kernel_optimize_test/drivers/lightnvm/pblk-read.c
Michael Callahan ddcf35d397 block: Add and use op_stat_group() for indexing disk_stat fields.
Add and use a new op_stat_group() function for indexing partition stat
fields rather than indexing them by rq_data_dir() or bio_data_dir().
This function works similarly to op_is_sync() in that it takes the
request::cmd_flags or bio::bi_opf flags and determines which stats
should et updated.

In addition, the second parameter to generic_start_io_acct() and
generic_end_io_acct() is now a REQ_OP rather than simply a read or
write bit and it uses op_stat_group() on the parameter to determine
the stat group.

Note that the partition in_flight counts are not part of the per-cpu
statistics and as such are not indexed via this function.  It's now
indexed by op_is_write().

tj: Refreshed on top of v4.17.  Updated to pass around REQ_OP.

Signed-off-by: Michael Callahan <michaelcallahan@fb.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Joshua Morris <josh.h.morris@us.ibm.com>
Cc: Philipp Reisner <philipp.reisner@linbit.com>
Cc: Matias Bjorling <mb@lightnvm.io>
Cc: Kent Overstreet <kent.overstreet@gmail.com>
Cc: Alasdair Kergon <agk@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-07-18 08:44:20 -06:00

702 lines
17 KiB
C

/*
* Copyright (C) 2016 CNEX Labs
* Initial release: Javier Gonzalez <javier@cnexlabs.com>
* Matias Bjorling <matias@cnexlabs.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version
* 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* pblk-read.c - pblk's read path
*/
#include "pblk.h"
/*
* There is no guarantee that the value read from cache has not been updated and
* resides at another location in the cache. We guarantee though that if the
* value is read from the cache, it belongs to the mapped lba. In order to
* guarantee and order between writes and reads are ordered, a flush must be
* issued.
*/
static int pblk_read_from_cache(struct pblk *pblk, struct bio *bio,
sector_t lba, struct ppa_addr ppa,
int bio_iter, bool advanced_bio)
{
#ifdef CONFIG_NVM_PBLK_DEBUG
/* Callers must ensure that the ppa points to a cache address */
BUG_ON(pblk_ppa_empty(ppa));
BUG_ON(!pblk_addr_in_cache(ppa));
#endif
return pblk_rb_copy_to_bio(&pblk->rwb, bio, lba, ppa,
bio_iter, advanced_bio);
}
static void pblk_read_ppalist_rq(struct pblk *pblk, struct nvm_rq *rqd,
struct bio *bio, sector_t blba,
unsigned long *read_bitmap)
{
struct pblk_sec_meta *meta_list = rqd->meta_list;
struct ppa_addr ppas[PBLK_MAX_REQ_ADDRS];
int nr_secs = rqd->nr_ppas;
bool advanced_bio = false;
int i, j = 0;
pblk_lookup_l2p_seq(pblk, ppas, blba, nr_secs);
for (i = 0; i < nr_secs; i++) {
struct ppa_addr p = ppas[i];
sector_t lba = blba + i;
retry:
if (pblk_ppa_empty(p)) {
WARN_ON(test_and_set_bit(i, read_bitmap));
meta_list[i].lba = cpu_to_le64(ADDR_EMPTY);
if (unlikely(!advanced_bio)) {
bio_advance(bio, (i) * PBLK_EXPOSED_PAGE_SIZE);
advanced_bio = true;
}
goto next;
}
/* Try to read from write buffer. The address is later checked
* on the write buffer to prevent retrieving overwritten data.
*/
if (pblk_addr_in_cache(p)) {
if (!pblk_read_from_cache(pblk, bio, lba, p, i,
advanced_bio)) {
pblk_lookup_l2p_seq(pblk, &p, lba, 1);
goto retry;
}
WARN_ON(test_and_set_bit(i, read_bitmap));
meta_list[i].lba = cpu_to_le64(lba);
advanced_bio = true;
#ifdef CONFIG_NVM_PBLK_DEBUG
atomic_long_inc(&pblk->cache_reads);
#endif
} else {
/* Read from media non-cached sectors */
rqd->ppa_list[j++] = p;
}
next:
if (advanced_bio)
bio_advance(bio, PBLK_EXPOSED_PAGE_SIZE);
}
if (pblk_io_aligned(pblk, nr_secs))
rqd->flags = pblk_set_read_mode(pblk, PBLK_READ_SEQUENTIAL);
else
rqd->flags = pblk_set_read_mode(pblk, PBLK_READ_RANDOM);
#ifdef CONFIG_NVM_PBLK_DEBUG
atomic_long_add(nr_secs, &pblk->inflight_reads);
#endif
}
static void pblk_read_check_seq(struct pblk *pblk, struct nvm_rq *rqd,
sector_t blba)
{
struct pblk_sec_meta *meta_lba_list = rqd->meta_list;
int nr_lbas = rqd->nr_ppas;
int i;
for (i = 0; i < nr_lbas; i++) {
u64 lba = le64_to_cpu(meta_lba_list[i].lba);
if (lba == ADDR_EMPTY)
continue;
if (lba != blba + i) {
#ifdef CONFIG_NVM_PBLK_DEBUG
struct ppa_addr *p;
p = (nr_lbas == 1) ? &rqd->ppa_list[i] : &rqd->ppa_addr;
print_ppa(pblk, p, "seq", i);
#endif
pblk_err(pblk, "corrupted read LBA (%llu/%llu)\n",
lba, (u64)blba + i);
WARN_ON(1);
}
}
}
/*
* There can be holes in the lba list.
*/
static void pblk_read_check_rand(struct pblk *pblk, struct nvm_rq *rqd,
u64 *lba_list, int nr_lbas)
{
struct pblk_sec_meta *meta_lba_list = rqd->meta_list;
int i, j;
for (i = 0, j = 0; i < nr_lbas; i++) {
u64 lba = lba_list[i];
u64 meta_lba;
if (lba == ADDR_EMPTY)
continue;
meta_lba = le64_to_cpu(meta_lba_list[j].lba);
if (lba != meta_lba) {
#ifdef CONFIG_NVM_PBLK_DEBUG
struct ppa_addr *p;
int nr_ppas = rqd->nr_ppas;
p = (nr_ppas == 1) ? &rqd->ppa_list[j] : &rqd->ppa_addr;
print_ppa(pblk, p, "seq", j);
#endif
pblk_err(pblk, "corrupted read LBA (%llu/%llu)\n",
lba, meta_lba);
WARN_ON(1);
}
j++;
}
WARN_ONCE(j != rqd->nr_ppas, "pblk: corrupted random request\n");
}
static void pblk_read_put_rqd_kref(struct pblk *pblk, struct nvm_rq *rqd)
{
struct ppa_addr *ppa_list;
int i;
ppa_list = (rqd->nr_ppas > 1) ? rqd->ppa_list : &rqd->ppa_addr;
for (i = 0; i < rqd->nr_ppas; i++) {
struct ppa_addr ppa = ppa_list[i];
struct pblk_line *line;
line = &pblk->lines[pblk_ppa_to_line(ppa)];
kref_put(&line->ref, pblk_line_put_wq);
}
}
static void pblk_end_user_read(struct bio *bio)
{
#ifdef CONFIG_NVM_PBLK_DEBUG
WARN_ONCE(bio->bi_status, "pblk: corrupted read bio\n");
#endif
bio_endio(bio);
}
static void __pblk_end_io_read(struct pblk *pblk, struct nvm_rq *rqd,
bool put_line)
{
struct nvm_tgt_dev *dev = pblk->dev;
struct pblk_g_ctx *r_ctx = nvm_rq_to_pdu(rqd);
struct bio *int_bio = rqd->bio;
unsigned long start_time = r_ctx->start_time;
generic_end_io_acct(dev->q, REQ_OP_READ, &pblk->disk->part0, start_time);
if (rqd->error)
pblk_log_read_err(pblk, rqd);
pblk_read_check_seq(pblk, rqd, r_ctx->lba);
if (int_bio)
bio_put(int_bio);
if (put_line)
pblk_read_put_rqd_kref(pblk, rqd);
#ifdef CONFIG_NVM_PBLK_DEBUG
atomic_long_add(rqd->nr_ppas, &pblk->sync_reads);
atomic_long_sub(rqd->nr_ppas, &pblk->inflight_reads);
#endif
pblk_free_rqd(pblk, rqd, PBLK_READ);
atomic_dec(&pblk->inflight_io);
}
static void pblk_end_io_read(struct nvm_rq *rqd)
{
struct pblk *pblk = rqd->private;
struct pblk_g_ctx *r_ctx = nvm_rq_to_pdu(rqd);
struct bio *bio = (struct bio *)r_ctx->private;
pblk_end_user_read(bio);
__pblk_end_io_read(pblk, rqd, true);
}
static void pblk_end_partial_read(struct nvm_rq *rqd)
{
struct pblk *pblk = rqd->private;
struct pblk_g_ctx *r_ctx = nvm_rq_to_pdu(rqd);
struct pblk_pr_ctx *pr_ctx = r_ctx->private;
struct bio *new_bio = rqd->bio;
struct bio *bio = pr_ctx->orig_bio;
struct bio_vec src_bv, dst_bv;
struct pblk_sec_meta *meta_list = rqd->meta_list;
int bio_init_idx = pr_ctx->bio_init_idx;
unsigned long *read_bitmap = pr_ctx->bitmap;
int nr_secs = pr_ctx->orig_nr_secs;
int nr_holes = nr_secs - bitmap_weight(read_bitmap, nr_secs);
__le64 *lba_list_mem, *lba_list_media;
void *src_p, *dst_p;
int hole, i;
if (unlikely(nr_holes == 1)) {
struct ppa_addr ppa;
ppa = rqd->ppa_addr;
rqd->ppa_list = pr_ctx->ppa_ptr;
rqd->dma_ppa_list = pr_ctx->dma_ppa_list;
rqd->ppa_list[0] = ppa;
}
/* Re-use allocated memory for intermediate lbas */
lba_list_mem = (((void *)rqd->ppa_list) + pblk_dma_ppa_size);
lba_list_media = (((void *)rqd->ppa_list) + 2 * pblk_dma_ppa_size);
for (i = 0; i < nr_secs; i++) {
lba_list_media[i] = meta_list[i].lba;
meta_list[i].lba = lba_list_mem[i];
}
/* Fill the holes in the original bio */
i = 0;
hole = find_first_zero_bit(read_bitmap, nr_secs);
do {
int line_id = pblk_ppa_to_line(rqd->ppa_list[i]);
struct pblk_line *line = &pblk->lines[line_id];
kref_put(&line->ref, pblk_line_put);
meta_list[hole].lba = lba_list_media[i];
src_bv = new_bio->bi_io_vec[i++];
dst_bv = bio->bi_io_vec[bio_init_idx + hole];
src_p = kmap_atomic(src_bv.bv_page);
dst_p = kmap_atomic(dst_bv.bv_page);
memcpy(dst_p + dst_bv.bv_offset,
src_p + src_bv.bv_offset,
PBLK_EXPOSED_PAGE_SIZE);
kunmap_atomic(src_p);
kunmap_atomic(dst_p);
mempool_free(src_bv.bv_page, &pblk->page_bio_pool);
hole = find_next_zero_bit(read_bitmap, nr_secs, hole + 1);
} while (hole < nr_secs);
bio_put(new_bio);
kfree(pr_ctx);
/* restore original request */
rqd->bio = NULL;
rqd->nr_ppas = nr_secs;
bio_endio(bio);
__pblk_end_io_read(pblk, rqd, false);
}
static int pblk_setup_partial_read(struct pblk *pblk, struct nvm_rq *rqd,
unsigned int bio_init_idx,
unsigned long *read_bitmap,
int nr_holes)
{
struct pblk_sec_meta *meta_list = rqd->meta_list;
struct pblk_g_ctx *r_ctx = nvm_rq_to_pdu(rqd);
struct pblk_pr_ctx *pr_ctx;
struct bio *new_bio, *bio = r_ctx->private;
__le64 *lba_list_mem;
int nr_secs = rqd->nr_ppas;
int i;
/* Re-use allocated memory for intermediate lbas */
lba_list_mem = (((void *)rqd->ppa_list) + pblk_dma_ppa_size);
new_bio = bio_alloc(GFP_KERNEL, nr_holes);
if (pblk_bio_add_pages(pblk, new_bio, GFP_KERNEL, nr_holes))
goto fail_bio_put;
if (nr_holes != new_bio->bi_vcnt) {
WARN_ONCE(1, "pblk: malformed bio\n");
goto fail_free_pages;
}
pr_ctx = kmalloc(sizeof(struct pblk_pr_ctx), GFP_KERNEL);
if (!pr_ctx)
goto fail_free_pages;
for (i = 0; i < nr_secs; i++)
lba_list_mem[i] = meta_list[i].lba;
new_bio->bi_iter.bi_sector = 0; /* internal bio */
bio_set_op_attrs(new_bio, REQ_OP_READ, 0);
rqd->bio = new_bio;
rqd->nr_ppas = nr_holes;
rqd->flags = pblk_set_read_mode(pblk, PBLK_READ_RANDOM);
pr_ctx->ppa_ptr = NULL;
pr_ctx->orig_bio = bio;
bitmap_copy(pr_ctx->bitmap, read_bitmap, NVM_MAX_VLBA);
pr_ctx->bio_init_idx = bio_init_idx;
pr_ctx->orig_nr_secs = nr_secs;
r_ctx->private = pr_ctx;
if (unlikely(nr_holes == 1)) {
pr_ctx->ppa_ptr = rqd->ppa_list;
pr_ctx->dma_ppa_list = rqd->dma_ppa_list;
rqd->ppa_addr = rqd->ppa_list[0];
}
return 0;
fail_free_pages:
pblk_bio_free_pages(pblk, new_bio, 0, new_bio->bi_vcnt);
fail_bio_put:
bio_put(new_bio);
return -ENOMEM;
}
static int pblk_partial_read_bio(struct pblk *pblk, struct nvm_rq *rqd,
unsigned int bio_init_idx,
unsigned long *read_bitmap, int nr_secs)
{
int nr_holes;
int ret;
nr_holes = nr_secs - bitmap_weight(read_bitmap, nr_secs);
if (pblk_setup_partial_read(pblk, rqd, bio_init_idx, read_bitmap,
nr_holes))
return NVM_IO_ERR;
rqd->end_io = pblk_end_partial_read;
ret = pblk_submit_io(pblk, rqd);
if (ret) {
bio_put(rqd->bio);
pblk_err(pblk, "partial read IO submission failed\n");
goto err;
}
return NVM_IO_OK;
err:
pblk_err(pblk, "failed to perform partial read\n");
/* Free allocated pages in new bio */
pblk_bio_free_pages(pblk, rqd->bio, 0, rqd->bio->bi_vcnt);
__pblk_end_io_read(pblk, rqd, false);
return NVM_IO_ERR;
}
static void pblk_read_rq(struct pblk *pblk, struct nvm_rq *rqd, struct bio *bio,
sector_t lba, unsigned long *read_bitmap)
{
struct pblk_sec_meta *meta_list = rqd->meta_list;
struct ppa_addr ppa;
pblk_lookup_l2p_seq(pblk, &ppa, lba, 1);
#ifdef CONFIG_NVM_PBLK_DEBUG
atomic_long_inc(&pblk->inflight_reads);
#endif
retry:
if (pblk_ppa_empty(ppa)) {
WARN_ON(test_and_set_bit(0, read_bitmap));
meta_list[0].lba = cpu_to_le64(ADDR_EMPTY);
return;
}
/* Try to read from write buffer. The address is later checked on the
* write buffer to prevent retrieving overwritten data.
*/
if (pblk_addr_in_cache(ppa)) {
if (!pblk_read_from_cache(pblk, bio, lba, ppa, 0, 1)) {
pblk_lookup_l2p_seq(pblk, &ppa, lba, 1);
goto retry;
}
WARN_ON(test_and_set_bit(0, read_bitmap));
meta_list[0].lba = cpu_to_le64(lba);
#ifdef CONFIG_NVM_PBLK_DEBUG
atomic_long_inc(&pblk->cache_reads);
#endif
} else {
rqd->ppa_addr = ppa;
}
rqd->flags = pblk_set_read_mode(pblk, PBLK_READ_RANDOM);
}
int pblk_submit_read(struct pblk *pblk, struct bio *bio)
{
struct nvm_tgt_dev *dev = pblk->dev;
struct request_queue *q = dev->q;
sector_t blba = pblk_get_lba(bio);
unsigned int nr_secs = pblk_get_secs(bio);
struct pblk_g_ctx *r_ctx;
struct nvm_rq *rqd;
unsigned int bio_init_idx;
DECLARE_BITMAP(read_bitmap, NVM_MAX_VLBA);
int ret = NVM_IO_ERR;
/* logic error: lba out-of-bounds. Ignore read request */
if (blba >= pblk->rl.nr_secs || nr_secs > PBLK_MAX_REQ_ADDRS) {
WARN(1, "pblk: read lba out of bounds (lba:%llu, nr:%d)\n",
(unsigned long long)blba, nr_secs);
return NVM_IO_ERR;
}
generic_start_io_acct(q, REQ_OP_READ, bio_sectors(bio),
&pblk->disk->part0);
bitmap_zero(read_bitmap, nr_secs);
rqd = pblk_alloc_rqd(pblk, PBLK_READ);
rqd->opcode = NVM_OP_PREAD;
rqd->nr_ppas = nr_secs;
rqd->bio = NULL; /* cloned bio if needed */
rqd->private = pblk;
rqd->end_io = pblk_end_io_read;
r_ctx = nvm_rq_to_pdu(rqd);
r_ctx->start_time = jiffies;
r_ctx->lba = blba;
r_ctx->private = bio; /* original bio */
/* Save the index for this bio's start. This is needed in case
* we need to fill a partial read.
*/
bio_init_idx = pblk_get_bi_idx(bio);
rqd->meta_list = nvm_dev_dma_alloc(dev->parent, GFP_KERNEL,
&rqd->dma_meta_list);
if (!rqd->meta_list) {
pblk_err(pblk, "not able to allocate ppa list\n");
goto fail_rqd_free;
}
if (nr_secs > 1) {
rqd->ppa_list = rqd->meta_list + pblk_dma_meta_size;
rqd->dma_ppa_list = rqd->dma_meta_list + pblk_dma_meta_size;
pblk_read_ppalist_rq(pblk, rqd, bio, blba, read_bitmap);
} else {
pblk_read_rq(pblk, rqd, bio, blba, read_bitmap);
}
if (bitmap_full(read_bitmap, nr_secs)) {
atomic_inc(&pblk->inflight_io);
__pblk_end_io_read(pblk, rqd, false);
return NVM_IO_DONE;
}
/* All sectors are to be read from the device */
if (bitmap_empty(read_bitmap, rqd->nr_ppas)) {
struct bio *int_bio = NULL;
/* Clone read bio to deal with read errors internally */
int_bio = bio_clone_fast(bio, GFP_KERNEL, &pblk_bio_set);
if (!int_bio) {
pblk_err(pblk, "could not clone read bio\n");
goto fail_end_io;
}
rqd->bio = int_bio;
if (pblk_submit_io(pblk, rqd)) {
pblk_err(pblk, "read IO submission failed\n");
ret = NVM_IO_ERR;
goto fail_end_io;
}
return NVM_IO_OK;
}
/* The read bio request could be partially filled by the write buffer,
* but there are some holes that need to be read from the drive.
*/
ret = pblk_partial_read_bio(pblk, rqd, bio_init_idx, read_bitmap,
nr_secs);
if (ret)
goto fail_meta_free;
return NVM_IO_OK;
fail_meta_free:
nvm_dev_dma_free(dev->parent, rqd->meta_list, rqd->dma_meta_list);
fail_rqd_free:
pblk_free_rqd(pblk, rqd, PBLK_READ);
return ret;
fail_end_io:
__pblk_end_io_read(pblk, rqd, false);
return ret;
}
static int read_ppalist_rq_gc(struct pblk *pblk, struct nvm_rq *rqd,
struct pblk_line *line, u64 *lba_list,
u64 *paddr_list_gc, unsigned int nr_secs)
{
struct ppa_addr ppa_list_l2p[PBLK_MAX_REQ_ADDRS];
struct ppa_addr ppa_gc;
int valid_secs = 0;
int i;
pblk_lookup_l2p_rand(pblk, ppa_list_l2p, lba_list, nr_secs);
for (i = 0; i < nr_secs; i++) {
if (lba_list[i] == ADDR_EMPTY)
continue;
ppa_gc = addr_to_gen_ppa(pblk, paddr_list_gc[i], line->id);
if (!pblk_ppa_comp(ppa_list_l2p[i], ppa_gc)) {
paddr_list_gc[i] = lba_list[i] = ADDR_EMPTY;
continue;
}
rqd->ppa_list[valid_secs++] = ppa_list_l2p[i];
}
#ifdef CONFIG_NVM_PBLK_DEBUG
atomic_long_add(valid_secs, &pblk->inflight_reads);
#endif
return valid_secs;
}
static int read_rq_gc(struct pblk *pblk, struct nvm_rq *rqd,
struct pblk_line *line, sector_t lba,
u64 paddr_gc)
{
struct ppa_addr ppa_l2p, ppa_gc;
int valid_secs = 0;
if (lba == ADDR_EMPTY)
goto out;
/* logic error: lba out-of-bounds */
if (lba >= pblk->rl.nr_secs) {
WARN(1, "pblk: read lba out of bounds\n");
goto out;
}
spin_lock(&pblk->trans_lock);
ppa_l2p = pblk_trans_map_get(pblk, lba);
spin_unlock(&pblk->trans_lock);
ppa_gc = addr_to_gen_ppa(pblk, paddr_gc, line->id);
if (!pblk_ppa_comp(ppa_l2p, ppa_gc))
goto out;
rqd->ppa_addr = ppa_l2p;
valid_secs = 1;
#ifdef CONFIG_NVM_PBLK_DEBUG
atomic_long_inc(&pblk->inflight_reads);
#endif
out:
return valid_secs;
}
int pblk_submit_read_gc(struct pblk *pblk, struct pblk_gc_rq *gc_rq)
{
struct nvm_tgt_dev *dev = pblk->dev;
struct nvm_geo *geo = &dev->geo;
struct bio *bio;
struct nvm_rq rqd;
int data_len;
int ret = NVM_IO_OK;
memset(&rqd, 0, sizeof(struct nvm_rq));
rqd.meta_list = nvm_dev_dma_alloc(dev->parent, GFP_KERNEL,
&rqd.dma_meta_list);
if (!rqd.meta_list)
return -ENOMEM;
if (gc_rq->nr_secs > 1) {
rqd.ppa_list = rqd.meta_list + pblk_dma_meta_size;
rqd.dma_ppa_list = rqd.dma_meta_list + pblk_dma_meta_size;
gc_rq->secs_to_gc = read_ppalist_rq_gc(pblk, &rqd, gc_rq->line,
gc_rq->lba_list,
gc_rq->paddr_list,
gc_rq->nr_secs);
if (gc_rq->secs_to_gc == 1)
rqd.ppa_addr = rqd.ppa_list[0];
} else {
gc_rq->secs_to_gc = read_rq_gc(pblk, &rqd, gc_rq->line,
gc_rq->lba_list[0],
gc_rq->paddr_list[0]);
}
if (!(gc_rq->secs_to_gc))
goto out;
data_len = (gc_rq->secs_to_gc) * geo->csecs;
bio = pblk_bio_map_addr(pblk, gc_rq->data, gc_rq->secs_to_gc, data_len,
PBLK_VMALLOC_META, GFP_KERNEL);
if (IS_ERR(bio)) {
pblk_err(pblk, "could not allocate GC bio (%lu)\n",
PTR_ERR(bio));
goto err_free_dma;
}
bio->bi_iter.bi_sector = 0; /* internal bio */
bio_set_op_attrs(bio, REQ_OP_READ, 0);
rqd.opcode = NVM_OP_PREAD;
rqd.nr_ppas = gc_rq->secs_to_gc;
rqd.flags = pblk_set_read_mode(pblk, PBLK_READ_RANDOM);
rqd.bio = bio;
if (pblk_submit_io_sync(pblk, &rqd)) {
ret = -EIO;
pblk_err(pblk, "GC read request failed\n");
goto err_free_bio;
}
pblk_read_check_rand(pblk, &rqd, gc_rq->lba_list, gc_rq->nr_secs);
atomic_dec(&pblk->inflight_io);
if (rqd.error) {
atomic_long_inc(&pblk->read_failed_gc);
#ifdef CONFIG_NVM_PBLK_DEBUG
pblk_print_failed_rqd(pblk, &rqd, rqd.error);
#endif
}
#ifdef CONFIG_NVM_PBLK_DEBUG
atomic_long_add(gc_rq->secs_to_gc, &pblk->sync_reads);
atomic_long_add(gc_rq->secs_to_gc, &pblk->recov_gc_reads);
atomic_long_sub(gc_rq->secs_to_gc, &pblk->inflight_reads);
#endif
out:
nvm_dev_dma_free(dev->parent, rqd.meta_list, rqd.dma_meta_list);
return ret;
err_free_bio:
bio_put(bio);
err_free_dma:
nvm_dev_dma_free(dev->parent, rqd.meta_list, rqd.dma_meta_list);
return ret;
}