kernel_optimize_test/arch/um/os-Linux/util.c
Jeff Dike 5134d8fea0 uml: style fixes in arch/um/os-Linux
Style changes under arch/um/os-Linux:
	include trimming
	CodingStyle fixes
	some printks needed severity indicators

make_tempfile turns out not to be used outside of mem.c, so it is now static.
Its declaration in tempfile.h is no longer needed, and tempfile.h itself is no
longer needed.

create_tmp_file was also made static.

checkpatch moans about an EXPORT_SYMBOL in user_syms.c which is part of a
macro definition - this is copying a bit of kernel infrastructure into the
libc side of UML because the kernel headers can't be included there.

Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 09:22:42 -08:00

121 lines
2.7 KiB
C

/*
* Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
* Licensed under the GPL
*/
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <signal.h>
#include <string.h>
#include <termios.h>
#include <wait.h>
#include <sys/mman.h>
#include <sys/utsname.h>
#include "kern_constants.h"
#include "os.h"
#include "user.h"
void stack_protections(unsigned long address)
{
if (mprotect((void *) address, UM_THREAD_SIZE,
PROT_READ | PROT_WRITE | PROT_EXEC) < 0)
panic("protecting stack failed, errno = %d", errno);
}
int raw(int fd)
{
struct termios tt;
int err;
CATCH_EINTR(err = tcgetattr(fd, &tt));
if (err < 0)
return -errno;
cfmakeraw(&tt);
CATCH_EINTR(err = tcsetattr(fd, TCSADRAIN, &tt));
if (err < 0)
return -errno;
/*
* XXX tcsetattr could have applied only some changes
* (and cfmakeraw() is a set of changes)
*/
return 0;
}
void setup_machinename(char *machine_out)
{
struct utsname host;
uname(&host);
#ifdef UML_CONFIG_UML_X86
# ifndef UML_CONFIG_64BIT
if (!strcmp(host.machine, "x86_64")) {
strcpy(machine_out, "i686");
return;
}
# else
if (!strcmp(host.machine, "i686")) {
strcpy(machine_out, "x86_64");
return;
}
# endif
#endif
strcpy(machine_out, host.machine);
}
void setup_hostinfo(char *buf, int len)
{
struct utsname host;
uname(&host);
snprintf(buf, len, "%s %s %s %s %s", host.sysname, host.nodename,
host.release, host.version, host.machine);
}
void os_dump_core(void)
{
int pid;
signal(SIGSEGV, SIG_DFL);
/*
* We are about to SIGTERM this entire process group to ensure that
* nothing is around to run after the kernel exits. The
* kernel wants to abort, not die through SIGTERM, so we
* ignore it here.
*/
signal(SIGTERM, SIG_IGN);
kill(0, SIGTERM);
/*
* Most of the other processes associated with this UML are
* likely sTopped, so give them a SIGCONT so they see the
* SIGTERM.
*/
kill(0, SIGCONT);
/*
* Now, having sent signals to everyone but us, make sure they
* die by ptrace. Processes can survive what's been done to
* them so far - the mechanism I understand is receiving a
* SIGSEGV and segfaulting immediately upon return. There is
* always a SIGSEGV pending, and (I'm guessing) signals are
* processed in numeric order so the SIGTERM (signal 15 vs
* SIGSEGV being signal 11) is never handled.
*
* Run a waitpid loop until we get some kind of error.
* Hopefully, it's ECHILD, but there's not a lot we can do if
* it's something else. Tell os_kill_ptraced_process not to
* wait for the child to report its death because there's
* nothing reasonable to do if that fails.
*/
while ((pid = waitpid(-1, NULL, WNOHANG | __WALL)) > 0)
os_kill_ptraced_process(pid, 0);
abort();
}