kernel_optimize_test/include/asm-x86_64/pgtable.h
Linus Torvalds da8f153e51 Revert "x86_64: Quicklist support for x86_64"
This reverts commit 34feb2c83b.

Suresh Siddha points out that this one breaks the fundamental
requirement that you cannot free page table pages before the TLB caches
are flushed.  The quicklists do not give the same kinds of guarantees
that the mmu_gather structure does, at least not in NUMA configurations.

Requested-by: Suresh Siddha <suresh.b.siddha@intel.com>
Acked-by: Andi Kleen <ak@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Asit Mallick <asit.k.mallick@intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-09-21 12:09:41 -07:00

433 lines
14 KiB
C

#ifndef _X86_64_PGTABLE_H
#define _X86_64_PGTABLE_H
#include <linux/const.h>
#ifndef __ASSEMBLY__
/*
* This file contains the functions and defines necessary to modify and use
* the x86-64 page table tree.
*/
#include <asm/processor.h>
#include <asm/bitops.h>
#include <linux/threads.h>
#include <asm/pda.h>
extern pud_t level3_kernel_pgt[512];
extern pud_t level3_ident_pgt[512];
extern pmd_t level2_kernel_pgt[512];
extern pgd_t init_level4_pgt[];
extern unsigned long __supported_pte_mask;
#define swapper_pg_dir init_level4_pgt
extern void paging_init(void);
extern void clear_kernel_mapping(unsigned long addr, unsigned long size);
/*
* ZERO_PAGE is a global shared page that is always zero: used
* for zero-mapped memory areas etc..
*/
extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)];
#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
#endif /* !__ASSEMBLY__ */
/*
* PGDIR_SHIFT determines what a top-level page table entry can map
*/
#define PGDIR_SHIFT 39
#define PTRS_PER_PGD 512
/*
* 3rd level page
*/
#define PUD_SHIFT 30
#define PTRS_PER_PUD 512
/*
* PMD_SHIFT determines the size of the area a middle-level
* page table can map
*/
#define PMD_SHIFT 21
#define PTRS_PER_PMD 512
/*
* entries per page directory level
*/
#define PTRS_PER_PTE 512
#ifndef __ASSEMBLY__
#define pte_ERROR(e) \
printk("%s:%d: bad pte %p(%016lx).\n", __FILE__, __LINE__, &(e), pte_val(e))
#define pmd_ERROR(e) \
printk("%s:%d: bad pmd %p(%016lx).\n", __FILE__, __LINE__, &(e), pmd_val(e))
#define pud_ERROR(e) \
printk("%s:%d: bad pud %p(%016lx).\n", __FILE__, __LINE__, &(e), pud_val(e))
#define pgd_ERROR(e) \
printk("%s:%d: bad pgd %p(%016lx).\n", __FILE__, __LINE__, &(e), pgd_val(e))
#define pgd_none(x) (!pgd_val(x))
#define pud_none(x) (!pud_val(x))
static inline void set_pte(pte_t *dst, pte_t val)
{
pte_val(*dst) = pte_val(val);
}
#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
static inline void set_pmd(pmd_t *dst, pmd_t val)
{
pmd_val(*dst) = pmd_val(val);
}
static inline void set_pud(pud_t *dst, pud_t val)
{
pud_val(*dst) = pud_val(val);
}
static inline void pud_clear (pud_t *pud)
{
set_pud(pud, __pud(0));
}
static inline void set_pgd(pgd_t *dst, pgd_t val)
{
pgd_val(*dst) = pgd_val(val);
}
static inline void pgd_clear (pgd_t * pgd)
{
set_pgd(pgd, __pgd(0));
}
#define ptep_get_and_clear(mm,addr,xp) __pte(xchg(&(xp)->pte, 0))
struct mm_struct;
static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, unsigned long addr, pte_t *ptep, int full)
{
pte_t pte;
if (full) {
pte = *ptep;
*ptep = __pte(0);
} else {
pte = ptep_get_and_clear(mm, addr, ptep);
}
return pte;
}
#define pte_same(a, b) ((a).pte == (b).pte)
#define pte_pgprot(a) (__pgprot((a).pte & ~PHYSICAL_PAGE_MASK))
#endif /* !__ASSEMBLY__ */
#define PMD_SIZE (_AC(1,UL) << PMD_SHIFT)
#define PMD_MASK (~(PMD_SIZE-1))
#define PUD_SIZE (_AC(1,UL) << PUD_SHIFT)
#define PUD_MASK (~(PUD_SIZE-1))
#define PGDIR_SIZE (_AC(1,UL) << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE-1))
#define USER_PTRS_PER_PGD ((TASK_SIZE-1)/PGDIR_SIZE+1)
#define FIRST_USER_ADDRESS 0
#define MAXMEM _AC(0x3fffffffffff, UL)
#define VMALLOC_START _AC(0xffffc20000000000, UL)
#define VMALLOC_END _AC(0xffffe1ffffffffff, UL)
#define MODULES_VADDR _AC(0xffffffff88000000, UL)
#define MODULES_END _AC(0xfffffffffff00000, UL)
#define MODULES_LEN (MODULES_END - MODULES_VADDR)
#define _PAGE_BIT_PRESENT 0
#define _PAGE_BIT_RW 1
#define _PAGE_BIT_USER 2
#define _PAGE_BIT_PWT 3
#define _PAGE_BIT_PCD 4
#define _PAGE_BIT_ACCESSED 5
#define _PAGE_BIT_DIRTY 6
#define _PAGE_BIT_PSE 7 /* 4 MB (or 2MB) page */
#define _PAGE_BIT_GLOBAL 8 /* Global TLB entry PPro+ */
#define _PAGE_BIT_NX 63 /* No execute: only valid after cpuid check */
#define _PAGE_PRESENT 0x001
#define _PAGE_RW 0x002
#define _PAGE_USER 0x004
#define _PAGE_PWT 0x008
#define _PAGE_PCD 0x010
#define _PAGE_ACCESSED 0x020
#define _PAGE_DIRTY 0x040
#define _PAGE_PSE 0x080 /* 2MB page */
#define _PAGE_FILE 0x040 /* nonlinear file mapping, saved PTE; unset:swap */
#define _PAGE_GLOBAL 0x100 /* Global TLB entry */
#define _PAGE_PROTNONE 0x080 /* If not present */
#define _PAGE_NX (_AC(1,UL)<<_PAGE_BIT_NX)
#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
#define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
#define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX)
#define PAGE_SHARED_EXEC __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
#define PAGE_COPY_NOEXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX)
#define PAGE_COPY PAGE_COPY_NOEXEC
#define PAGE_COPY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX)
#define PAGE_READONLY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
#define __PAGE_KERNEL \
(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_NX)
#define __PAGE_KERNEL_EXEC \
(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
#define __PAGE_KERNEL_NOCACHE \
(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_PCD | _PAGE_ACCESSED | _PAGE_NX)
#define __PAGE_KERNEL_RO \
(_PAGE_PRESENT | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_NX)
#define __PAGE_KERNEL_VSYSCALL \
(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
#define __PAGE_KERNEL_VSYSCALL_NOCACHE \
(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_PCD)
#define __PAGE_KERNEL_LARGE \
(__PAGE_KERNEL | _PAGE_PSE)
#define __PAGE_KERNEL_LARGE_EXEC \
(__PAGE_KERNEL_EXEC | _PAGE_PSE)
#define MAKE_GLOBAL(x) __pgprot((x) | _PAGE_GLOBAL)
#define PAGE_KERNEL MAKE_GLOBAL(__PAGE_KERNEL)
#define PAGE_KERNEL_EXEC MAKE_GLOBAL(__PAGE_KERNEL_EXEC)
#define PAGE_KERNEL_RO MAKE_GLOBAL(__PAGE_KERNEL_RO)
#define PAGE_KERNEL_NOCACHE MAKE_GLOBAL(__PAGE_KERNEL_NOCACHE)
#define PAGE_KERNEL_VSYSCALL32 __pgprot(__PAGE_KERNEL_VSYSCALL)
#define PAGE_KERNEL_VSYSCALL MAKE_GLOBAL(__PAGE_KERNEL_VSYSCALL)
#define PAGE_KERNEL_LARGE MAKE_GLOBAL(__PAGE_KERNEL_LARGE)
#define PAGE_KERNEL_VSYSCALL_NOCACHE MAKE_GLOBAL(__PAGE_KERNEL_VSYSCALL_NOCACHE)
/* xwr */
#define __P000 PAGE_NONE
#define __P001 PAGE_READONLY
#define __P010 PAGE_COPY
#define __P011 PAGE_COPY
#define __P100 PAGE_READONLY_EXEC
#define __P101 PAGE_READONLY_EXEC
#define __P110 PAGE_COPY_EXEC
#define __P111 PAGE_COPY_EXEC
#define __S000 PAGE_NONE
#define __S001 PAGE_READONLY
#define __S010 PAGE_SHARED
#define __S011 PAGE_SHARED
#define __S100 PAGE_READONLY_EXEC
#define __S101 PAGE_READONLY_EXEC
#define __S110 PAGE_SHARED_EXEC
#define __S111 PAGE_SHARED_EXEC
#ifndef __ASSEMBLY__
static inline unsigned long pgd_bad(pgd_t pgd)
{
return pgd_val(pgd) & ~(PTE_MASK | _KERNPG_TABLE | _PAGE_USER);
}
static inline unsigned long pud_bad(pud_t pud)
{
return pud_val(pud) & ~(PTE_MASK | _KERNPG_TABLE | _PAGE_USER);
}
static inline unsigned long pmd_bad(pmd_t pmd)
{
return pmd_val(pmd) & ~(PTE_MASK | _KERNPG_TABLE | _PAGE_USER);
}
#define pte_none(x) (!pte_val(x))
#define pte_present(x) (pte_val(x) & (_PAGE_PRESENT | _PAGE_PROTNONE))
#define pte_clear(mm,addr,xp) do { set_pte_at(mm, addr, xp, __pte(0)); } while (0)
#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT)) /* FIXME: is this
right? */
#define pte_page(x) pfn_to_page(pte_pfn(x))
#define pte_pfn(x) ((pte_val(x) & __PHYSICAL_MASK) >> PAGE_SHIFT)
static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot)
{
pte_t pte;
pte_val(pte) = (page_nr << PAGE_SHIFT);
pte_val(pte) |= pgprot_val(pgprot);
pte_val(pte) &= __supported_pte_mask;
return pte;
}
/*
* The following only work if pte_present() is true.
* Undefined behaviour if not..
*/
#define __LARGE_PTE (_PAGE_PSE|_PAGE_PRESENT)
static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; }
static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; }
static inline int pte_huge(pte_t pte) { return pte_val(pte) & _PAGE_PSE; }
static inline pte_t pte_mkclean(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_DIRTY)); return pte; }
static inline pte_t pte_mkold(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_ACCESSED)); return pte; }
static inline pte_t pte_wrprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_RW)); return pte; }
static inline pte_t pte_mkexec(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_NX)); return pte; }
static inline pte_t pte_mkdirty(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_DIRTY)); return pte; }
static inline pte_t pte_mkyoung(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_ACCESSED)); return pte; }
static inline pte_t pte_mkwrite(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_RW)); return pte; }
static inline pte_t pte_mkhuge(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_PSE)); return pte; }
static inline pte_t pte_clrhuge(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_PSE)); return pte; }
struct vm_area_struct;
static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
{
if (!pte_young(*ptep))
return 0;
return test_and_clear_bit(_PAGE_BIT_ACCESSED, &ptep->pte);
}
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
{
clear_bit(_PAGE_BIT_RW, &ptep->pte);
}
/*
* Macro to mark a page protection value as "uncacheable".
*/
#define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_PCD | _PAGE_PWT))
static inline int pmd_large(pmd_t pte) {
return (pmd_val(pte) & __LARGE_PTE) == __LARGE_PTE;
}
/*
* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*/
/*
* Level 4 access.
*/
#define pgd_page_vaddr(pgd) ((unsigned long) __va((unsigned long)pgd_val(pgd) & PTE_MASK))
#define pgd_page(pgd) (pfn_to_page(pgd_val(pgd) >> PAGE_SHIFT))
#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
#define pgd_offset(mm, addr) ((mm)->pgd + pgd_index(addr))
#define pgd_offset_k(address) (init_level4_pgt + pgd_index(address))
#define pgd_present(pgd) (pgd_val(pgd) & _PAGE_PRESENT)
#define mk_kernel_pgd(address) ((pgd_t){ (address) | _KERNPG_TABLE })
/* PUD - Level3 access */
/* to find an entry in a page-table-directory. */
#define pud_page_vaddr(pud) ((unsigned long) __va(pud_val(pud) & PHYSICAL_PAGE_MASK))
#define pud_page(pud) (pfn_to_page(pud_val(pud) >> PAGE_SHIFT))
#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
#define pud_offset(pgd, address) ((pud_t *) pgd_page_vaddr(*(pgd)) + pud_index(address))
#define pud_present(pud) (pud_val(pud) & _PAGE_PRESENT)
/* PMD - Level 2 access */
#define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PTE_MASK))
#define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
#define pmd_offset(dir, address) ((pmd_t *) pud_page_vaddr(*(dir)) + \
pmd_index(address))
#define pmd_none(x) (!pmd_val(x))
#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
#define pmd_clear(xp) do { set_pmd(xp, __pmd(0)); } while (0)
#define pfn_pmd(nr,prot) (__pmd(((nr) << PAGE_SHIFT) | pgprot_val(prot)))
#define pmd_pfn(x) ((pmd_val(x) & __PHYSICAL_MASK) >> PAGE_SHIFT)
#define pte_to_pgoff(pte) ((pte_val(pte) & PHYSICAL_PAGE_MASK) >> PAGE_SHIFT)
#define pgoff_to_pte(off) ((pte_t) { ((off) << PAGE_SHIFT) | _PAGE_FILE })
#define PTE_FILE_MAX_BITS __PHYSICAL_MASK_SHIFT
/* PTE - Level 1 access. */
/* page, protection -> pte */
#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
#define mk_pte_huge(entry) (pte_val(entry) |= _PAGE_PRESENT | _PAGE_PSE)
/* Change flags of a PTE */
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
pte_val(pte) &= _PAGE_CHG_MASK;
pte_val(pte) |= pgprot_val(newprot);
pte_val(pte) &= __supported_pte_mask;
return pte;
}
#define pte_index(address) \
(((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
#define pte_offset_kernel(dir, address) ((pte_t *) pmd_page_vaddr(*(dir)) + \
pte_index(address))
/* x86-64 always has all page tables mapped. */
#define pte_offset_map(dir,address) pte_offset_kernel(dir,address)
#define pte_offset_map_nested(dir,address) pte_offset_kernel(dir,address)
#define pte_unmap(pte) /* NOP */
#define pte_unmap_nested(pte) /* NOP */
#define update_mmu_cache(vma,address,pte) do { } while (0)
/* We only update the dirty/accessed state if we set
* the dirty bit by hand in the kernel, since the hardware
* will do the accessed bit for us, and we don't want to
* race with other CPU's that might be updating the dirty
* bit at the same time. */
#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
#define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
({ \
int __changed = !pte_same(*(__ptep), __entry); \
if (__changed && __dirty) { \
set_pte(__ptep, __entry); \
flush_tlb_page(__vma, __address); \
} \
__changed; \
})
/* Encode and de-code a swap entry */
#define __swp_type(x) (((x).val >> 1) & 0x3f)
#define __swp_offset(x) ((x).val >> 8)
#define __swp_entry(type, offset) ((swp_entry_t) { ((type) << 1) | ((offset) << 8) })
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
extern spinlock_t pgd_lock;
extern struct list_head pgd_list;
extern int kern_addr_valid(unsigned long addr);
pte_t *lookup_address(unsigned long addr);
#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
remap_pfn_range(vma, vaddr, pfn, size, prot)
#define HAVE_ARCH_UNMAPPED_AREA
#define pgtable_cache_init() do { } while (0)
#define check_pgt_cache() do { } while (0)
#define PAGE_AGP PAGE_KERNEL_NOCACHE
#define HAVE_PAGE_AGP 1
/* fs/proc/kcore.c */
#define kc_vaddr_to_offset(v) ((v) & __VIRTUAL_MASK)
#define kc_offset_to_vaddr(o) \
(((o) & (1UL << (__VIRTUAL_MASK_SHIFT-1))) ? ((o) | (~__VIRTUAL_MASK)) : (o))
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
#define __HAVE_ARCH_PTE_SAME
#include <asm-generic/pgtable.h>
#endif /* !__ASSEMBLY__ */
#endif /* _X86_64_PGTABLE_H */