kernel_optimize_test/net/sunrpc/auth_gss/auth_gss.c
Olga Kornievskaia adeb8133dd rpc: spkm3 update
This updates the spkm3 code to bring it up to date with our current
understanding of the spkm3 spec.

In doing so, we're changing the downcall format used by gssd in the spkm3 case,
which will cause an incompatilibity with old userland spkm3 support.  Since the
old code a) didn't implement the protocol correctly, and b) was never
distributed except in the form of some experimental patches from the citi web
site, we're assuming this is OK.

We do detect the old downcall format and print warning (and fail).  We also
include a version number in the new downcall format, to be used in the
future in case any further change is required.

In some more detail:

	- fix integrity support
	- removed dependency on NIDs. instead OIDs are used
	- known OID values for algorithms added.
	- fixed some context fields and types

Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2006-12-06 10:46:44 -05:00

1260 lines
32 KiB
C

/*
* linux/net/sunrpc/auth_gss/auth_gss.c
*
* RPCSEC_GSS client authentication.
*
* Copyright (c) 2000 The Regents of the University of Michigan.
* All rights reserved.
*
* Dug Song <dugsong@monkey.org>
* Andy Adamson <andros@umich.edu>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/pagemap.h>
#include <linux/sunrpc/clnt.h>
#include <linux/sunrpc/auth.h>
#include <linux/sunrpc/auth_gss.h>
#include <linux/sunrpc/svcauth_gss.h>
#include <linux/sunrpc/gss_err.h>
#include <linux/workqueue.h>
#include <linux/sunrpc/rpc_pipe_fs.h>
#include <linux/sunrpc/gss_api.h>
#include <asm/uaccess.h>
static struct rpc_authops authgss_ops;
static struct rpc_credops gss_credops;
#ifdef RPC_DEBUG
# define RPCDBG_FACILITY RPCDBG_AUTH
#endif
#define NFS_NGROUPS 16
#define GSS_CRED_EXPIRE (60 * HZ) /* XXX: reasonable? */
#define GSS_CRED_SLACK 1024 /* XXX: unused */
/* length of a krb5 verifier (48), plus data added before arguments when
* using integrity (two 4-byte integers): */
#define GSS_VERF_SLACK 100
/* XXX this define must match the gssd define
* as it is passed to gssd to signal the use of
* machine creds should be part of the shared rpc interface */
#define CA_RUN_AS_MACHINE 0x00000200
/* dump the buffer in `emacs-hexl' style */
#define isprint(c) ((c > 0x1f) && (c < 0x7f))
static DEFINE_RWLOCK(gss_ctx_lock);
struct gss_auth {
struct rpc_auth rpc_auth;
struct gss_api_mech *mech;
enum rpc_gss_svc service;
struct list_head upcalls;
struct rpc_clnt *client;
struct dentry *dentry;
spinlock_t lock;
};
static void gss_destroy_ctx(struct gss_cl_ctx *);
static struct rpc_pipe_ops gss_upcall_ops;
static inline struct gss_cl_ctx *
gss_get_ctx(struct gss_cl_ctx *ctx)
{
atomic_inc(&ctx->count);
return ctx;
}
static inline void
gss_put_ctx(struct gss_cl_ctx *ctx)
{
if (atomic_dec_and_test(&ctx->count))
gss_destroy_ctx(ctx);
}
static void
gss_cred_set_ctx(struct rpc_cred *cred, struct gss_cl_ctx *ctx)
{
struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
struct gss_cl_ctx *old;
write_lock(&gss_ctx_lock);
old = gss_cred->gc_ctx;
gss_cred->gc_ctx = ctx;
cred->cr_flags |= RPCAUTH_CRED_UPTODATE;
cred->cr_flags &= ~RPCAUTH_CRED_NEW;
write_unlock(&gss_ctx_lock);
if (old)
gss_put_ctx(old);
}
static int
gss_cred_is_uptodate_ctx(struct rpc_cred *cred)
{
struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
int res = 0;
read_lock(&gss_ctx_lock);
if ((cred->cr_flags & RPCAUTH_CRED_UPTODATE) && gss_cred->gc_ctx)
res = 1;
read_unlock(&gss_ctx_lock);
return res;
}
static const void *
simple_get_bytes(const void *p, const void *end, void *res, size_t len)
{
const void *q = (const void *)((const char *)p + len);
if (unlikely(q > end || q < p))
return ERR_PTR(-EFAULT);
memcpy(res, p, len);
return q;
}
static inline const void *
simple_get_netobj(const void *p, const void *end, struct xdr_netobj *dest)
{
const void *q;
unsigned int len;
p = simple_get_bytes(p, end, &len, sizeof(len));
if (IS_ERR(p))
return p;
q = (const void *)((const char *)p + len);
if (unlikely(q > end || q < p))
return ERR_PTR(-EFAULT);
dest->data = kmemdup(p, len, GFP_KERNEL);
if (unlikely(dest->data == NULL))
return ERR_PTR(-ENOMEM);
dest->len = len;
return q;
}
static struct gss_cl_ctx *
gss_cred_get_ctx(struct rpc_cred *cred)
{
struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
struct gss_cl_ctx *ctx = NULL;
read_lock(&gss_ctx_lock);
if (gss_cred->gc_ctx)
ctx = gss_get_ctx(gss_cred->gc_ctx);
read_unlock(&gss_ctx_lock);
return ctx;
}
static struct gss_cl_ctx *
gss_alloc_context(void)
{
struct gss_cl_ctx *ctx;
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (ctx != NULL) {
ctx->gc_proc = RPC_GSS_PROC_DATA;
ctx->gc_seq = 1; /* NetApp 6.4R1 doesn't accept seq. no. 0 */
spin_lock_init(&ctx->gc_seq_lock);
atomic_set(&ctx->count,1);
}
return ctx;
}
#define GSSD_MIN_TIMEOUT (60 * 60)
static const void *
gss_fill_context(const void *p, const void *end, struct gss_cl_ctx *ctx, struct gss_api_mech *gm)
{
const void *q;
unsigned int seclen;
unsigned int timeout;
u32 window_size;
int ret;
/* First unsigned int gives the lifetime (in seconds) of the cred */
p = simple_get_bytes(p, end, &timeout, sizeof(timeout));
if (IS_ERR(p))
goto err;
if (timeout == 0)
timeout = GSSD_MIN_TIMEOUT;
ctx->gc_expiry = jiffies + (unsigned long)timeout * HZ * 3 / 4;
/* Sequence number window. Determines the maximum number of simultaneous requests */
p = simple_get_bytes(p, end, &window_size, sizeof(window_size));
if (IS_ERR(p))
goto err;
ctx->gc_win = window_size;
/* gssd signals an error by passing ctx->gc_win = 0: */
if (ctx->gc_win == 0) {
/* in which case, p points to an error code which we ignore */
p = ERR_PTR(-EACCES);
goto err;
}
/* copy the opaque wire context */
p = simple_get_netobj(p, end, &ctx->gc_wire_ctx);
if (IS_ERR(p))
goto err;
/* import the opaque security context */
p = simple_get_bytes(p, end, &seclen, sizeof(seclen));
if (IS_ERR(p))
goto err;
q = (const void *)((const char *)p + seclen);
if (unlikely(q > end || q < p)) {
p = ERR_PTR(-EFAULT);
goto err;
}
ret = gss_import_sec_context(p, seclen, gm, &ctx->gc_gss_ctx);
if (ret < 0) {
p = ERR_PTR(ret);
goto err;
}
return q;
err:
dprintk("RPC: gss_fill_context returning %ld\n", -PTR_ERR(p));
return p;
}
struct gss_upcall_msg {
atomic_t count;
uid_t uid;
struct rpc_pipe_msg msg;
struct list_head list;
struct gss_auth *auth;
struct rpc_wait_queue rpc_waitqueue;
wait_queue_head_t waitqueue;
struct gss_cl_ctx *ctx;
};
static void
gss_release_msg(struct gss_upcall_msg *gss_msg)
{
if (!atomic_dec_and_test(&gss_msg->count))
return;
BUG_ON(!list_empty(&gss_msg->list));
if (gss_msg->ctx != NULL)
gss_put_ctx(gss_msg->ctx);
kfree(gss_msg);
}
static struct gss_upcall_msg *
__gss_find_upcall(struct gss_auth *gss_auth, uid_t uid)
{
struct gss_upcall_msg *pos;
list_for_each_entry(pos, &gss_auth->upcalls, list) {
if (pos->uid != uid)
continue;
atomic_inc(&pos->count);
dprintk("RPC: gss_find_upcall found msg %p\n", pos);
return pos;
}
dprintk("RPC: gss_find_upcall found nothing\n");
return NULL;
}
/* Try to add a upcall to the pipefs queue.
* If an upcall owned by our uid already exists, then we return a reference
* to that upcall instead of adding the new upcall.
*/
static inline struct gss_upcall_msg *
gss_add_msg(struct gss_auth *gss_auth, struct gss_upcall_msg *gss_msg)
{
struct gss_upcall_msg *old;
spin_lock(&gss_auth->lock);
old = __gss_find_upcall(gss_auth, gss_msg->uid);
if (old == NULL) {
atomic_inc(&gss_msg->count);
list_add(&gss_msg->list, &gss_auth->upcalls);
} else
gss_msg = old;
spin_unlock(&gss_auth->lock);
return gss_msg;
}
static void
__gss_unhash_msg(struct gss_upcall_msg *gss_msg)
{
if (list_empty(&gss_msg->list))
return;
list_del_init(&gss_msg->list);
rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno);
wake_up_all(&gss_msg->waitqueue);
atomic_dec(&gss_msg->count);
}
static void
gss_unhash_msg(struct gss_upcall_msg *gss_msg)
{
struct gss_auth *gss_auth = gss_msg->auth;
spin_lock(&gss_auth->lock);
__gss_unhash_msg(gss_msg);
spin_unlock(&gss_auth->lock);
}
static void
gss_upcall_callback(struct rpc_task *task)
{
struct gss_cred *gss_cred = container_of(task->tk_msg.rpc_cred,
struct gss_cred, gc_base);
struct gss_upcall_msg *gss_msg = gss_cred->gc_upcall;
BUG_ON(gss_msg == NULL);
if (gss_msg->ctx)
gss_cred_set_ctx(task->tk_msg.rpc_cred, gss_get_ctx(gss_msg->ctx));
else
task->tk_status = gss_msg->msg.errno;
spin_lock(&gss_msg->auth->lock);
gss_cred->gc_upcall = NULL;
rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno);
spin_unlock(&gss_msg->auth->lock);
gss_release_msg(gss_msg);
}
static inline struct gss_upcall_msg *
gss_alloc_msg(struct gss_auth *gss_auth, uid_t uid)
{
struct gss_upcall_msg *gss_msg;
gss_msg = kzalloc(sizeof(*gss_msg), GFP_KERNEL);
if (gss_msg != NULL) {
INIT_LIST_HEAD(&gss_msg->list);
rpc_init_wait_queue(&gss_msg->rpc_waitqueue, "RPCSEC_GSS upcall waitq");
init_waitqueue_head(&gss_msg->waitqueue);
atomic_set(&gss_msg->count, 1);
gss_msg->msg.data = &gss_msg->uid;
gss_msg->msg.len = sizeof(gss_msg->uid);
gss_msg->uid = uid;
gss_msg->auth = gss_auth;
}
return gss_msg;
}
static struct gss_upcall_msg *
gss_setup_upcall(struct rpc_clnt *clnt, struct gss_auth *gss_auth, struct rpc_cred *cred)
{
struct gss_upcall_msg *gss_new, *gss_msg;
gss_new = gss_alloc_msg(gss_auth, cred->cr_uid);
if (gss_new == NULL)
return ERR_PTR(-ENOMEM);
gss_msg = gss_add_msg(gss_auth, gss_new);
if (gss_msg == gss_new) {
int res = rpc_queue_upcall(gss_auth->dentry->d_inode, &gss_new->msg);
if (res) {
gss_unhash_msg(gss_new);
gss_msg = ERR_PTR(res);
}
} else
gss_release_msg(gss_new);
return gss_msg;
}
static inline int
gss_refresh_upcall(struct rpc_task *task)
{
struct rpc_cred *cred = task->tk_msg.rpc_cred;
struct gss_auth *gss_auth = container_of(task->tk_client->cl_auth,
struct gss_auth, rpc_auth);
struct gss_cred *gss_cred = container_of(cred,
struct gss_cred, gc_base);
struct gss_upcall_msg *gss_msg;
int err = 0;
dprintk("RPC: %4u gss_refresh_upcall for uid %u\n", task->tk_pid, cred->cr_uid);
gss_msg = gss_setup_upcall(task->tk_client, gss_auth, cred);
if (IS_ERR(gss_msg)) {
err = PTR_ERR(gss_msg);
goto out;
}
spin_lock(&gss_auth->lock);
if (gss_cred->gc_upcall != NULL)
rpc_sleep_on(&gss_cred->gc_upcall->rpc_waitqueue, task, NULL, NULL);
else if (gss_msg->ctx == NULL && gss_msg->msg.errno >= 0) {
task->tk_timeout = 0;
gss_cred->gc_upcall = gss_msg;
/* gss_upcall_callback will release the reference to gss_upcall_msg */
atomic_inc(&gss_msg->count);
rpc_sleep_on(&gss_msg->rpc_waitqueue, task, gss_upcall_callback, NULL);
} else
err = gss_msg->msg.errno;
spin_unlock(&gss_auth->lock);
gss_release_msg(gss_msg);
out:
dprintk("RPC: %4u gss_refresh_upcall for uid %u result %d\n", task->tk_pid,
cred->cr_uid, err);
return err;
}
static inline int
gss_create_upcall(struct gss_auth *gss_auth, struct gss_cred *gss_cred)
{
struct rpc_cred *cred = &gss_cred->gc_base;
struct gss_upcall_msg *gss_msg;
DEFINE_WAIT(wait);
int err = 0;
dprintk("RPC: gss_upcall for uid %u\n", cred->cr_uid);
gss_msg = gss_setup_upcall(gss_auth->client, gss_auth, cred);
if (IS_ERR(gss_msg)) {
err = PTR_ERR(gss_msg);
goto out;
}
for (;;) {
prepare_to_wait(&gss_msg->waitqueue, &wait, TASK_INTERRUPTIBLE);
spin_lock(&gss_auth->lock);
if (gss_msg->ctx != NULL || gss_msg->msg.errno < 0) {
spin_unlock(&gss_auth->lock);
break;
}
spin_unlock(&gss_auth->lock);
if (signalled()) {
err = -ERESTARTSYS;
goto out_intr;
}
schedule();
}
if (gss_msg->ctx)
gss_cred_set_ctx(cred, gss_get_ctx(gss_msg->ctx));
else
err = gss_msg->msg.errno;
out_intr:
finish_wait(&gss_msg->waitqueue, &wait);
gss_release_msg(gss_msg);
out:
dprintk("RPC: gss_create_upcall for uid %u result %d\n", cred->cr_uid, err);
return err;
}
static ssize_t
gss_pipe_upcall(struct file *filp, struct rpc_pipe_msg *msg,
char __user *dst, size_t buflen)
{
char *data = (char *)msg->data + msg->copied;
ssize_t mlen = msg->len;
ssize_t left;
if (mlen > buflen)
mlen = buflen;
left = copy_to_user(dst, data, mlen);
if (left < 0) {
msg->errno = left;
return left;
}
mlen -= left;
msg->copied += mlen;
msg->errno = 0;
return mlen;
}
#define MSG_BUF_MAXSIZE 1024
static ssize_t
gss_pipe_downcall(struct file *filp, const char __user *src, size_t mlen)
{
const void *p, *end;
void *buf;
struct rpc_clnt *clnt;
struct gss_auth *gss_auth;
struct rpc_cred *cred;
struct gss_upcall_msg *gss_msg;
struct gss_cl_ctx *ctx;
uid_t uid;
int err = -EFBIG;
if (mlen > MSG_BUF_MAXSIZE)
goto out;
err = -ENOMEM;
buf = kmalloc(mlen, GFP_KERNEL);
if (!buf)
goto out;
clnt = RPC_I(filp->f_dentry->d_inode)->private;
err = -EFAULT;
if (copy_from_user(buf, src, mlen))
goto err;
end = (const void *)((char *)buf + mlen);
p = simple_get_bytes(buf, end, &uid, sizeof(uid));
if (IS_ERR(p)) {
err = PTR_ERR(p);
goto err;
}
err = -ENOMEM;
ctx = gss_alloc_context();
if (ctx == NULL)
goto err;
err = 0;
gss_auth = container_of(clnt->cl_auth, struct gss_auth, rpc_auth);
p = gss_fill_context(p, end, ctx, gss_auth->mech);
if (IS_ERR(p)) {
err = PTR_ERR(p);
if (err != -EACCES)
goto err_put_ctx;
}
spin_lock(&gss_auth->lock);
gss_msg = __gss_find_upcall(gss_auth, uid);
if (gss_msg) {
if (err == 0 && gss_msg->ctx == NULL)
gss_msg->ctx = gss_get_ctx(ctx);
gss_msg->msg.errno = err;
__gss_unhash_msg(gss_msg);
spin_unlock(&gss_auth->lock);
gss_release_msg(gss_msg);
} else {
struct auth_cred acred = { .uid = uid };
spin_unlock(&gss_auth->lock);
cred = rpcauth_lookup_credcache(clnt->cl_auth, &acred, RPCAUTH_LOOKUP_NEW);
if (IS_ERR(cred)) {
err = PTR_ERR(cred);
goto err_put_ctx;
}
gss_cred_set_ctx(cred, gss_get_ctx(ctx));
}
gss_put_ctx(ctx);
kfree(buf);
dprintk("RPC: gss_pipe_downcall returning length %Zu\n", mlen);
return mlen;
err_put_ctx:
gss_put_ctx(ctx);
err:
kfree(buf);
out:
dprintk("RPC: gss_pipe_downcall returning %d\n", err);
return err;
}
static void
gss_pipe_release(struct inode *inode)
{
struct rpc_inode *rpci = RPC_I(inode);
struct rpc_clnt *clnt;
struct rpc_auth *auth;
struct gss_auth *gss_auth;
clnt = rpci->private;
auth = clnt->cl_auth;
gss_auth = container_of(auth, struct gss_auth, rpc_auth);
spin_lock(&gss_auth->lock);
while (!list_empty(&gss_auth->upcalls)) {
struct gss_upcall_msg *gss_msg;
gss_msg = list_entry(gss_auth->upcalls.next,
struct gss_upcall_msg, list);
gss_msg->msg.errno = -EPIPE;
atomic_inc(&gss_msg->count);
__gss_unhash_msg(gss_msg);
spin_unlock(&gss_auth->lock);
gss_release_msg(gss_msg);
spin_lock(&gss_auth->lock);
}
spin_unlock(&gss_auth->lock);
}
static void
gss_pipe_destroy_msg(struct rpc_pipe_msg *msg)
{
struct gss_upcall_msg *gss_msg = container_of(msg, struct gss_upcall_msg, msg);
static unsigned long ratelimit;
if (msg->errno < 0) {
dprintk("RPC: gss_pipe_destroy_msg releasing msg %p\n",
gss_msg);
atomic_inc(&gss_msg->count);
gss_unhash_msg(gss_msg);
if (msg->errno == -ETIMEDOUT) {
unsigned long now = jiffies;
if (time_after(now, ratelimit)) {
printk(KERN_WARNING "RPC: AUTH_GSS upcall timed out.\n"
"Please check user daemon is running!\n");
ratelimit = now + 15*HZ;
}
}
gss_release_msg(gss_msg);
}
}
/*
* NOTE: we have the opportunity to use different
* parameters based on the input flavor (which must be a pseudoflavor)
*/
static struct rpc_auth *
gss_create(struct rpc_clnt *clnt, rpc_authflavor_t flavor)
{
struct gss_auth *gss_auth;
struct rpc_auth * auth;
int err = -ENOMEM; /* XXX? */
dprintk("RPC: creating GSS authenticator for client %p\n",clnt);
if (!try_module_get(THIS_MODULE))
return ERR_PTR(err);
if (!(gss_auth = kmalloc(sizeof(*gss_auth), GFP_KERNEL)))
goto out_dec;
gss_auth->client = clnt;
err = -EINVAL;
gss_auth->mech = gss_mech_get_by_pseudoflavor(flavor);
if (!gss_auth->mech) {
printk(KERN_WARNING "%s: Pseudoflavor %d not found!",
__FUNCTION__, flavor);
goto err_free;
}
gss_auth->service = gss_pseudoflavor_to_service(gss_auth->mech, flavor);
if (gss_auth->service == 0)
goto err_put_mech;
INIT_LIST_HEAD(&gss_auth->upcalls);
spin_lock_init(&gss_auth->lock);
auth = &gss_auth->rpc_auth;
auth->au_cslack = GSS_CRED_SLACK >> 2;
auth->au_rslack = GSS_VERF_SLACK >> 2;
auth->au_ops = &authgss_ops;
auth->au_flavor = flavor;
atomic_set(&auth->au_count, 1);
err = rpcauth_init_credcache(auth, GSS_CRED_EXPIRE);
if (err)
goto err_put_mech;
gss_auth->dentry = rpc_mkpipe(clnt->cl_dentry, gss_auth->mech->gm_name,
clnt, &gss_upcall_ops, RPC_PIPE_WAIT_FOR_OPEN);
if (IS_ERR(gss_auth->dentry)) {
err = PTR_ERR(gss_auth->dentry);
goto err_put_mech;
}
return auth;
err_put_mech:
gss_mech_put(gss_auth->mech);
err_free:
kfree(gss_auth);
out_dec:
module_put(THIS_MODULE);
return ERR_PTR(err);
}
static void
gss_destroy(struct rpc_auth *auth)
{
struct gss_auth *gss_auth;
dprintk("RPC: destroying GSS authenticator %p flavor %d\n",
auth, auth->au_flavor);
gss_auth = container_of(auth, struct gss_auth, rpc_auth);
rpc_unlink(gss_auth->dentry);
gss_auth->dentry = NULL;
gss_mech_put(gss_auth->mech);
rpcauth_free_credcache(auth);
kfree(gss_auth);
module_put(THIS_MODULE);
}
/* gss_destroy_cred (and gss_destroy_ctx) are used to clean up after failure
* to create a new cred or context, so they check that things have been
* allocated before freeing them. */
static void
gss_destroy_ctx(struct gss_cl_ctx *ctx)
{
dprintk("RPC: gss_destroy_ctx\n");
if (ctx->gc_gss_ctx)
gss_delete_sec_context(&ctx->gc_gss_ctx);
kfree(ctx->gc_wire_ctx.data);
kfree(ctx);
}
static void
gss_destroy_cred(struct rpc_cred *rc)
{
struct gss_cred *cred = container_of(rc, struct gss_cred, gc_base);
dprintk("RPC: gss_destroy_cred \n");
if (cred->gc_ctx)
gss_put_ctx(cred->gc_ctx);
kfree(cred);
}
/*
* Lookup RPCSEC_GSS cred for the current process
*/
static struct rpc_cred *
gss_lookup_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags)
{
return rpcauth_lookup_credcache(auth, acred, flags);
}
static struct rpc_cred *
gss_create_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags)
{
struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth);
struct gss_cred *cred = NULL;
int err = -ENOMEM;
dprintk("RPC: gss_create_cred for uid %d, flavor %d\n",
acred->uid, auth->au_flavor);
if (!(cred = kzalloc(sizeof(*cred), GFP_KERNEL)))
goto out_err;
atomic_set(&cred->gc_count, 1);
cred->gc_uid = acred->uid;
/*
* Note: in order to force a call to call_refresh(), we deliberately
* fail to flag the credential as RPCAUTH_CRED_UPTODATE.
*/
cred->gc_flags = 0;
cred->gc_base.cr_ops = &gss_credops;
cred->gc_base.cr_flags = RPCAUTH_CRED_NEW;
cred->gc_service = gss_auth->service;
return &cred->gc_base;
out_err:
dprintk("RPC: gss_create_cred failed with error %d\n", err);
return ERR_PTR(err);
}
static int
gss_cred_init(struct rpc_auth *auth, struct rpc_cred *cred)
{
struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth);
struct gss_cred *gss_cred = container_of(cred,struct gss_cred, gc_base);
int err;
do {
err = gss_create_upcall(gss_auth, gss_cred);
} while (err == -EAGAIN);
return err;
}
static int
gss_match(struct auth_cred *acred, struct rpc_cred *rc, int flags)
{
struct gss_cred *gss_cred = container_of(rc, struct gss_cred, gc_base);
/*
* If the searchflags have set RPCAUTH_LOOKUP_NEW, then
* we don't really care if the credential has expired or not,
* since the caller should be prepared to reinitialise it.
*/
if ((flags & RPCAUTH_LOOKUP_NEW) && (rc->cr_flags & RPCAUTH_CRED_NEW))
goto out;
/* Don't match with creds that have expired. */
if (gss_cred->gc_ctx && time_after(jiffies, gss_cred->gc_ctx->gc_expiry))
return 0;
out:
return (rc->cr_uid == acred->uid);
}
/*
* Marshal credentials.
* Maybe we should keep a cached credential for performance reasons.
*/
static __be32 *
gss_marshal(struct rpc_task *task, __be32 *p)
{
struct rpc_cred *cred = task->tk_msg.rpc_cred;
struct gss_cred *gss_cred = container_of(cred, struct gss_cred,
gc_base);
struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
__be32 *cred_len;
struct rpc_rqst *req = task->tk_rqstp;
u32 maj_stat = 0;
struct xdr_netobj mic;
struct kvec iov;
struct xdr_buf verf_buf;
dprintk("RPC: %4u gss_marshal\n", task->tk_pid);
*p++ = htonl(RPC_AUTH_GSS);
cred_len = p++;
spin_lock(&ctx->gc_seq_lock);
req->rq_seqno = ctx->gc_seq++;
spin_unlock(&ctx->gc_seq_lock);
*p++ = htonl((u32) RPC_GSS_VERSION);
*p++ = htonl((u32) ctx->gc_proc);
*p++ = htonl((u32) req->rq_seqno);
*p++ = htonl((u32) gss_cred->gc_service);
p = xdr_encode_netobj(p, &ctx->gc_wire_ctx);
*cred_len = htonl((p - (cred_len + 1)) << 2);
/* We compute the checksum for the verifier over the xdr-encoded bytes
* starting with the xid and ending at the end of the credential: */
iov.iov_base = xprt_skip_transport_header(task->tk_xprt,
req->rq_snd_buf.head[0].iov_base);
iov.iov_len = (u8 *)p - (u8 *)iov.iov_base;
xdr_buf_from_iov(&iov, &verf_buf);
/* set verifier flavor*/
*p++ = htonl(RPC_AUTH_GSS);
mic.data = (u8 *)(p + 1);
maj_stat = gss_get_mic(ctx->gc_gss_ctx, &verf_buf, &mic);
if (maj_stat == GSS_S_CONTEXT_EXPIRED) {
cred->cr_flags &= ~RPCAUTH_CRED_UPTODATE;
} else if (maj_stat != 0) {
printk("gss_marshal: gss_get_mic FAILED (%d)\n", maj_stat);
goto out_put_ctx;
}
p = xdr_encode_opaque(p, NULL, mic.len);
gss_put_ctx(ctx);
return p;
out_put_ctx:
gss_put_ctx(ctx);
return NULL;
}
/*
* Refresh credentials. XXX - finish
*/
static int
gss_refresh(struct rpc_task *task)
{
if (!gss_cred_is_uptodate_ctx(task->tk_msg.rpc_cred))
return gss_refresh_upcall(task);
return 0;
}
static __be32 *
gss_validate(struct rpc_task *task, __be32 *p)
{
struct rpc_cred *cred = task->tk_msg.rpc_cred;
struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
__be32 seq;
struct kvec iov;
struct xdr_buf verf_buf;
struct xdr_netobj mic;
u32 flav,len;
u32 maj_stat;
dprintk("RPC: %4u gss_validate\n", task->tk_pid);
flav = ntohl(*p++);
if ((len = ntohl(*p++)) > RPC_MAX_AUTH_SIZE)
goto out_bad;
if (flav != RPC_AUTH_GSS)
goto out_bad;
seq = htonl(task->tk_rqstp->rq_seqno);
iov.iov_base = &seq;
iov.iov_len = sizeof(seq);
xdr_buf_from_iov(&iov, &verf_buf);
mic.data = (u8 *)p;
mic.len = len;
maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &verf_buf, &mic);
if (maj_stat == GSS_S_CONTEXT_EXPIRED)
cred->cr_flags &= ~RPCAUTH_CRED_UPTODATE;
if (maj_stat)
goto out_bad;
/* We leave it to unwrap to calculate au_rslack. For now we just
* calculate the length of the verifier: */
task->tk_auth->au_verfsize = XDR_QUADLEN(len) + 2;
gss_put_ctx(ctx);
dprintk("RPC: %4u GSS gss_validate: gss_verify_mic succeeded.\n",
task->tk_pid);
return p + XDR_QUADLEN(len);
out_bad:
gss_put_ctx(ctx);
dprintk("RPC: %4u gss_validate failed.\n", task->tk_pid);
return NULL;
}
static inline int
gss_wrap_req_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
kxdrproc_t encode, struct rpc_rqst *rqstp, __be32 *p, void *obj)
{
struct xdr_buf *snd_buf = &rqstp->rq_snd_buf;
struct xdr_buf integ_buf;
__be32 *integ_len = NULL;
struct xdr_netobj mic;
u32 offset;
__be32 *q;
struct kvec *iov;
u32 maj_stat = 0;
int status = -EIO;
integ_len = p++;
offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base;
*p++ = htonl(rqstp->rq_seqno);
status = encode(rqstp, p, obj);
if (status)
return status;
if (xdr_buf_subsegment(snd_buf, &integ_buf,
offset, snd_buf->len - offset))
return status;
*integ_len = htonl(integ_buf.len);
/* guess whether we're in the head or the tail: */
if (snd_buf->page_len || snd_buf->tail[0].iov_len)
iov = snd_buf->tail;
else
iov = snd_buf->head;
p = iov->iov_base + iov->iov_len;
mic.data = (u8 *)(p + 1);
maj_stat = gss_get_mic(ctx->gc_gss_ctx, &integ_buf, &mic);
status = -EIO; /* XXX? */
if (maj_stat == GSS_S_CONTEXT_EXPIRED)
cred->cr_flags &= ~RPCAUTH_CRED_UPTODATE;
else if (maj_stat)
return status;
q = xdr_encode_opaque(p, NULL, mic.len);
offset = (u8 *)q - (u8 *)p;
iov->iov_len += offset;
snd_buf->len += offset;
return 0;
}
static void
priv_release_snd_buf(struct rpc_rqst *rqstp)
{
int i;
for (i=0; i < rqstp->rq_enc_pages_num; i++)
__free_page(rqstp->rq_enc_pages[i]);
kfree(rqstp->rq_enc_pages);
}
static int
alloc_enc_pages(struct rpc_rqst *rqstp)
{
struct xdr_buf *snd_buf = &rqstp->rq_snd_buf;
int first, last, i;
if (snd_buf->page_len == 0) {
rqstp->rq_enc_pages_num = 0;
return 0;
}
first = snd_buf->page_base >> PAGE_CACHE_SHIFT;
last = (snd_buf->page_base + snd_buf->page_len - 1) >> PAGE_CACHE_SHIFT;
rqstp->rq_enc_pages_num = last - first + 1 + 1;
rqstp->rq_enc_pages
= kmalloc(rqstp->rq_enc_pages_num * sizeof(struct page *),
GFP_NOFS);
if (!rqstp->rq_enc_pages)
goto out;
for (i=0; i < rqstp->rq_enc_pages_num; i++) {
rqstp->rq_enc_pages[i] = alloc_page(GFP_NOFS);
if (rqstp->rq_enc_pages[i] == NULL)
goto out_free;
}
rqstp->rq_release_snd_buf = priv_release_snd_buf;
return 0;
out_free:
for (i--; i >= 0; i--) {
__free_page(rqstp->rq_enc_pages[i]);
}
out:
return -EAGAIN;
}
static inline int
gss_wrap_req_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
kxdrproc_t encode, struct rpc_rqst *rqstp, __be32 *p, void *obj)
{
struct xdr_buf *snd_buf = &rqstp->rq_snd_buf;
u32 offset;
u32 maj_stat;
int status;
__be32 *opaque_len;
struct page **inpages;
int first;
int pad;
struct kvec *iov;
char *tmp;
opaque_len = p++;
offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base;
*p++ = htonl(rqstp->rq_seqno);
status = encode(rqstp, p, obj);
if (status)
return status;
status = alloc_enc_pages(rqstp);
if (status)
return status;
first = snd_buf->page_base >> PAGE_CACHE_SHIFT;
inpages = snd_buf->pages + first;
snd_buf->pages = rqstp->rq_enc_pages;
snd_buf->page_base -= first << PAGE_CACHE_SHIFT;
/* Give the tail its own page, in case we need extra space in the
* head when wrapping: */
if (snd_buf->page_len || snd_buf->tail[0].iov_len) {
tmp = page_address(rqstp->rq_enc_pages[rqstp->rq_enc_pages_num - 1]);
memcpy(tmp, snd_buf->tail[0].iov_base, snd_buf->tail[0].iov_len);
snd_buf->tail[0].iov_base = tmp;
}
maj_stat = gss_wrap(ctx->gc_gss_ctx, offset, snd_buf, inpages);
/* RPC_SLACK_SPACE should prevent this ever happening: */
BUG_ON(snd_buf->len > snd_buf->buflen);
status = -EIO;
/* We're assuming that when GSS_S_CONTEXT_EXPIRED, the encryption was
* done anyway, so it's safe to put the request on the wire: */
if (maj_stat == GSS_S_CONTEXT_EXPIRED)
cred->cr_flags &= ~RPCAUTH_CRED_UPTODATE;
else if (maj_stat)
return status;
*opaque_len = htonl(snd_buf->len - offset);
/* guess whether we're in the head or the tail: */
if (snd_buf->page_len || snd_buf->tail[0].iov_len)
iov = snd_buf->tail;
else
iov = snd_buf->head;
p = iov->iov_base + iov->iov_len;
pad = 3 - ((snd_buf->len - offset - 1) & 3);
memset(p, 0, pad);
iov->iov_len += pad;
snd_buf->len += pad;
return 0;
}
static int
gss_wrap_req(struct rpc_task *task,
kxdrproc_t encode, void *rqstp, __be32 *p, void *obj)
{
struct rpc_cred *cred = task->tk_msg.rpc_cred;
struct gss_cred *gss_cred = container_of(cred, struct gss_cred,
gc_base);
struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
int status = -EIO;
dprintk("RPC: %4u gss_wrap_req\n", task->tk_pid);
if (ctx->gc_proc != RPC_GSS_PROC_DATA) {
/* The spec seems a little ambiguous here, but I think that not
* wrapping context destruction requests makes the most sense.
*/
status = encode(rqstp, p, obj);
goto out;
}
switch (gss_cred->gc_service) {
case RPC_GSS_SVC_NONE:
status = encode(rqstp, p, obj);
break;
case RPC_GSS_SVC_INTEGRITY:
status = gss_wrap_req_integ(cred, ctx, encode,
rqstp, p, obj);
break;
case RPC_GSS_SVC_PRIVACY:
status = gss_wrap_req_priv(cred, ctx, encode,
rqstp, p, obj);
break;
}
out:
gss_put_ctx(ctx);
dprintk("RPC: %4u gss_wrap_req returning %d\n", task->tk_pid, status);
return status;
}
static inline int
gss_unwrap_resp_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
struct rpc_rqst *rqstp, __be32 **p)
{
struct xdr_buf *rcv_buf = &rqstp->rq_rcv_buf;
struct xdr_buf integ_buf;
struct xdr_netobj mic;
u32 data_offset, mic_offset;
u32 integ_len;
u32 maj_stat;
int status = -EIO;
integ_len = ntohl(*(*p)++);
if (integ_len & 3)
return status;
data_offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base;
mic_offset = integ_len + data_offset;
if (mic_offset > rcv_buf->len)
return status;
if (ntohl(*(*p)++) != rqstp->rq_seqno)
return status;
if (xdr_buf_subsegment(rcv_buf, &integ_buf, data_offset,
mic_offset - data_offset))
return status;
if (xdr_buf_read_netobj(rcv_buf, &mic, mic_offset))
return status;
maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &integ_buf, &mic);
if (maj_stat == GSS_S_CONTEXT_EXPIRED)
cred->cr_flags &= ~RPCAUTH_CRED_UPTODATE;
if (maj_stat != GSS_S_COMPLETE)
return status;
return 0;
}
static inline int
gss_unwrap_resp_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
struct rpc_rqst *rqstp, __be32 **p)
{
struct xdr_buf *rcv_buf = &rqstp->rq_rcv_buf;
u32 offset;
u32 opaque_len;
u32 maj_stat;
int status = -EIO;
opaque_len = ntohl(*(*p)++);
offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base;
if (offset + opaque_len > rcv_buf->len)
return status;
/* remove padding: */
rcv_buf->len = offset + opaque_len;
maj_stat = gss_unwrap(ctx->gc_gss_ctx, offset, rcv_buf);
if (maj_stat == GSS_S_CONTEXT_EXPIRED)
cred->cr_flags &= ~RPCAUTH_CRED_UPTODATE;
if (maj_stat != GSS_S_COMPLETE)
return status;
if (ntohl(*(*p)++) != rqstp->rq_seqno)
return status;
return 0;
}
static int
gss_unwrap_resp(struct rpc_task *task,
kxdrproc_t decode, void *rqstp, __be32 *p, void *obj)
{
struct rpc_cred *cred = task->tk_msg.rpc_cred;
struct gss_cred *gss_cred = container_of(cred, struct gss_cred,
gc_base);
struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
__be32 *savedp = p;
struct kvec *head = ((struct rpc_rqst *)rqstp)->rq_rcv_buf.head;
int savedlen = head->iov_len;
int status = -EIO;
if (ctx->gc_proc != RPC_GSS_PROC_DATA)
goto out_decode;
switch (gss_cred->gc_service) {
case RPC_GSS_SVC_NONE:
break;
case RPC_GSS_SVC_INTEGRITY:
status = gss_unwrap_resp_integ(cred, ctx, rqstp, &p);
if (status)
goto out;
break;
case RPC_GSS_SVC_PRIVACY:
status = gss_unwrap_resp_priv(cred, ctx, rqstp, &p);
if (status)
goto out;
break;
}
/* take into account extra slack for integrity and privacy cases: */
task->tk_auth->au_rslack = task->tk_auth->au_verfsize + (p - savedp)
+ (savedlen - head->iov_len);
out_decode:
status = decode(rqstp, p, obj);
out:
gss_put_ctx(ctx);
dprintk("RPC: %4u gss_unwrap_resp returning %d\n", task->tk_pid,
status);
return status;
}
static struct rpc_authops authgss_ops = {
.owner = THIS_MODULE,
.au_flavor = RPC_AUTH_GSS,
#ifdef RPC_DEBUG
.au_name = "RPCSEC_GSS",
#endif
.create = gss_create,
.destroy = gss_destroy,
.lookup_cred = gss_lookup_cred,
.crcreate = gss_create_cred
};
static struct rpc_credops gss_credops = {
.cr_name = "AUTH_GSS",
.crdestroy = gss_destroy_cred,
.cr_init = gss_cred_init,
.crmatch = gss_match,
.crmarshal = gss_marshal,
.crrefresh = gss_refresh,
.crvalidate = gss_validate,
.crwrap_req = gss_wrap_req,
.crunwrap_resp = gss_unwrap_resp,
};
static struct rpc_pipe_ops gss_upcall_ops = {
.upcall = gss_pipe_upcall,
.downcall = gss_pipe_downcall,
.destroy_msg = gss_pipe_destroy_msg,
.release_pipe = gss_pipe_release,
};
/*
* Initialize RPCSEC_GSS module
*/
static int __init init_rpcsec_gss(void)
{
int err = 0;
err = rpcauth_register(&authgss_ops);
if (err)
goto out;
err = gss_svc_init();
if (err)
goto out_unregister;
return 0;
out_unregister:
rpcauth_unregister(&authgss_ops);
out:
return err;
}
static void __exit exit_rpcsec_gss(void)
{
gss_svc_shutdown();
rpcauth_unregister(&authgss_ops);
}
MODULE_LICENSE("GPL");
module_init(init_rpcsec_gss)
module_exit(exit_rpcsec_gss)