACHEINFO]);
valid_lft = ci->ifa_valid;
preferred_lft = ci->ifa_prefered;
} else {
preferred_lft = INFINITY_LIFE_TIME;
valid_lft = INFINITY_LIFE_TIME;
}
dev = __dev_get_by_index(net, ifm->ifa_index);
if (dev == NULL)
return -ENODEV;
/* We ignore other flags so far. */
ifa_flags = ifm->ifa_flags & (IFA_F_NODAD | IFA_F_HOMEADDRESS);
ifa = ipv6_get_ifaddr(net, pfx, dev, 1);
if (ifa == NULL) {
/*
* It would be best to check for !NLM_F_CREATE here but
* userspace alreay relies on not having to provide this.
*/
return inet6_addr_add(net, ifm->ifa_index, pfx,
ifm->ifa_prefixlen, ifa_flags,
preferred_lft, valid_lft);
}
if (nlh->nlmsg_flags & NLM_F_EXCL ||
!(nlh->nlmsg_flags & NLM_F_REPLACE))
err = -EEXIST;
else
err = inet6_addr_modify(ifa, ifa_flags, preferred_lft, valid_lft);
in6_ifa_put(ifa);
return err;
}
static void put_ifaddrmsg(struct nlmsghdr *nlh, u8 prefixlen, u8 flags,
u8 scope, int ifindex)
{
struct ifaddrmsg *ifm;
ifm = nlmsg_data(nlh);
ifm->ifa_family = AF_INET6;
ifm->ifa_prefixlen = prefixlen;
ifm->ifa_flags = flags;
ifm->ifa_scope = scope;
ifm->ifa_index = ifindex;
}
static int put_cacheinfo(struct sk_buff *skb, unsigned long cstamp,
unsigned long tstamp, u32 preferred, u32 valid)
{
struct ifa_cacheinfo ci;
ci.cstamp = (u32)(TIME_DELTA(cstamp, INITIAL_JIFFIES) / HZ * 100
+ TIME_DELTA(cstamp, INITIAL_JIFFIES) % HZ * 100 / HZ);
ci.tstamp = (u32)(TIME_DELTA(tstamp, INITIAL_JIFFIES) / HZ * 100
+ TIME_DELTA(tstamp, INITIAL_JIFFIES) % HZ * 100 / HZ);
ci.ifa_prefered = preferred;
ci.ifa_valid = valid;
return nla_put(skb, IFA_CACHEINFO, sizeof(ci), &ci);
}
static inline int rt_scope(int ifa_scope)
{
if (ifa_scope & IFA_HOST)
return RT_SCOPE_HOST;
else if (ifa_scope & IFA_LINK)
return RT_SCOPE_LINK;
else if (ifa_scope & IFA_SITE)
return RT_SCOPE_SITE;
else
return RT_SCOPE_UNIVERSE;
}
static inline int inet6_ifaddr_msgsize(void)
{
return NLMSG_ALIGN(sizeof(struct ifaddrmsg))
+ nla_total_size(16) /* IFA_ADDRESS */
+ nla_total_size(sizeof(struct ifa_cacheinfo));
}
static int inet6_fill_ifaddr(struct sk_buff *skb, struct inet6_ifaddr *ifa,
u32 pid, u32 seq, int event, unsigned int flags)
{
struct nlmsghdr *nlh;
u32 preferred, valid;
nlh = nlmsg_put(skb, pid, seq, event, sizeof(struct ifaddrmsg), flags);
if (nlh == NULL)
return -EMSGSIZE;
put_ifaddrmsg(nlh, ifa->prefix_len, ifa->flags, rt_scope(ifa->scope),
ifa->idev->dev->ifindex);
if (!(ifa->flags&IFA_F_PERMANENT)) {
preferred = ifa->prefered_lft;
valid = ifa->valid_lft;
if (preferred != INFINITY_LIFE_TIME) {
long tval = (jiffies - ifa->tstamp)/HZ;
preferred -= tval;
if (valid != INFINITY_LIFE_TIME)
valid -= tval;
}
} else {
preferred = INFINITY_LIFE_TIME;
valid = INFINITY_LIFE_TIME;
}
if (nla_put(skb, IFA_ADDRESS, 16, &ifa->addr) < 0 ||
put_cacheinfo(skb, ifa->cstamp, ifa->tstamp, preferred, valid) < 0) {
nlmsg_cancel(skb, nlh);
return -EMSGSIZE;
}
return nlmsg_end(skb, nlh);
}
static int inet6_fill_ifmcaddr(struct sk_buff *skb, struct ifmcaddr6 *ifmca,
u32 pid, u32 seq, int event, u16 flags)
{
struct nlmsghdr *nlh;
u8 scope = RT_SCOPE_UNIVERSE;
int ifindex = ifmca->idev->dev->ifindex;
if (ipv6_addr_scope(&ifmca->mca_addr) & IFA_SITE)
scope = RT_SCOPE_SITE;
nlh = nlmsg_put(skb, pid, seq, event, sizeof(struct ifaddrmsg), flags);
if (nlh == NULL)
return -EMSGSIZE;
put_ifaddrmsg(nlh, 128, IFA_F_PERMANENT, scope, ifindex);
if (nla_put(skb, IFA_MULTICAST, 16, &ifmca->mca_addr) < 0 ||
put_cacheinfo(skb, ifmca->mca_cstamp, ifmca->mca_tstamp,
INFINITY_LIFE_TIME, INFINITY_LIFE_TIME) < 0) {
nlmsg_cancel(skb, nlh);
return -EMSGSIZE;
}
return nlmsg_end(skb, nlh);
}
static int inet6_fill_ifacaddr(struct sk_buff *skb, struct ifacaddr6 *ifaca,
u32 pid, u32 seq, int event, unsigned int flags)
{
struct nlmsghdr *nlh;
u8 scope = RT_SCOPE_UNIVERSE;
int ifindex = ifaca->aca_idev->dev->ifindex;
if (ipv6_addr_scope(&ifaca->aca_addr) & IFA_SITE)
scope = RT_SCOPE_SITE;
nlh = nlmsg_put(skb, pid, seq, event, sizeof(struct ifaddrmsg), flags);
if (nlh == NULL)
return -EMSGSIZE;
put_ifaddrmsg(nlh, 128, IFA_F_PERMANENT, scope, ifindex);
if (nla_put(skb, IFA_ANYCAST, 16, &ifaca->aca_addr) < 0 ||
put_cacheinfo(skb, ifaca->aca_cstamp, ifaca->aca_tstamp,
INFINITY_LIFE_TIME, INFINITY_LIFE_TIME) < 0) {
nlmsg_cancel(skb, nlh);
return -EMSGSIZE;
}
return nlmsg_end(skb, nlh);
}
enum addr_type_t
{
UNICAST_ADDR,
MULTICAST_ADDR,
ANYCAST_ADDR,
};
static int inet6_dump_addr(struct sk_buff *skb, struct netlink_callback *cb,
enum addr_type_t type)
{
int idx, ip_idx;
int s_idx, s_ip_idx;
int err = 1;
struct net_device *dev;
struct inet6_dev *idev = NULL;
struct inet6_ifaddr *ifa;
struct ifmcaddr6 *ifmca;
struct ifacaddr6 *ifaca;
struct net *net = sock_net(skb->sk);
s_idx = cb->args[0];
s_ip_idx = ip_idx = cb->args[1];
idx = 0;
for_each_netdev(net, dev) {
if (idx < s_idx)
goto cont;
if (idx > s_idx)
s_ip_idx = 0;
ip_idx = 0;
if ((idev = in6_dev_get(dev)) == NULL)
goto cont;
read_lock_bh(&idev->lock);
switch (type) {
case UNICAST_ADDR:
/* unicast address incl. temp addr */
for (ifa = idev->addr_list; ifa;
ifa = ifa->if_next, ip_idx++) {
if (ip_idx < s_ip_idx)
continue;
err = inet6_fill_ifaddr(skb, ifa,
NETLINK_CB(cb->skb).pid,
cb->nlh->nlmsg_seq,
RTM_NEWADDR,
NLM_F_MULTI);
}
break;
case MULTICAST_ADDR:
/* multicast address */
for (ifmca = idev->mc_list; ifmca;
ifmca = ifmca->next, ip_idx++) {
if (ip_idx < s_ip_idx)
continue;
err = inet6_fill_ifmcaddr(skb, ifmca,
NETLINK_CB(cb->skb).pid,
cb->nlh->nlmsg_seq,
RTM_GETMULTICAST,
NLM_F_MULTI);
}
break;
case ANYCAST_ADDR:
/* anycast address */
for (ifaca = idev->ac_list; ifaca;
ifaca = ifaca->aca_next, ip_idx++) {
if (ip_idx < s_ip_idx)
continue;
err = inet6_fill_ifacaddr(skb, ifaca,
NETLINK_CB(cb->skb).pid,
cb->nlh->nlmsg_seq,
RTM_GETANYCAST,
NLM_F_MULTI);
}
break;
default:
break;
}
read_unlock_bh(&idev->lock);
in6_dev_put(idev);
if (err <= 0)
break;
cont:
idx++;
}
cb->args[0] = idx;
cb->args[1] = ip_idx;
return skb->len;
}
static int inet6_dump_ifaddr(struct sk_buff *skb, struct netlink_callback *cb)
{
enum addr_type_t type = UNICAST_ADDR;
return inet6_dump_addr(skb, cb, type);
}
static int inet6_dump_ifmcaddr(struct sk_buff *skb, struct netlink_callback *cb)
{
enum addr_type_t type = MULTICAST_ADDR;
return inet6_dump_addr(skb, cb, type);
}
static int inet6_dump_ifacaddr(struct sk_buff *skb, struct netlink_callback *cb)
{
enum addr_type_t type = ANYCAST_ADDR;
return inet6_dump_addr(skb, cb, type);
}
static int inet6_rtm_getaddr(struct sk_buff *in_skb, struct nlmsghdr* nlh,
void *arg)
{
struct net *net = sock_net(in_skb->sk);
struct ifaddrmsg *ifm;
struct nlattr *tb[IFA_MAX+1];
struct in6_addr *addr = NULL;
struct net_device *dev = NULL;
struct inet6_ifaddr *ifa;
struct sk_buff *skb;
int err;
err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFA_MAX, ifa_ipv6_policy);
if (err < 0)
goto errout;
addr = extract_addr(tb[IFA_ADDRESS], tb[IFA_LOCAL]);
if (addr == NULL) {
err = -EINVAL;
goto errout;
}
ifm = nlmsg_data(nlh);
if (ifm->ifa_index)
dev = __dev_get_by_index(net, ifm->ifa_index);
if ((ifa = ipv6_get_ifaddr(net, addr, dev, 1)) == NULL) {
err = -EADDRNOTAVAIL;
goto errout;
}
if ((skb = nlmsg_new(inet6_ifaddr_msgsize(), GFP_KERNEL)) == NULL) {
err = -ENOBUFS;
goto errout_ifa;
}
err = inet6_fill_ifaddr(skb, ifa, NETLINK_CB(in_skb).pid,
nlh->nlmsg_seq, RTM_NEWADDR, 0);
if (err < 0) {
/* -EMSGSIZE implies BUG in inet6_ifaddr_msgsize() */
WARN_ON(err == -EMSGSIZE);
kfree_skb(skb);
goto errout_ifa;
}
err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).pid);
errout_ifa:
in6_ifa_put(ifa);
errout:
return err;
}
static void inet6_ifa_notify(int event, struct inet6_ifaddr *ifa)
{
struct sk_buff *skb;
struct net *net = dev_net(ifa->idev->dev);
int err = -ENOBUFS;
skb = nlmsg_new(inet6_ifaddr_msgsize(), GFP_ATOMIC);
if (skb == NULL)
goto errout;
err = inet6_fill_ifaddr(skb, ifa, 0, 0, event, 0);
if (err < 0) {
/* -EMSGSIZE implies BUG in inet6_ifaddr_msgsize() */
WARN_ON(err == -EMSGSIZE);
kfree_skb(skb);
goto errout;
}
rtnl_notify(skb, net, 0, RTNLGRP_IPV6_IFADDR, NULL, GFP_ATOMIC);
return;
errout:
if (err < 0)
rtnl_set_sk_err(net, RTNLGRP_IPV6_IFADDR, err);
}
static inline void ipv6_store_devconf(struct ipv6_devconf *cnf,
__s32 *array, int bytes)
{
BUG_ON(bytes < (DEVCONF_MAX * 4));
memset(array, 0, bytes);
array[DEVCONF_FORWARDING] = cnf->forwarding;
array[DEVCONF_HOPLIMIT] = cnf->hop_limit;
array[DEVCONF_MTU6] = cnf->mtu6;
array[DEVCONF_ACCEPT_RA] = cnf->accept_ra;
array[DEVCONF_ACCEPT_REDIRECTS] = cnf->accept_redirects;
array[DEVCONF_AUTOCONF] = cnf->autoconf;
array[DEVCONF_DAD_TRANSMITS] = cnf->dad_transmits;
array[DEVCONF_RTR_SOLICITS] = cnf->rtr_solicits;
array[DEVCONF_RTR_SOLICIT_INTERVAL] = cnf->rtr_solicit_interval;
array[DEVCONF_RTR_SOLICIT_DELAY] = cnf->rtr_solicit_delay;
array[DEVCONF_FORCE_MLD_VERSION] = cnf->force_mld_version;
#ifdef CONFIG_IPV6_PRIVACY
array[DEVCONF_USE_TEMPADDR] = cnf->use_tempaddr;
array[DEVCONF_TEMP_VALID_LFT] = cnf->temp_valid_lft;
array[DEVCONF_TEMP_PREFERED_LFT] = cnf->temp_prefered_lft;
array[DEVCONF_REGEN_MAX_RETRY] = cnf->regen_max_retry;
array[DEVCONF_MAX_DESYNC_FACTOR] = cnf->max_desync_factor;
#endif
array[DEVCONF_MAX_ADDRESSES] = cnf->max_addresses;
array[DEVCONF_ACCEPT_RA_DEFRTR] = cnf->accept_ra_defrtr;
array[DEVCONF_ACCEPT_RA_PINFO] = cnf->accept_ra_pinfo;
#ifdef CONFIG_IPV6_ROUTER_PREF
array[DEVCONF_ACCEPT_RA_RTR_PREF] = cnf->accept_ra_rtr_pref;
array[DEVCONF_RTR_PROBE_INTERVAL] = cnf->rtr_probe_interval;
#ifdef CONFIG_IPV6_ROUTE_INFO
array[DEVCONF_ACCEPT_RA_RT_INFO_MAX_PLEN] = cnf->accept_ra_rt_info_max_plen;
#endif
#endif
array[DEVCONF_PROXY_NDP] = cnf->proxy_ndp;
array[DEVCONF_ACCEPT_SOURCE_ROUTE] = cnf->accept_source_route;
#ifdef CONFIG_IPV6_OPTIMISTIC_DAD
array[DEVCONF_OPTIMISTIC_DAD] = cnf->optimistic_dad;
#endif
#ifdef CONFIG_IPV6_MROUTE
array[DEVCONF_MC_FORWARDING] = cnf->mc_forwarding;
#endif
array[DEVCONF_DISABLE_IPV6] = cnf->disable_ipv6;
array[DEVCONF_ACCEPT_DAD] = cnf->accept_dad;
}
static inline size_t inet6_if_nlmsg_size(void)
{
return NLMSG_ALIGN(sizeof(struct ifinfomsg))
+ nla_total_size(IFNAMSIZ) /* IFLA_IFNAME */
+ nla_total_size(MAX_ADDR_LEN) /* IFLA_ADDRESS */
+ nla_total_size(4) /* IFLA_MTU */
+ nla_total_size(4) /* IFLA_LINK */
+ nla_total_size( /* IFLA_PROTINFO */
nla_total_size(4) /* IFLA_INET6_FLAGS */
+ nla_total_size(sizeof(struct ifla_cacheinfo))
+ nla_total_size(DEVCONF_MAX * 4) /* IFLA_INET6_CONF */
+ nla_total_size(IPSTATS_MIB_MAX * 8) /* IFLA_INET6_STATS */
+ nla_total_size(ICMP6_MIB_MAX * 8) /* IFLA_INET6_ICMP6STATS */
);
}
static inline void __snmp6_fill_stats(u64 *stats, void **mib, int items,
int bytes)
{
int i;
int pad = bytes - sizeof(u64) * items;
BUG_ON(pad < 0);
/* Use put_unaligned() because stats may not be aligned for u64. */
put_unaligned(items, &stats[0]);
for (i = 1; i < items; i++)
put_unaligned(snmp_fold_field(mib, i), &stats[i]);
memset(&stats[items], 0, pad);
}
static void snmp6_fill_stats(u64 *stats, struct inet6_dev *idev, int attrtype,
int bytes)
{
switch(attrtype) {
case IFLA_INET6_STATS:
__snmp6_fill_stats(stats, (void **)idev->stats.ipv6, IPSTATS_MIB_MAX, bytes);
break;
case IFLA_INET6_ICMP6STATS:
__snmp6_fill_stats(stats, (void **)idev->stats.icmpv6, ICMP6_MIB_MAX, bytes);
break;
}
}
static int inet6_fill_ifinfo(struct sk_buff *skb, struct inet6_dev *idev,
u32 pid, u32 seq, int event, unsigned int flags)
{
struct net_device *dev = idev->dev;
struct nlattr *nla;
struct ifinfomsg *hdr;
struct nlmsghdr *nlh;
void *protoinfo;
struct ifla_cacheinfo ci;
nlh = nlmsg_put(skb, pid, seq, event, sizeof(*hdr), flags);
if (nlh == NULL)
return -EMSGSIZE;
hdr = nlmsg_data(nlh);
hdr->ifi_family = AF_INET6;
hdr->__ifi_pad = 0;
hdr->ifi_type = dev->type;
hdr->ifi_index = dev->ifindex;
hdr->ifi_flags = dev_get_flags(dev);
hdr->ifi_change = 0;
NLA_PUT_STRING(skb, IFLA_IFNAME, dev->name);
if (dev->addr_len)
NLA_PUT(skb, IFLA_ADDRESS, dev->addr_len, dev->dev_addr);
NLA_PUT_U32(skb, IFLA_MTU, dev->mtu);
if (dev->ifindex != dev->iflink)
NLA_PUT_U32(skb, IFLA_LINK, dev->iflink);
protoinfo = nla_nest_start(skb, IFLA_PROTINFO);
if (protoinfo == NULL)
goto nla_put_failure;
NLA_PUT_U32(skb, IFLA_INET6_FLAGS, idev->if_flags);
ci.max_reasm_len = IPV6_MAXPLEN;
ci.tstamp = (__u32)(TIME_DELTA(idev->tstamp, INITIAL_JIFFIES) / HZ * 100
+ TIME_DELTA(idev->tstamp, INITIAL_JIFFIES) % HZ * 100 / HZ);
ci.reachable_time = idev->nd_parms->reachable_time;
ci.retrans_time = idev->nd_parms->retrans_time;
NLA_PUT(skb, IFLA_INET6_CACHEINFO, sizeof(ci), &ci);
nla = nla_reserve(skb, IFLA_INET6_CONF, DEVCONF_MAX * sizeof(s32));
if (nla == NULL)
goto nla_put_failure;
ipv6_store_devconf(&idev->cnf, nla_data(nla), nla_len(nla));
/* XXX - MC not implemented */
nla = nla_reserve(skb, IFLA_INET6_STATS, IPSTATS_MIB_MAX * sizeof(u64));
if (nla == NULL)
goto nla_put_failure;
snmp6_fill_stats(nla_data(nla), idev, IFLA_INET6_STATS, nla_len(nla));
nla = nla_reserve(skb, IFLA_INET6_ICMP6STATS, ICMP6_MIB_MAX * sizeof(u64));
if (nla == NULL)
goto nla_put_failure;
snmp6_fill_stats(nla_data(nla), idev, IFLA_INET6_ICMP6STATS, nla_len(nla));
nla_nest_end(skb, protoinfo);
return nlmsg_end(skb, nlh);
nla_put_failure:
nlmsg_cancel(skb, nlh);
return -EMSGSIZE;
}
static int inet6_dump_ifinfo(struct sk_buff *skb, struct netlink_callback *cb)
{
struct net *net = sock_net(skb->sk);
int idx, err;
int s_idx = cb->args[0];
struct net_device *dev;
struct inet6_dev *idev;
read_lock(&dev_base_lock);
idx = 0;
for_each_netdev(net, dev) {
if (idx < s_idx)
goto cont;
if ((idev = in6_dev_get(dev)) == NULL)
goto cont;
err = inet6_fill_ifinfo(skb, idev, NETLINK_CB(cb->skb).pid,
cb->nlh->nlmsg_seq, RTM_NEWLINK, NLM_F_MULTI);
in6_dev_put(idev);
if (err <= 0)
break;
cont:
idx++;
}
read_unlock(&dev_base_lock);
cb->args[0] = idx;
return skb->len;
}
void inet6_ifinfo_notify(int event, struct inet6_dev *idev)
{
struct sk_buff *skb;
struct net *net = dev_net(idev->dev);
int err = -ENOBUFS;
skb = nlmsg_new(inet6_if_nlmsg_size(), GFP_ATOMIC);
if (skb == NULL)
goto errout;
err = inet6_fill_ifinfo(skb, idev, 0, 0, event, 0);
if (err < 0) {
/* -EMSGSIZE implies BUG in inet6_if_nlmsg_size() */
WARN_ON(err == -EMSGSIZE);
kfree_skb(skb);
goto errout;
}
rtnl_notify(skb, net, 0, RTNLGRP_IPV6_IFADDR, NULL, GFP_ATOMIC);
return;
errout:
if (err < 0)
rtnl_set_sk_err(net, RTNLGRP_IPV6_IFADDR, err);
}
static inline size_t inet6_prefix_nlmsg_size(void)
{
return NLMSG_ALIGN(sizeof(struct prefixmsg))
+ nla_total_size(sizeof(struct in6_addr))
+ nla_total_size(sizeof(struct prefix_cacheinfo));
}
static int inet6_fill_prefix(struct sk_buff *skb, struct inet6_dev *idev,
struct prefix_info *pinfo, u32 pid, u32 seq,
int event, unsigned int flags)
{
struct prefixmsg *pmsg;
struct nlmsghdr *nlh;
struct prefix_cacheinfo ci;
nlh = nlmsg_put(skb, pid, seq, event, sizeof(*pmsg), flags);
if (nlh == NULL)
return -EMSGSIZE;
pmsg = nlmsg_data(nlh);
pmsg->prefix_family = AF_INET6;
pmsg->prefix_pad1 = 0;
pmsg->prefix_pad2 = 0;
pmsg->prefix_ifindex = idev->dev->ifindex;
pmsg->prefix_len = pinfo->prefix_len;
pmsg->prefix_type = pinfo->type;
pmsg->prefix_pad3 = 0;
pmsg->prefix_flags = 0;
if (pinfo->onlink)
pmsg->prefix_flags |= IF_PREFIX_ONLINK;
if (pinfo->autoconf)
pmsg->prefix_flags |= IF_PREFIX_AUTOCONF;
NLA_PUT(skb, PREFIX_ADDRESS, sizeof(pinfo->prefix), &pinfo->prefix);
ci.preferred_time = ntohl(pinfo->prefered);
ci.valid_time = ntohl(pinfo->valid);
NLA_PUT(skb, PREFIX_CACHEINFO, sizeof(ci), &ci);
return nlmsg_end(skb, nlh);
nla_put_failure:
nlmsg_cancel(skb, nlh);
return -EMSGSIZE;
}
static void inet6_prefix_notify(int event, struct inet6_dev *idev,
struct prefix_info *pinfo)
{
struct sk_buff *skb;
struct net *net = dev_net(idev->dev);
int err = -ENOBUFS;
skb = nlmsg_new(inet6_prefix_nlmsg_size(), GFP_ATOMIC);
if (skb == NULL)
goto errout;
err = inet6_fill_prefix(skb, idev, pinfo, 0, 0, event, 0);
if (err < 0) {
/* -EMSGSIZE implies BUG in inet6_prefix_nlmsg_size() */
WARN_ON(err == -EMSGSIZE);
kfree_skb(skb);
goto errout;
}
rtnl_notify(skb, net, 0, RTNLGRP_IPV6_PREFIX, NULL, GFP_ATOMIC);
return;
errout:
if (err < 0)
rtnl_set_sk_err(net, RTNLGRP_IPV6_PREFIX, err);
}
static void __ipv6_ifa_notify(int event, struct inet6_ifaddr *ifp)
{
inet6_ifa_notify(event ? : RTM_NEWADDR, ifp);
switch (event) {
case RTM_NEWADDR:
/*
* If the address was optimistic
* we inserted the route at the start of
* our DAD process, so we don't need
* to do it again
*/
if (!(ifp->rt->rt6i_node))
ip6_ins_rt(ifp->rt);
if (ifp->idev->cnf.forwarding)
addrconf_join_anycast(ifp);
break;
case RTM_DELADDR:
if (ifp->idev->cnf.forwarding)
addrconf_leave_anycast(ifp);
addrconf_leave_solict(ifp->idev, &ifp->addr);
dst_hold(&ifp->rt->u.dst);
if (ip6_del_rt(ifp->rt))
dst_free(&ifp->rt->u.dst);
break;
}
}
static void ipv6_ifa_notify(int event, struct inet6_ifaddr *ifp)
{
rcu_read_lock_bh();
if (likely(ifp->idev->dead == 0))
__ipv6_ifa_notify(event, ifp);
rcu_read_unlock_bh();
}
#ifdef CONFIG_SYSCTL
static
int addrconf_sysctl_forward(ctl_table *ctl, int write, struct file * filp,
void __user *buffer, size_t *lenp, loff_t *ppos)
{
int *valp = ctl->data;
int val = *valp;
int ret;
ret = proc_dointvec(ctl, write, filp, buffer, lenp, ppos);
if (write)
ret = addrconf_fixup_forwarding(ctl, valp, val);
return ret;
}
static int addrconf_sysctl_forward_strategy(ctl_table *table,
void __user *oldval,
size_t __user *oldlenp,
void __user *newval, size_t newlen)
{
int *valp = table->data;
int val = *valp;
int new;
if (!newval || !newlen)
return 0;
if (newlen != sizeof(int))
return -EINVAL;
if (get_user(new, (int __user *)newval))
return -EFAULT;
if (new == *valp)
return 0;
if (oldval && oldlenp) {
size_t len;
if (get_user(len, oldlenp))
return -EFAULT;
if (len) {
if (len > table->maxlen)
len = table->maxlen;
if (copy_to_user(oldval, valp, len))
return -EFAULT;
if (put_user(len, oldlenp))
return -EFAULT;
}
}
*valp = new;
return addrconf_fixup_forwarding(table, valp, val);
}
static void dev_disable_change(struct inet6_dev *idev)
{
if (!idev || !idev->dev)
return;
if (idev->cnf.disable_ipv6)
addrconf_notify(NULL, NETDEV_DOWN, idev->dev);
else
addrconf_notify(NULL, NETDEV_UP, idev->dev);
}
static void addrconf_disable_change(struct net *net, __s32 newf)
{
struct net_device *dev;
struct inet6_dev *idev;
read_lock(&dev_base_lock);
for_each_netdev(net, dev) {
rcu_read_lock();
idev = __in6_dev_get(dev);
if (idev) {
int changed = (!idev->cnf.disable_ipv6) ^ (!newf);
idev->cnf.disable_ipv6 = newf;
if (changed)
dev_disable_change(idev);
}
rcu_read_unlock();
}
read_unlock(&dev_base_lock);
}
static int addrconf_disable_ipv6(struct ctl_table *table, int *p, int old)
{
struct net *net;
net = (struct net *)table->extra2;
if (p == &net->ipv6.devconf_dflt->disable_ipv6)
return 0;
if (!rtnl_trylock())
return restart_syscall();
if (p == &net->ipv6.devconf_all->disable_ipv6) {
__s32 newf = net->ipv6.devconf_all->disable_ipv6;
net->ipv6.devconf_dflt->disable_ipv6 = newf;
addrconf_disable_change(net, newf);
} else if ((!*p) ^ (!old))
dev_disable_change((struct inet6_dev *)table->extra1);
rtnl_unlock();
return 0;
}
static
int addrconf_sysctl_disable(ctl_table *ctl, int write, struct file * filp,
void __user *buffer, size_t *lenp, loff_t *ppos)
{
int *valp = ctl->data;
int val = *valp;
int ret;
ret = proc_dointvec(ctl, write, filp, buffer, lenp, ppos);
if (write)
ret = addrconf_disable_ipv6(ctl, valp, val);
return ret;
}
static struct addrconf_sysctl_table
{
struct ctl_table_header *sysctl_header;
ctl_table addrconf_vars[DEVCONF_MAX+1];
char *dev_name;
} addrconf_sysctl __read_mostly = {
.sysctl_header = NULL,
.addrconf_vars = {
{
.ctl_name = NET_IPV6_FORWARDING,
.procname = "forwarding",
.data = &ipv6_devconf.forwarding,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = addrconf_sysctl_forward,
.strategy = addrconf_sysctl_forward_strategy,
},
{
.ctl_name = NET_IPV6_HOP_LIMIT,
.procname = "hop_limit",
.data = &ipv6_devconf.hop_limit,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.ctl_name = NET_IPV6_MTU,
.procname = "mtu",
.data = &ipv6_devconf.mtu6,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.ctl_name = NET_IPV6_ACCEPT_RA,
.procname = "accept_ra",
.data = &ipv6_devconf.accept_ra,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.ctl_name = NET_IPV6_ACCEPT_REDIRECTS,
.procname = "accept_redirects",
.data = &ipv6_devconf.accept_redirects,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.ctl_name = NET_IPV6_AUTOCONF,
.procname = "autoconf",
.data = &ipv6_devconf.autoconf,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.ctl_name = NET_IPV6_DAD_TRANSMITS,
.procname = "dad_transmits",
.data = &ipv6_devconf.dad_transmits,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.ctl_name = NET_IPV6_RTR_SOLICITS,
.procname = "router_solicitations",
.data = &ipv6_devconf.rtr_solicits,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.ctl_name = NET_IPV6_RTR_SOLICIT_INTERVAL,
.procname = "router_solicitation_interval",
.data = &ipv6_devconf.rtr_solicit_interval,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_jiffies,
.strategy = sysctl_jiffies,
},
{
.ctl_name = NET_IPV6_RTR_SOLICIT_DELAY,
.procname = "router_solicitation_delay",
.data = &ipv6_devconf.rtr_solicit_delay,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_jiffies,
.strategy = sysctl_jiffies,
},
{
.ctl_name = NET_IPV6_FORCE_MLD_VERSION,
.procname = "force_mld_version",
.data = &ipv6_devconf.force_mld_version,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
#ifdef CONFIG_IPV6_PRIVACY
{
.ctl_name = NET_IPV6_USE_TEMPADDR,
.procname = "use_tempaddr",
.data = &ipv6_devconf.use_tempaddr,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.ctl_name = NET_IPV6_TEMP_VALID_LFT,
.procname = "temp_valid_lft",
.data = &ipv6_devconf.temp_valid_lft,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.ctl_name = NET_IPV6_TEMP_PREFERED_LFT,
.procname = "temp_prefered_lft",
.data = &ipv6_devconf.temp_prefered_lft,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.ctl_name = NET_IPV6_REGEN_MAX_RETRY,
.procname = "regen_max_retry",
.data = &ipv6_devconf.regen_max_retry,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.ctl_name = NET_IPV6_MAX_DESYNC_FACTOR,
.procname = "max_desync_factor",
.data = &ipv6_devconf.max_desync_factor,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
#endif
{
.ctl_name = NET_IPV6_MAX_ADDRESSES,
.procname = "max_addresses",
.data = &ipv6_devconf.max_addresses,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.ctl_name = NET_IPV6_ACCEPT_RA_DEFRTR,
.procname = "accept_ra_defrtr",
.data = &ipv6_devconf.accept_ra_defrtr,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.ctl_name = NET_IPV6_ACCEPT_RA_PINFO,
.procname = "accept_ra_pinfo",
.data = &ipv6_devconf.accept_ra_pinfo,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
#ifdef CONFIG_IPV6_ROUTER_PREF
{
.ctl_name = NET_IPV6_ACCEPT_RA_RTR_PREF,
.procname = "accept_ra_rtr_pref",
.data = &ipv6_devconf.accept_ra_rtr_pref,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.ctl_name = NET_IPV6_RTR_PROBE_INTERVAL,
.procname = "router_probe_interval",
.data = &ipv6_devconf.rtr_probe_interval,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_jiffies,
.strategy = sysctl_jiffies,
},
#ifdef CONFIG_IPV6_ROUTE_INFO
{
.ctl_name = NET_IPV6_ACCEPT_RA_RT_INFO_MAX_PLEN,
.procname = "accept_ra_rt_info_max_plen",
.data = &ipv6_devconf.accept_ra_rt_info_max_plen,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
#endif
#endif
{
.ctl_name = NET_IPV6_PROXY_NDP,
.procname = "proxy_ndp",
.data = &ipv6_devconf.proxy_ndp,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.ctl_name = NET_IPV6_ACCEPT_SOURCE_ROUTE,
.procname = "accept_source_route",
.data = &ipv6_devconf.accept_source_route,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
#ifdef CONFIG_IPV6_OPTIMISTIC_DAD
{
.ctl_name = CTL_UNNUMBERED,
.procname = "optimistic_dad",
.data = &ipv6_devconf.optimistic_dad,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
#endif
#ifdef CONFIG_IPV6_MROUTE
{
.ctl_name = CTL_UNNUMBERED,
.procname = "mc_forwarding",
.data = &ipv6_devconf.mc_forwarding,
.maxlen = sizeof(int),
.mode = 0444,
.proc_handler = proc_dointvec,
},
#endif
{
.ctl_name = CTL_UNNUMBERED,
.procname = "disable_ipv6",
.data = &ipv6_devconf.disable_ipv6,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = addrconf_sysctl_disable,
.strategy = sysctl_intvec,
},
{
.ctl_name = CTL_UNNUMBERED,
.procname = "accept_dad",
.data = &ipv6_devconf.accept_dad,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.ctl_name = 0, /* sentinel */
}
},
};
static int __addrconf_sysctl_register(struct net *net, char *dev_name,
int ctl_name, struct inet6_dev *idev, struct ipv6_devconf *p)
{
int i;
struct addrconf_sysctl_table *t;
#define ADDRCONF_CTL_PATH_DEV 3
struct ctl_path addrconf_ctl_path[] = {
{ .procname = "net", .ctl_name = CTL_NET, },
{ .procname = "ipv6", .ctl_name = NET_IPV6, },
{ .procname = "conf", .ctl_name = NET_IPV6_CONF, },
{ /* to be set */ },
{ },
};
t = kmemdup(&addrconf_sysctl, sizeof(*t), GFP_KERNEL);
if (t == NULL)
goto out;
for (i=0; t->addrconf_vars[i].data; i++) {
t->addrconf_vars[i].data += (char*)p - (char*)&ipv6_devconf;
t->addrconf_vars[i].extra1 = idev; /* embedded; no ref */
t->addrconf_vars[i].extra2 = net;
}
/*
* Make a copy of dev_name, because '.procname' is regarded as const
* by sysctl and we wouldn't want anyone to change it under our feet
* (see SIOCSIFNAME).
*/
t->dev_name = kstrdup(dev_name, GFP_KERNEL);
if (!t->dev_name)
goto free;
addrconf_ctl_path[ADDRCONF_CTL_PATH_DEV].procname = t->dev_name;
addrconf_ctl_path[ADDRCONF_CTL_PATH_DEV].ctl_name = ctl_name;
t->sysctl_header = register_net_sysctl_table(net, addrconf_ctl_path,
t->addrconf_vars);
if (t->sysctl_header == NULL)
goto free_procname;
p->sysctl = t;
return 0;
free_procname:
kfree(t->dev_name);
free:
kfree(t);
out:
return -ENOBUFS;
}
static void __addrconf_sysctl_unregister(struct ipv6_devconf *p)
{
struct addrconf_sysctl_table *t;
if (p->sysctl == NULL)
return;
t = p->sysctl;
p->sysctl = NULL;
unregister_sysctl_table(t->sysctl_header);
kfree(t->dev_name);
kfree(t);
}
static void addrconf_sysctl_register(struct inet6_dev *idev)
{
neigh_sysctl_register(idev->dev, idev->nd_parms, NET_IPV6,
NET_IPV6_NEIGH, "ipv6",
&ndisc_ifinfo_sysctl_change,
ndisc_ifinfo_sysctl_strategy);
__addrconf_sysctl_register(dev_net(idev->dev), idev->dev->name,
idev->dev->ifindex, idev, &idev->cnf);
}
static void addrconf_sysctl_unregister(struct inet6_dev *idev)
{
__addrconf_sysctl_unregister(&idev->cnf);
neigh_sysctl_unregister(idev->nd_parms);
}
#endif
static int addrconf_init_net(struct net *net)
{
int err;
struct ipv6_devconf *all, *dflt;
err = -ENOMEM;
all = &ipv6_devconf;
dflt = &ipv6_devconf_dflt;
if (net != &init_net) {
all = kmemdup(all, sizeof(ipv6_devconf), GFP_KERNEL);
if (all == NULL)
goto err_alloc_all;
dflt = kmemdup(dflt, sizeof(ipv6_devconf_dflt), GFP_KERNEL);
if (dflt == NULL)
goto err_alloc_dflt;
} else {
/* these will be inherited by all namespaces */
dflt->autoconf = ipv6_defaults.autoconf;
dflt->disable_ipv6 = ipv6_defaults.disable_ipv6;
}
net->ipv6.devconf_all = all;
net->ipv6.devconf_dflt = dflt;
#ifdef CONFIG_SYSCTL
err = __addrconf_sysctl_register(net, "all", NET_PROTO_CONF_ALL,
NULL, all);
if (err < 0)
goto err_reg_all;
err = __addrconf_sysctl_register(net, "default", NET_PROTO_CONF_DEFAULT,
NULL, dflt);
if (err < 0)
goto err_reg_dflt;
#endif
return 0;
#ifdef CONFIG_SYSCTL
err_reg_dflt:
__addrconf_sysctl_unregister(all);
err_reg_all:
kfree(dflt);
#endif
err_alloc_dflt:
kfree(all);
err_alloc_all:
return err;
}
static void addrconf_exit_net(struct net *net)
{
#ifdef CONFIG_SYSCTL
__addrconf_sysctl_unregister(net->ipv6.devconf_dflt);
__addrconf_sysctl_unregister(net->ipv6.devconf_all);
#endif
if (net != &init_net) {
kfree(net->ipv6.devconf_dflt);
kfree(net->ipv6.devconf_all);
}
}
static struct pernet_operations addrconf_ops = {
.init = addrconf_init_net,
.exit = addrconf_exit_net,
};
/*
* Device notifier
*/
int register_inet6addr_notifier(struct notifier_block *nb)
{
return atomic_notifier_chain_register(&inet6addr_chain, nb);
}
EXPORT_SYMBOL(register_inet6addr_notifier);
int unregister_inet6addr_notifier(struct notifier_block *nb)
{
return atomic_notifier_chain_unregister(&inet6addr_chain,nb);
}
EXPORT_SYMBOL(unregister_inet6addr_notifier);
/*
* Init / cleanup code
*/
int __init addrconf_init(void)
{
int err;
if ((err = ipv6_addr_label_init()) < 0) {
printk(KERN_CRIT "IPv6 Addrconf: cannot initialize default policy table: %d.\n",
err);
return err;
}
register_pernet_subsys(&addrconf_ops);
/* The addrconf netdev notifier requires that loopback_dev
* has it's ipv6 private information allocated and setup
* before it can bring up and give link-local addresses
* to other devices which are up.
*
* Unfortunately, loopback_dev is not necessarily the first
* entry in the global dev_base list of net devices. In fact,
* it is likely to be the very last entry on that list.
* So this causes the notifier registry below to try and
* give link-local addresses to all devices besides loopback_dev
* first, then loopback_dev, which cases all the non-loopback_dev
* devices to fail to get a link-local address.
*
* So, as a temporary fix, allocate the ipv6 structure for
* loopback_dev first by hand.
* Longer term, all of the dependencies ipv6 has upon the loopback
* device and it being up should be removed.
*/
rtnl_lock();
if (!ipv6_add_dev(init_net.loopback_dev))
err = -ENOMEM;
rtnl_unlock();
if (err)
goto errlo;
register_netdevice_notifier(&ipv6_dev_notf);
addrconf_verify(0);
err = __rtnl_register(PF_INET6, RTM_GETLINK, NULL, inet6_dump_ifinfo);
if (err < 0)
goto errout;
/* Only the first call to __rtnl_register can fail */
__rtnl_register(PF_INET6, RTM_NEWADDR, inet6_rtm_newaddr, NULL);
__rtnl_register(PF_INET6, RTM_DELADDR, inet6_rtm_deladdr, NULL);
__rtnl_register(PF_INET6, RTM_GETADDR, inet6_rtm_getaddr, inet6_dump_ifaddr);
__rtnl_register(PF_INET6, RTM_GETMULTICAST, NULL, inet6_dump_ifmcaddr);
__rtnl_register(PF_INET6, RTM_GETANYCAST, NULL, inet6_dump_ifacaddr);
ipv6_addr_label_rtnl_register();
return 0;
errout:
unregister_netdevice_notifier(&ipv6_dev_notf);
errlo:
unregister_pernet_subsys(&addrconf_ops);
return err;
}
void addrconf_cleanup(void)
{
struct inet6_ifaddr *ifa;
struct net_device *dev;
int i;
unregister_netdevice_notifier(&ipv6_dev_notf);
unregister_pernet_subsys(&addrconf_ops);
rtnl_lock();
/* clean dev list */
for_each_netdev(&init_net, dev) {
if (__in6_dev_get(dev) == NULL)
continue;
addrconf_ifdown(dev, 1);
}
addrconf_ifdown(init_net.loopback_dev, 2);
/*
* Check hash table.
*/
write_lock_bh(&addrconf_hash_lock);
for (i=0; i < IN6_ADDR_HSIZE; i++) {
for (ifa=inet6_addr_lst[i]; ifa; ) {
struct inet6_ifaddr *bifa;
bifa = ifa;
ifa = ifa->lst_next;
printk(KERN_DEBUG "bug: IPv6 address leakage detected: ifa=%p\n", bifa);
/* Do not free it; something is wrong.
Now we can investigate it with debugger.
*/
}
}
write_unlock_bh(&addrconf_hash_lock);
del_timer(&addr_chk_timer);
rtnl_unlock();
}