kernel_optimize_test/arch/ppc/8260_io/fcc_enet.c
David S. Miller 8c7b7faaa6 [NET]: Kill eth_copy_and_sum().
It hasn't "summed" anything in over 7 years, and it's
just a straight mempcy ala skb_copy_to_linear_data()
so just get rid of it.

Signed-off-by: David S. Miller <davem@davemloft.net>
2007-07-10 22:08:12 -07:00

2397 lines
65 KiB
C

/*
* Fast Ethernet Controller (FCC) driver for Motorola MPC8260.
* Copyright (c) 2000 MontaVista Software, Inc. Dan Malek (dmalek@jlc.net)
*
* This version of the driver is a combination of the 8xx fec and
* 8260 SCC Ethernet drivers. This version has some additional
* configuration options, which should probably be moved out of
* here. This driver currently works for the EST SBC8260,
* SBS Diablo/BCM, Embedded Planet RPX6, TQM8260, and others.
*
* Right now, I am very watseful with the buffers. I allocate memory
* pages and then divide them into 2K frame buffers. This way I know I
* have buffers large enough to hold one frame within one buffer descriptor.
* Once I get this working, I will use 64 or 128 byte CPM buffers, which
* will be much more memory efficient and will easily handle lots of
* small packets. Since this is a cache coherent processor and CPM,
* I could also preallocate SKB's and use them directly on the interface.
*
* 2004-12 Leo Li (leoli@freescale.com)
* - Rework the FCC clock configuration part, make it easier to configure.
*
*/
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/mii.h>
#include <linux/workqueue.h>
#include <linux/bitops.h>
#include <asm/immap_cpm2.h>
#include <asm/pgtable.h>
#include <asm/mpc8260.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#include <asm/signal.h>
/* We can't use the PHY interrupt if we aren't using MDIO. */
#if !defined(CONFIG_USE_MDIO)
#undef PHY_INTERRUPT
#endif
/* If we have a PHY interrupt, we will advertise both full-duplex and half-
* duplex capabilities. If we don't have a PHY interrupt, then we will only
* advertise half-duplex capabilities.
*/
#define MII_ADVERTISE_HALF (ADVERTISE_100HALF | ADVERTISE_10HALF | \
ADVERTISE_CSMA)
#define MII_ADVERTISE_ALL (ADVERTISE_100FULL | ADVERTISE_10FULL | \
MII_ADVERTISE_HALF)
#ifdef PHY_INTERRUPT
#define MII_ADVERTISE_DEFAULT MII_ADVERTISE_ALL
#else
#define MII_ADVERTISE_DEFAULT MII_ADVERTISE_HALF
#endif
#include <asm/cpm2.h>
/* The transmitter timeout
*/
#define TX_TIMEOUT (2*HZ)
#ifdef CONFIG_USE_MDIO
/* Forward declarations of some structures to support different PHYs */
typedef struct {
uint mii_data;
void (*funct)(uint mii_reg, struct net_device *dev);
} phy_cmd_t;
typedef struct {
uint id;
char *name;
const phy_cmd_t *config;
const phy_cmd_t *startup;
const phy_cmd_t *ack_int;
const phy_cmd_t *shutdown;
} phy_info_t;
/* values for phy_status */
#define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
#define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
#define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
#define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
#define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
#define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
#define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
#define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
#define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
#define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
#define PHY_STAT_SPMASK 0xf000 /* mask for speed */
#define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
#define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
#define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
#define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
#endif /* CONFIG_USE_MDIO */
/* The number of Tx and Rx buffers. These are allocated from the page
* pool. The code may assume these are power of two, so it is best
* to keep them that size.
* We don't need to allocate pages for the transmitter. We just use
* the skbuffer directly.
*/
#define FCC_ENET_RX_PAGES 16
#define FCC_ENET_RX_FRSIZE 2048
#define FCC_ENET_RX_FRPPG (PAGE_SIZE / FCC_ENET_RX_FRSIZE)
#define RX_RING_SIZE (FCC_ENET_RX_FRPPG * FCC_ENET_RX_PAGES)
#define TX_RING_SIZE 16 /* Must be power of two */
#define TX_RING_MOD_MASK 15 /* for this to work */
/* The FCC stores dest/src/type, data, and checksum for receive packets.
* size includes support for VLAN
*/
#define PKT_MAXBUF_SIZE 1522
#define PKT_MINBUF_SIZE 64
/* Maximum input DMA size. Must be a should(?) be a multiple of 4.
* size includes support for VLAN
*/
#define PKT_MAXDMA_SIZE 1524
/* Maximum input buffer size. Must be a multiple of 32.
*/
#define PKT_MAXBLR_SIZE 1536
static int fcc_enet_open(struct net_device *dev);
static int fcc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
static int fcc_enet_rx(struct net_device *dev);
static irqreturn_t fcc_enet_interrupt(int irq, void *dev_id);
static int fcc_enet_close(struct net_device *dev);
static struct net_device_stats *fcc_enet_get_stats(struct net_device *dev);
/* static void set_multicast_list(struct net_device *dev); */
static void fcc_restart(struct net_device *dev, int duplex);
static void fcc_stop(struct net_device *dev);
static int fcc_enet_set_mac_address(struct net_device *dev, void *addr);
/* These will be configurable for the FCC choice.
* Multiple ports can be configured. There is little choice among the
* I/O pins to the PHY, except the clocks. We will need some board
* dependent clock selection.
* Why in the hell did I put these inside #ifdef's? I dunno, maybe to
* help show what pins are used for each device.
*/
/* Since the CLK setting changes greatly from board to board, I changed
* it to a easy way. You just need to specify which CLK number to use.
* Note that only limited choices can be make on each port.
*/
/* FCC1 Clock Source Configuration. There are board specific.
Can only choose from CLK9-12 */
#ifdef CONFIG_SBC82xx
#define F1_RXCLK 9
#define F1_TXCLK 10
#elif defined(CONFIG_ADS8272)
#define F1_RXCLK 11
#define F1_TXCLK 10
#else
#define F1_RXCLK 12
#define F1_TXCLK 11
#endif
/* FCC2 Clock Source Configuration. There are board specific.
Can only choose from CLK13-16 */
#ifdef CONFIG_ADS8272
#define F2_RXCLK 15
#define F2_TXCLK 16
#else
#define F2_RXCLK 13
#define F2_TXCLK 14
#endif
/* FCC3 Clock Source Configuration. There are board specific.
Can only choose from CLK13-16 */
#define F3_RXCLK 15
#define F3_TXCLK 16
/* Automatically generates register configurations */
#define PC_CLK(x) ((uint)(1<<(x-1))) /* FCC CLK I/O ports */
#define CMXFCR_RF1CS(x) ((uint)((x-5)<<27)) /* FCC1 Receive Clock Source */
#define CMXFCR_TF1CS(x) ((uint)((x-5)<<24)) /* FCC1 Transmit Clock Source */
#define CMXFCR_RF2CS(x) ((uint)((x-9)<<19)) /* FCC2 Receive Clock Source */
#define CMXFCR_TF2CS(x) ((uint)((x-9)<<16)) /* FCC2 Transmit Clock Source */
#define CMXFCR_RF3CS(x) ((uint)((x-9)<<11)) /* FCC3 Receive Clock Source */
#define CMXFCR_TF3CS(x) ((uint)((x-9)<<8)) /* FCC3 Transmit Clock Source */
#define PC_F1RXCLK PC_CLK(F1_RXCLK)
#define PC_F1TXCLK PC_CLK(F1_TXCLK)
#define CMX1_CLK_ROUTE (CMXFCR_RF1CS(F1_RXCLK) | CMXFCR_TF1CS(F1_TXCLK))
#define CMX1_CLK_MASK ((uint)0xff000000)
#define PC_F2RXCLK PC_CLK(F2_RXCLK)
#define PC_F2TXCLK PC_CLK(F2_TXCLK)
#define CMX2_CLK_ROUTE (CMXFCR_RF2CS(F2_RXCLK) | CMXFCR_TF2CS(F2_TXCLK))
#define CMX2_CLK_MASK ((uint)0x00ff0000)
#define PC_F3RXCLK PC_CLK(F3_RXCLK)
#define PC_F3TXCLK PC_CLK(F3_TXCLK)
#define CMX3_CLK_ROUTE (CMXFCR_RF3CS(F3_RXCLK) | CMXFCR_TF3CS(F3_TXCLK))
#define CMX3_CLK_MASK ((uint)0x0000ff00)
/* I/O Pin assignment for FCC1. I don't yet know the best way to do this,
* but there is little variation among the choices.
*/
#define PA1_COL ((uint)0x00000001)
#define PA1_CRS ((uint)0x00000002)
#define PA1_TXER ((uint)0x00000004)
#define PA1_TXEN ((uint)0x00000008)
#define PA1_RXDV ((uint)0x00000010)
#define PA1_RXER ((uint)0x00000020)
#define PA1_TXDAT ((uint)0x00003c00)
#define PA1_RXDAT ((uint)0x0003c000)
#define PA1_PSORA_BOUT (PA1_RXDAT | PA1_TXDAT)
#define PA1_PSORA_BIN (PA1_COL | PA1_CRS | PA1_TXER | PA1_TXEN | \
PA1_RXDV | PA1_RXER)
#define PA1_DIRA_BOUT (PA1_RXDAT | PA1_CRS | PA1_COL | PA1_RXER | PA1_RXDV)
#define PA1_DIRA_BIN (PA1_TXDAT | PA1_TXEN | PA1_TXER)
/* I/O Pin assignment for FCC2. I don't yet know the best way to do this,
* but there is little variation among the choices.
*/
#define PB2_TXER ((uint)0x00000001)
#define PB2_RXDV ((uint)0x00000002)
#define PB2_TXEN ((uint)0x00000004)
#define PB2_RXER ((uint)0x00000008)
#define PB2_COL ((uint)0x00000010)
#define PB2_CRS ((uint)0x00000020)
#define PB2_TXDAT ((uint)0x000003c0)
#define PB2_RXDAT ((uint)0x00003c00)
#define PB2_PSORB_BOUT (PB2_RXDAT | PB2_TXDAT | PB2_CRS | PB2_COL | \
PB2_RXER | PB2_RXDV | PB2_TXER)
#define PB2_PSORB_BIN (PB2_TXEN)
#define PB2_DIRB_BOUT (PB2_RXDAT | PB2_CRS | PB2_COL | PB2_RXER | PB2_RXDV)
#define PB2_DIRB_BIN (PB2_TXDAT | PB2_TXEN | PB2_TXER)
/* I/O Pin assignment for FCC3. I don't yet know the best way to do this,
* but there is little variation among the choices.
*/
#define PB3_RXDV ((uint)0x00004000)
#define PB3_RXER ((uint)0x00008000)
#define PB3_TXER ((uint)0x00010000)
#define PB3_TXEN ((uint)0x00020000)
#define PB3_COL ((uint)0x00040000)
#define PB3_CRS ((uint)0x00080000)
#ifndef CONFIG_RPX8260
#define PB3_TXDAT ((uint)0x0f000000)
#define PC3_TXDAT ((uint)0x00000000)
#else
#define PB3_TXDAT ((uint)0x0f000000)
#define PC3_TXDAT 0
#endif
#define PB3_RXDAT ((uint)0x00f00000)
#define PB3_PSORB_BOUT (PB3_RXDAT | PB3_TXDAT | PB3_CRS | PB3_COL | \
PB3_RXER | PB3_RXDV | PB3_TXER | PB3_TXEN)
#define PB3_PSORB_BIN (0)
#define PB3_DIRB_BOUT (PB3_RXDAT | PB3_CRS | PB3_COL | PB3_RXER | PB3_RXDV)
#define PB3_DIRB_BIN (PB3_TXDAT | PB3_TXEN | PB3_TXER)
#define PC3_PSORC_BOUT (PC3_TXDAT)
#define PC3_PSORC_BIN (0)
#define PC3_DIRC_BOUT (0)
#define PC3_DIRC_BIN (PC3_TXDAT)
/* MII status/control serial interface.
*/
#if defined(CONFIG_RPX8260)
/* The EP8260 doesn't use Port C for MDIO */
#define PC_MDIO ((uint)0x00000000)
#define PC_MDCK ((uint)0x00000000)
#elif defined(CONFIG_TQM8260)
/* TQM8260 has MDIO and MDCK on PC30 and PC31 respectively */
#define PC_MDIO ((uint)0x00000002)
#define PC_MDCK ((uint)0x00000001)
#elif defined(CONFIG_ADS8272)
#define PC_MDIO ((uint)0x00002000)
#define PC_MDCK ((uint)0x00001000)
#elif defined(CONFIG_EST8260) || defined(CONFIG_ADS8260) || defined(CONFIG_PQ2FADS)
#define PC_MDIO ((uint)0x00400000)
#define PC_MDCK ((uint)0x00200000)
#else
#define PC_MDIO ((uint)0x00000004)
#define PC_MDCK ((uint)0x00000020)
#endif
#if defined(CONFIG_USE_MDIO) && (!defined(PC_MDIO) || !defined(PC_MDCK))
#error "Must define PC_MDIO and PC_MDCK if using MDIO"
#endif
/* PHY addresses */
/* default to dynamic config of phy addresses */
#define FCC1_PHY_ADDR 0
#ifdef CONFIG_PQ2FADS
#define FCC2_PHY_ADDR 0
#else
#define FCC2_PHY_ADDR 2
#endif
#define FCC3_PHY_ADDR 3
/* A table of information for supporting FCCs. This does two things.
* First, we know how many FCCs we have and they are always externally
* numbered from zero. Second, it holds control register and I/O
* information that could be different among board designs.
*/
typedef struct fcc_info {
uint fc_fccnum;
uint fc_phyaddr;
uint fc_cpmblock;
uint fc_cpmpage;
uint fc_proff;
uint fc_interrupt;
uint fc_trxclocks;
uint fc_clockroute;
uint fc_clockmask;
uint fc_mdio;
uint fc_mdck;
} fcc_info_t;
static fcc_info_t fcc_ports[] = {
#ifdef CONFIG_FCC1_ENET
{ 0, FCC1_PHY_ADDR, CPM_CR_FCC1_SBLOCK, CPM_CR_FCC1_PAGE, PROFF_FCC1, SIU_INT_FCC1,
(PC_F1RXCLK | PC_F1TXCLK), CMX1_CLK_ROUTE, CMX1_CLK_MASK,
PC_MDIO, PC_MDCK },
#endif
#ifdef CONFIG_FCC2_ENET
{ 1, FCC2_PHY_ADDR, CPM_CR_FCC2_SBLOCK, CPM_CR_FCC2_PAGE, PROFF_FCC2, SIU_INT_FCC2,
(PC_F2RXCLK | PC_F2TXCLK), CMX2_CLK_ROUTE, CMX2_CLK_MASK,
PC_MDIO, PC_MDCK },
#endif
#ifdef CONFIG_FCC3_ENET
{ 2, FCC3_PHY_ADDR, CPM_CR_FCC3_SBLOCK, CPM_CR_FCC3_PAGE, PROFF_FCC3, SIU_INT_FCC3,
(PC_F3RXCLK | PC_F3TXCLK), CMX3_CLK_ROUTE, CMX3_CLK_MASK,
PC_MDIO, PC_MDCK },
#endif
};
/* The FCC buffer descriptors track the ring buffers. The rx_bd_base and
* tx_bd_base always point to the base of the buffer descriptors. The
* cur_rx and cur_tx point to the currently available buffer.
* The dirty_tx tracks the current buffer that is being sent by the
* controller. The cur_tx and dirty_tx are equal under both completely
* empty and completely full conditions. The empty/ready indicator in
* the buffer descriptor determines the actual condition.
*/
struct fcc_enet_private {
/* The saved address of a sent-in-place packet/buffer, for skfree(). */
struct sk_buff* tx_skbuff[TX_RING_SIZE];
ushort skb_cur;
ushort skb_dirty;
/* CPM dual port RAM relative addresses.
*/
cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
cbd_t *tx_bd_base;
cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
cbd_t *dirty_tx; /* The ring entries to be free()ed. */
volatile fcc_t *fccp;
volatile fcc_enet_t *ep;
struct net_device_stats stats;
uint tx_free;
spinlock_t lock;
#ifdef CONFIG_USE_MDIO
uint phy_id;
uint phy_id_done;
uint phy_status;
phy_info_t *phy;
struct work_struct phy_relink;
struct work_struct phy_display_config;
struct net_device *dev;
uint sequence_done;
uint phy_addr;
#endif /* CONFIG_USE_MDIO */
int link;
int old_link;
int full_duplex;
fcc_info_t *fip;
};
static void init_fcc_shutdown(fcc_info_t *fip, struct fcc_enet_private *cep,
volatile cpm2_map_t *immap);
static void init_fcc_startup(fcc_info_t *fip, struct net_device *dev);
static void init_fcc_ioports(fcc_info_t *fip, volatile iop_cpm2_t *io,
volatile cpm2_map_t *immap);
static void init_fcc_param(fcc_info_t *fip, struct net_device *dev,
volatile cpm2_map_t *immap);
#ifdef CONFIG_USE_MDIO
static int mii_queue(struct net_device *dev, int request, void (*func)(uint, struct net_device *));
static uint mii_send_receive(fcc_info_t *fip, uint cmd);
static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c);
/* Make MII read/write commands for the FCC.
*/
#define mk_mii_read(REG) (0x60020000 | (((REG) & 0x1f) << 18))
#define mk_mii_write(REG, VAL) (0x50020000 | (((REG) & 0x1f) << 18) | \
((VAL) & 0xffff))
#define mk_mii_end 0
#endif /* CONFIG_USE_MDIO */
static int
fcc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv;
volatile cbd_t *bdp;
/* Fill in a Tx ring entry */
bdp = cep->cur_tx;
#ifndef final_version
if (!cep->tx_free || (bdp->cbd_sc & BD_ENET_TX_READY)) {
/* Ooops. All transmit buffers are full. Bail out.
* This should not happen, since the tx queue should be stopped.
*/
printk("%s: tx queue full!.\n", dev->name);
return 1;
}
#endif
/* Clear all of the status flags. */
bdp->cbd_sc &= ~BD_ENET_TX_STATS;
/* If the frame is short, tell CPM to pad it. */
if (skb->len <= ETH_ZLEN)
bdp->cbd_sc |= BD_ENET_TX_PAD;
else
bdp->cbd_sc &= ~BD_ENET_TX_PAD;
/* Set buffer length and buffer pointer. */
bdp->cbd_datlen = skb->len;
bdp->cbd_bufaddr = __pa(skb->data);
spin_lock_irq(&cep->lock);
/* Save skb pointer. */
cep->tx_skbuff[cep->skb_cur] = skb;
cep->stats.tx_bytes += skb->len;
cep->skb_cur = (cep->skb_cur+1) & TX_RING_MOD_MASK;
/* Send it on its way. Tell CPM its ready, interrupt when done,
* its the last BD of the frame, and to put the CRC on the end.
*/
bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | BD_ENET_TX_LAST | BD_ENET_TX_TC);
#if 0
/* Errata says don't do this. */
cep->fccp->fcc_ftodr = 0x8000;
#endif
dev->trans_start = jiffies;
/* If this was the last BD in the ring, start at the beginning again. */
if (bdp->cbd_sc & BD_ENET_TX_WRAP)
bdp = cep->tx_bd_base;
else
bdp++;
if (!--cep->tx_free)
netif_stop_queue(dev);
cep->cur_tx = (cbd_t *)bdp;
spin_unlock_irq(&cep->lock);
return 0;
}
static void
fcc_enet_timeout(struct net_device *dev)
{
struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv;
printk("%s: transmit timed out.\n", dev->name);
cep->stats.tx_errors++;
#ifndef final_version
{
int i;
cbd_t *bdp;
printk(" Ring data dump: cur_tx %p tx_free %d cur_rx %p.\n",
cep->cur_tx, cep->tx_free,
cep->cur_rx);
bdp = cep->tx_bd_base;
printk(" Tx @base %p :\n", bdp);
for (i = 0 ; i < TX_RING_SIZE; i++, bdp++)
printk("%04x %04x %08x\n",
bdp->cbd_sc,
bdp->cbd_datlen,
bdp->cbd_bufaddr);
bdp = cep->rx_bd_base;
printk(" Rx @base %p :\n", bdp);
for (i = 0 ; i < RX_RING_SIZE; i++, bdp++)
printk("%04x %04x %08x\n",
bdp->cbd_sc,
bdp->cbd_datlen,
bdp->cbd_bufaddr);
}
#endif
if (cep->tx_free)
netif_wake_queue(dev);
}
/* The interrupt handler. */
static irqreturn_t
fcc_enet_interrupt(int irq, void * dev_id)
{
struct net_device *dev = dev_id;
volatile struct fcc_enet_private *cep;
volatile cbd_t *bdp;
ushort int_events;
int must_restart;
cep = (struct fcc_enet_private *)dev->priv;
/* Get the interrupt events that caused us to be here.
*/
int_events = cep->fccp->fcc_fcce;
cep->fccp->fcc_fcce = (int_events & cep->fccp->fcc_fccm);
must_restart = 0;
#ifdef PHY_INTERRUPT
/* We have to be careful here to make sure that we aren't
* interrupted by a PHY interrupt.
*/
disable_irq_nosync(PHY_INTERRUPT);
#endif
/* Handle receive event in its own function.
*/
if (int_events & FCC_ENET_RXF)
fcc_enet_rx(dev_id);
/* Check for a transmit error. The manual is a little unclear
* about this, so the debug code until I get it figured out. It
* appears that if TXE is set, then TXB is not set. However,
* if carrier sense is lost during frame transmission, the TXE
* bit is set, "and continues the buffer transmission normally."
* I don't know if "normally" implies TXB is set when the buffer
* descriptor is closed.....trial and error :-).
*/
/* Transmit OK, or non-fatal error. Update the buffer descriptors.
*/
if (int_events & (FCC_ENET_TXE | FCC_ENET_TXB)) {
spin_lock(&cep->lock);
bdp = cep->dirty_tx;
while ((bdp->cbd_sc&BD_ENET_TX_READY)==0) {
if (cep->tx_free == TX_RING_SIZE)
break;
if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */
cep->stats.tx_heartbeat_errors++;
if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */
cep->stats.tx_window_errors++;
if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */
cep->stats.tx_aborted_errors++;
if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */
cep->stats.tx_fifo_errors++;
if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */
cep->stats.tx_carrier_errors++;
/* No heartbeat or Lost carrier are not really bad errors.
* The others require a restart transmit command.
*/
if (bdp->cbd_sc &
(BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
must_restart = 1;
cep->stats.tx_errors++;
}
cep->stats.tx_packets++;
/* Deferred means some collisions occurred during transmit,
* but we eventually sent the packet OK.
*/
if (bdp->cbd_sc & BD_ENET_TX_DEF)
cep->stats.collisions++;
/* Free the sk buffer associated with this last transmit. */
dev_kfree_skb_irq(cep->tx_skbuff[cep->skb_dirty]);
cep->tx_skbuff[cep->skb_dirty] = NULL;
cep->skb_dirty = (cep->skb_dirty + 1) & TX_RING_MOD_MASK;
/* Update pointer to next buffer descriptor to be transmitted. */
if (bdp->cbd_sc & BD_ENET_TX_WRAP)
bdp = cep->tx_bd_base;
else
bdp++;
/* I don't know if we can be held off from processing these
* interrupts for more than one frame time. I really hope
* not. In such a case, we would now want to check the
* currently available BD (cur_tx) and determine if any
* buffers between the dirty_tx and cur_tx have also been
* sent. We would want to process anything in between that
* does not have BD_ENET_TX_READY set.
*/
/* Since we have freed up a buffer, the ring is no longer
* full.
*/
if (!cep->tx_free++) {
if (netif_queue_stopped(dev)) {
netif_wake_queue(dev);
}
}
cep->dirty_tx = (cbd_t *)bdp;
}
if (must_restart) {
volatile cpm_cpm2_t *cp;
/* Some transmit errors cause the transmitter to shut
* down. We now issue a restart transmit. Since the
* errors close the BD and update the pointers, the restart
* _should_ pick up without having to reset any of our
* pointers either. Also, To workaround 8260 device erratum
* CPM37, we must disable and then re-enable the transmitter
* following a Late Collision, Underrun, or Retry Limit error.
*/
cep->fccp->fcc_gfmr &= ~FCC_GFMR_ENT;
udelay(10); /* wait a few microseconds just on principle */
cep->fccp->fcc_gfmr |= FCC_GFMR_ENT;
cp = cpmp;
cp->cp_cpcr =
mk_cr_cmd(cep->fip->fc_cpmpage, cep->fip->fc_cpmblock,
0x0c, CPM_CR_RESTART_TX) | CPM_CR_FLG;
while (cp->cp_cpcr & CPM_CR_FLG);
}
spin_unlock(&cep->lock);
}
/* Check for receive busy, i.e. packets coming but no place to
* put them.
*/
if (int_events & FCC_ENET_BSY) {
cep->fccp->fcc_fcce = FCC_ENET_BSY;
cep->stats.rx_dropped++;
}
#ifdef PHY_INTERRUPT
enable_irq(PHY_INTERRUPT);
#endif
return IRQ_HANDLED;
}
/* During a receive, the cur_rx points to the current incoming buffer.
* When we update through the ring, if the next incoming buffer has
* not been given to the system, we just set the empty indicator,
* effectively tossing the packet.
*/
static int
fcc_enet_rx(struct net_device *dev)
{
struct fcc_enet_private *cep;
volatile cbd_t *bdp;
struct sk_buff *skb;
ushort pkt_len;
cep = (struct fcc_enet_private *)dev->priv;
/* First, grab all of the stats for the incoming packet.
* These get messed up if we get called due to a busy condition.
*/
bdp = cep->cur_rx;
for (;;) {
if (bdp->cbd_sc & BD_ENET_RX_EMPTY)
break;
#ifndef final_version
/* Since we have allocated space to hold a complete frame, both
* the first and last indicators should be set.
*/
if ((bdp->cbd_sc & (BD_ENET_RX_FIRST | BD_ENET_RX_LAST)) !=
(BD_ENET_RX_FIRST | BD_ENET_RX_LAST))
printk("CPM ENET: rcv is not first+last\n");
#endif
/* Frame too long or too short. */
if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
cep->stats.rx_length_errors++;
if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */
cep->stats.rx_frame_errors++;
if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */
cep->stats.rx_crc_errors++;
if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */
cep->stats.rx_crc_errors++;
if (bdp->cbd_sc & BD_ENET_RX_CL) /* Late Collision */
cep->stats.rx_frame_errors++;
if (!(bdp->cbd_sc &
(BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | BD_ENET_RX_CR
| BD_ENET_RX_OV | BD_ENET_RX_CL)))
{
/* Process the incoming frame. */
cep->stats.rx_packets++;
/* Remove the FCS from the packet length. */
pkt_len = bdp->cbd_datlen - 4;
cep->stats.rx_bytes += pkt_len;
/* This does 16 byte alignment, much more than we need. */
skb = dev_alloc_skb(pkt_len);
if (skb == NULL) {
printk("%s: Memory squeeze, dropping packet.\n", dev->name);
cep->stats.rx_dropped++;
}
else {
skb_put(skb,pkt_len); /* Make room */
skb_copy_to_linear_data(skb,
(unsigned char *)__va(bdp->cbd_bufaddr),
pkt_len);
skb->protocol=eth_type_trans(skb,dev);
netif_rx(skb);
}
}
/* Clear the status flags for this buffer. */
bdp->cbd_sc &= ~BD_ENET_RX_STATS;
/* Mark the buffer empty. */
bdp->cbd_sc |= BD_ENET_RX_EMPTY;
/* Update BD pointer to next entry. */
if (bdp->cbd_sc & BD_ENET_RX_WRAP)
bdp = cep->rx_bd_base;
else
bdp++;
}
cep->cur_rx = (cbd_t *)bdp;
return 0;
}
static int
fcc_enet_close(struct net_device *dev)
{
#ifdef CONFIG_USE_MDIO
struct fcc_enet_private *fep = dev->priv;
#endif
netif_stop_queue(dev);
fcc_stop(dev);
#ifdef CONFIG_USE_MDIO
if (fep->phy)
mii_do_cmd(dev, fep->phy->shutdown);
#endif
return 0;
}
static struct net_device_stats *fcc_enet_get_stats(struct net_device *dev)
{
struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv;
return &cep->stats;
}
#ifdef CONFIG_USE_MDIO
/* NOTE: Most of the following comes from the FEC driver for 860. The
* overall structure of MII code has been retained (as it's proved stable
* and well-tested), but actual transfer requests are processed "at once"
* instead of being queued (there's no interrupt-driven MII transfer
* mechanism, one has to toggle the data/clock bits manually).
*/
static int
mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
{
struct fcc_enet_private *fep;
int retval, tmp;
/* Add PHY address to register command. */
fep = dev->priv;
regval |= fep->phy_addr << 23;
retval = 0;
tmp = mii_send_receive(fep->fip, regval);
if (func)
func(tmp, dev);
return retval;
}
static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
{
int k;
if(!c)
return;
for(k = 0; (c+k)->mii_data != mk_mii_end; k++)
mii_queue(dev, (c+k)->mii_data, (c+k)->funct);
}
static void mii_parse_sr(uint mii_reg, struct net_device *dev)
{
volatile struct fcc_enet_private *fep = dev->priv;
uint s = fep->phy_status;
s &= ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
if (mii_reg & BMSR_LSTATUS)
s |= PHY_STAT_LINK;
if (mii_reg & BMSR_RFAULT)
s |= PHY_STAT_FAULT;
if (mii_reg & BMSR_ANEGCOMPLETE)
s |= PHY_STAT_ANC;
fep->phy_status = s;
}
static void mii_parse_cr(uint mii_reg, struct net_device *dev)
{
volatile struct fcc_enet_private *fep = dev->priv;
uint s = fep->phy_status;
s &= ~(PHY_CONF_ANE | PHY_CONF_LOOP);
if (mii_reg & BMCR_ANENABLE)
s |= PHY_CONF_ANE;
if (mii_reg & BMCR_LOOPBACK)
s |= PHY_CONF_LOOP;
fep->phy_status = s;
}
static void mii_parse_anar(uint mii_reg, struct net_device *dev)
{
volatile struct fcc_enet_private *fep = dev->priv;
uint s = fep->phy_status;
s &= ~(PHY_CONF_SPMASK);
if (mii_reg & ADVERTISE_10HALF)
s |= PHY_CONF_10HDX;
if (mii_reg & ADVERTISE_10FULL)
s |= PHY_CONF_10FDX;
if (mii_reg & ADVERTISE_100HALF)
s |= PHY_CONF_100HDX;
if (mii_reg & ADVERTISE_100FULL)
s |= PHY_CONF_100FDX;
fep->phy_status = s;
}
/* ------------------------------------------------------------------------- */
/* Generic PHY support. Should work for all PHYs, but does not support link
* change interrupts.
*/
#ifdef CONFIG_FCC_GENERIC_PHY
static phy_info_t phy_info_generic = {
0x00000000, /* 0-->match any PHY */
"GENERIC",
(const phy_cmd_t []) { /* config */
/* advertise only half-duplex capabilities */
{ mk_mii_write(MII_ADVERTISE, MII_ADVERTISE_HALF),
mii_parse_anar },
/* enable auto-negotiation */
{ mk_mii_write(MII_BMCR, BMCR_ANENABLE), mii_parse_cr },
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* startup */
/* restart auto-negotiation */
{ mk_mii_write(MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART),
NULL },
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* ack_int */
/* We don't actually use the ack_int table with a generic
* PHY, but putting a reference to mii_parse_sr here keeps
* us from getting a compiler warning about unused static
* functions in the case where we only compile in generic
* PHY support.
*/
{ mk_mii_read(MII_BMSR), mii_parse_sr },
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* shutdown */
{ mk_mii_end, }
},
};
#endif /* ifdef CONFIG_FCC_GENERIC_PHY */
/* ------------------------------------------------------------------------- */
/* The Level one LXT970 is used by many boards */
#ifdef CONFIG_FCC_LXT970
#define MII_LXT970_MIRROR 16 /* Mirror register */
#define MII_LXT970_IER 17 /* Interrupt Enable Register */
#define MII_LXT970_ISR 18 /* Interrupt Status Register */
#define MII_LXT970_CONFIG 19 /* Configuration Register */
#define MII_LXT970_CSR 20 /* Chip Status Register */
static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
{
volatile struct fcc_enet_private *fep = dev->priv;
uint s = fep->phy_status;
s &= ~(PHY_STAT_SPMASK);
if (mii_reg & 0x0800) {
if (mii_reg & 0x1000)
s |= PHY_STAT_100FDX;
else
s |= PHY_STAT_100HDX;
} else {
if (mii_reg & 0x1000)
s |= PHY_STAT_10FDX;
else
s |= PHY_STAT_10HDX;
}
fep->phy_status = s;
}
static phy_info_t phy_info_lxt970 = {
0x07810000,
"LXT970",
(const phy_cmd_t []) { /* config */
#if 0
// { mk_mii_write(MII_ADVERTISE, 0x0021), NULL },
/* Set default operation of 100-TX....for some reason
* some of these bits are set on power up, which is wrong.
*/
{ mk_mii_write(MII_LXT970_CONFIG, 0), NULL },
#endif
{ mk_mii_read(MII_BMCR), mii_parse_cr },
{ mk_mii_read(MII_ADVERTISE), mii_parse_anar },
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* startup - enable interrupts */
{ mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
{ mk_mii_write(MII_BMCR, 0x1200), NULL }, /* autonegotiate */
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* ack_int */
/* read SR and ISR to acknowledge */
{ mk_mii_read(MII_BMSR), mii_parse_sr },
{ mk_mii_read(MII_LXT970_ISR), NULL },
/* find out the current status */
{ mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* shutdown - disable interrupts */
{ mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
{ mk_mii_end, }
},
};
#endif /* CONFIG_FEC_LXT970 */
/* ------------------------------------------------------------------------- */
/* The Level one LXT971 is used on some of my custom boards */
#ifdef CONFIG_FCC_LXT971
/* register definitions for the 971 */
#define MII_LXT971_PCR 16 /* Port Control Register */
#define MII_LXT971_SR2 17 /* Status Register 2 */
#define MII_LXT971_IER 18 /* Interrupt Enable Register */
#define MII_LXT971_ISR 19 /* Interrupt Status Register */
#define MII_LXT971_LCR 20 /* LED Control Register */
#define MII_LXT971_TCR 30 /* Transmit Control Register */
/*
* I had some nice ideas of running the MDIO faster...
* The 971 should support 8MHz and I tried it, but things acted really
* weird, so 2.5 MHz ought to be enough for anyone...
*/
static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
{
volatile struct fcc_enet_private *fep = dev->priv;
uint s = fep->phy_status;
s &= ~(PHY_STAT_SPMASK);
if (mii_reg & 0x4000) {
if (mii_reg & 0x0200)
s |= PHY_STAT_100FDX;
else
s |= PHY_STAT_100HDX;
} else {
if (mii_reg & 0x0200)
s |= PHY_STAT_10FDX;
else
s |= PHY_STAT_10HDX;
}
if (mii_reg & 0x0008)
s |= PHY_STAT_FAULT;
fep->phy_status = s;
}
static phy_info_t phy_info_lxt971 = {
0x0001378e,
"LXT971",
(const phy_cmd_t []) { /* config */
/* configure link capabilities to advertise */
{ mk_mii_write(MII_ADVERTISE, MII_ADVERTISE_DEFAULT),
mii_parse_anar },
/* enable auto-negotiation */
{ mk_mii_write(MII_BMCR, BMCR_ANENABLE), mii_parse_cr },
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* startup - enable interrupts */
{ mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
/* restart auto-negotiation */
{ mk_mii_write(MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART),
NULL },
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* ack_int */
/* find out the current status */
{ mk_mii_read(MII_BMSR), NULL },
{ mk_mii_read(MII_BMSR), mii_parse_sr },
{ mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
/* we only need to read ISR to acknowledge */
{ mk_mii_read(MII_LXT971_ISR), NULL },
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* shutdown - disable interrupts */
{ mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
{ mk_mii_end, }
},
};
#endif /* CONFIG_FCC_LXT971 */
/* ------------------------------------------------------------------------- */
/* The Quality Semiconductor QS6612 is used on the RPX CLLF */
#ifdef CONFIG_FCC_QS6612
/* register definitions */
#define MII_QS6612_MCR 17 /* Mode Control Register */
#define MII_QS6612_FTR 27 /* Factory Test Register */
#define MII_QS6612_MCO 28 /* Misc. Control Register */
#define MII_QS6612_ISR 29 /* Interrupt Source Register */
#define MII_QS6612_IMR 30 /* Interrupt Mask Register */
#define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
{
volatile struct fcc_enet_private *fep = dev->priv;
uint s = fep->phy_status;
s &= ~(PHY_STAT_SPMASK);
switch((mii_reg >> 2) & 7) {
case 1: s |= PHY_STAT_10HDX; break;
case 2: s |= PHY_STAT_100HDX; break;
case 5: s |= PHY_STAT_10FDX; break;
case 6: s |= PHY_STAT_100FDX; break;
}
fep->phy_status = s;
}
static phy_info_t phy_info_qs6612 = {
0x00181440,
"QS6612",
(const phy_cmd_t []) { /* config */
// { mk_mii_write(MII_ADVERTISE, 0x061), NULL }, /* 10 Mbps */
/* The PHY powers up isolated on the RPX,
* so send a command to allow operation.
*/
{ mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
/* parse cr and anar to get some info */
{ mk_mii_read(MII_BMCR), mii_parse_cr },
{ mk_mii_read(MII_ADVERTISE), mii_parse_anar },
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* startup - enable interrupts */
{ mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
{ mk_mii_write(MII_BMCR, 0x1200), NULL }, /* autonegotiate */
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* ack_int */
/* we need to read ISR, SR and ANER to acknowledge */
{ mk_mii_read(MII_QS6612_ISR), NULL },
{ mk_mii_read(MII_BMSR), mii_parse_sr },
{ mk_mii_read(MII_EXPANSION), NULL },
/* read pcr to get info */
{ mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* shutdown - disable interrupts */
{ mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
{ mk_mii_end, }
},
};
#endif /* CONFIG_FEC_QS6612 */
/* ------------------------------------------------------------------------- */
/* The Davicom DM9131 is used on the HYMOD board */
#ifdef CONFIG_FCC_DM9131
/* register definitions */
#define MII_DM9131_ACR 16 /* Aux. Config Register */
#define MII_DM9131_ACSR 17 /* Aux. Config/Status Register */
#define MII_DM9131_10TCSR 18 /* 10BaseT Config/Status Reg. */
#define MII_DM9131_INTR 21 /* Interrupt Register */
#define MII_DM9131_RECR 22 /* Receive Error Counter Reg. */
#define MII_DM9131_DISCR 23 /* Disconnect Counter Register */
static void mii_parse_dm9131_acsr(uint mii_reg, struct net_device *dev)
{
volatile struct fcc_enet_private *fep = dev->priv;
uint s = fep->phy_status;
s &= ~(PHY_STAT_SPMASK);
switch ((mii_reg >> 12) & 0xf) {
case 1: s |= PHY_STAT_10HDX; break;
case 2: s |= PHY_STAT_10FDX; break;
case 4: s |= PHY_STAT_100HDX; break;
case 8: s |= PHY_STAT_100FDX; break;
}
fep->phy_status = s;
}
static phy_info_t phy_info_dm9131 = {
0x00181b80,
"DM9131",
(const phy_cmd_t []) { /* config */
/* parse cr and anar to get some info */
{ mk_mii_read(MII_BMCR), mii_parse_cr },
{ mk_mii_read(MII_ADVERTISE), mii_parse_anar },
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* startup - enable interrupts */
{ mk_mii_write(MII_DM9131_INTR, 0x0002), NULL },
{ mk_mii_write(MII_BMCR, 0x1200), NULL }, /* autonegotiate */
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* ack_int */
/* we need to read INTR, SR and ANER to acknowledge */
{ mk_mii_read(MII_DM9131_INTR), NULL },
{ mk_mii_read(MII_BMSR), mii_parse_sr },
{ mk_mii_read(MII_EXPANSION), NULL },
/* read acsr to get info */
{ mk_mii_read(MII_DM9131_ACSR), mii_parse_dm9131_acsr },
{ mk_mii_end, }
},
(const phy_cmd_t []) { /* shutdown - disable interrupts */
{ mk_mii_write(MII_DM9131_INTR, 0x0f00), NULL },
{ mk_mii_end, }
},
};
#endif /* CONFIG_FEC_DM9131 */
#ifdef CONFIG_FCC_DM9161
/* ------------------------------------------------------------------------- */
/* DM9161 Control register values */
#define MIIM_DM9161_CR_STOP 0x0400
#define MIIM_DM9161_CR_RSTAN 0x1200
#define MIIM_DM9161_SCR 0x10
#define MIIM_DM9161_SCR_INIT 0x0610
/* DM9161 Specified Configuration and Status Register */
#define MIIM_DM9161_SCSR 0x11
#define MIIM_DM9161_SCSR_100F 0x8000
#define MIIM_DM9161_SCSR_100H 0x4000
#define MIIM_DM9161_SCSR_10F 0x2000
#define MIIM_DM9161_SCSR_10H 0x1000
/* DM9161 10BT register */
#define MIIM_DM9161_10BTCSR 0x12
#define MIIM_DM9161_10BTCSR_INIT 0x7800
/* DM9161 Interrupt Register */
#define MIIM_DM9161_INTR 0x15
#define MIIM_DM9161_INTR_PEND 0x8000
#define MIIM_DM9161_INTR_DPLX_MASK 0x0800
#define MIIM_DM9161_INTR_SPD_MASK 0x0400
#define MIIM_DM9161_INTR_LINK_MASK 0x0200
#define MIIM_DM9161_INTR_MASK 0x0100
#define MIIM_DM9161_INTR_DPLX_CHANGE 0x0010
#define MIIM_DM9161_INTR_SPD_CHANGE 0x0008
#define MIIM_DM9161_INTR_LINK_CHANGE 0x0004
#define MIIM_DM9161_INTR_INIT 0x0000
#define MIIM_DM9161_INTR_STOP \
(MIIM_DM9161_INTR_DPLX_MASK | MIIM_DM9161_INTR_SPD_MASK \
| MIIM_DM9161_INTR_LINK_MASK | MIIM_DM9161_INTR_MASK)
static void mii_parse_dm9161_sr(uint mii_reg, struct net_device * dev)
{
volatile struct fcc_enet_private *fep = dev->priv;
uint regstat, timeout=0xffff;
while(!(mii_reg & 0x0020) && timeout--)
{
regstat=mk_mii_read(MII_BMSR);
regstat |= fep->phy_addr <<23;
mii_reg = mii_send_receive(fep->fip,regstat);
}
mii_parse_sr(mii_reg, dev);
}
static void mii_parse_dm9161_scsr(uint mii_reg, struct net_device * dev)
{
volatile struct fcc_enet_private *fep = dev->priv;
uint s = fep->phy_status;
s &= ~(PHY_STAT_SPMASK);
switch((mii_reg >>12) & 0xf) {
case 1:
{
s |= PHY_STAT_10HDX;
printk("10BaseT Half Duplex\n");
break;
}
case 2:
{
s |= PHY_STAT_10FDX;
printk("10BaseT Full Duplex\n");
break;
}
case 4:
{
s |= PHY_STAT_100HDX;
printk("100BaseT Half Duplex\n");
break;
}
case 8:
{
s |= PHY_STAT_100FDX;
printk("100BaseT Full Duplex\n");
break;
}
}
fep->phy_status = s;
}
static void mii_dm9161_wait(uint mii_reg, struct net_device *dev)
{
int timeout = HZ;
/* Davicom takes a bit to come up after a reset,
* so wait here for a bit */
schedule_timeout_uninterruptible(timeout);
}
static phy_info_t phy_info_dm9161 = {
0x00181b88,
"Davicom DM9161E",
(const phy_cmd_t[]) { /* config */
{ mk_mii_write(MII_BMCR, MIIM_DM9161_CR_STOP), NULL},
/* Do not bypass the scrambler/descrambler */
{ mk_mii_write(MIIM_DM9161_SCR, MIIM_DM9161_SCR_INIT), NULL},
/* Configure 10BTCSR register */
{ mk_mii_write(MIIM_DM9161_10BTCSR, MIIM_DM9161_10BTCSR_INIT),NULL},
/* Configure some basic stuff */
{ mk_mii_write(MII_BMCR, 0x1000), NULL},
{ mk_mii_read(MII_BMCR), mii_parse_cr },
{ mk_mii_read(MII_ADVERTISE), mii_parse_anar },
{ mk_mii_end,}
},
(const phy_cmd_t[]) { /* startup */
/* Restart Auto Negotiation */
{ mk_mii_write(MII_BMCR, MIIM_DM9161_CR_RSTAN), NULL},
/* Status is read once to clear old link state */
{ mk_mii_read(MII_BMSR), mii_dm9161_wait},
/* Auto-negotiate */
{ mk_mii_read(MII_BMSR), mii_parse_dm9161_sr},
/* Read the status */
{ mk_mii_read(MIIM_DM9161_SCSR), mii_parse_dm9161_scsr},
/* Clear any pending interrupts */
{ mk_mii_read(MIIM_DM9161_INTR), NULL},
/* Enable Interrupts */
{ mk_mii_write(MIIM_DM9161_INTR, MIIM_DM9161_INTR_INIT), NULL},
{ mk_mii_end,}
},
(const phy_cmd_t[]) { /* ack_int */
{ mk_mii_read(MIIM_DM9161_INTR), NULL},
#if 0
{ mk_mii_read(MII_BMSR), NULL},
{ mk_mii_read(MII_BMSR), mii_parse_dm9161_sr},
{ mk_mii_read(MIIM_DM9161_SCSR), mii_parse_dm9161_scsr},
#endif
{ mk_mii_end,}
},
(const phy_cmd_t[]) { /* shutdown */
{ mk_mii_read(MIIM_DM9161_INTR),NULL},
{ mk_mii_write(MIIM_DM9161_INTR, MIIM_DM9161_INTR_STOP), NULL},
{ mk_mii_end,}
},
};
#endif /* CONFIG_FCC_DM9161 */
static phy_info_t *phy_info[] = {
#ifdef CONFIG_FCC_LXT970
&phy_info_lxt970,
#endif /* CONFIG_FEC_LXT970 */
#ifdef CONFIG_FCC_LXT971
&phy_info_lxt971,
#endif /* CONFIG_FEC_LXT971 */
#ifdef CONFIG_FCC_QS6612
&phy_info_qs6612,
#endif /* CONFIG_FEC_QS6612 */
#ifdef CONFIG_FCC_DM9131
&phy_info_dm9131,
#endif /* CONFIG_FEC_DM9131 */
#ifdef CONFIG_FCC_DM9161
&phy_info_dm9161,
#endif /* CONFIG_FCC_DM9161 */
#ifdef CONFIG_FCC_GENERIC_PHY
/* Generic PHY support. This must be the last PHY in the table.
* It will be used to support any PHY that doesn't match a previous
* entry in the table.
*/
&phy_info_generic,
#endif /* CONFIG_FCC_GENERIC_PHY */
NULL
};
static void mii_display_status(struct work_struct *work)
{
volatile struct fcc_enet_private *fep =
container_of(work, struct fcc_enet_private, phy_relink);
struct net_device *dev = fep->dev;
uint s = fep->phy_status;
if (!fep->link && !fep->old_link) {
/* Link is still down - don't print anything */
return;
}
printk("%s: status: ", dev->name);
if (!fep->link) {
printk("link down");
} else {
printk("link up");
switch(s & PHY_STAT_SPMASK) {
case PHY_STAT_100FDX: printk(", 100 Mbps Full Duplex"); break;
case PHY_STAT_100HDX: printk(", 100 Mbps Half Duplex"); break;
case PHY_STAT_10FDX: printk(", 10 Mbps Full Duplex"); break;
case PHY_STAT_10HDX: printk(", 10 Mbps Half Duplex"); break;
default:
printk(", Unknown speed/duplex");
}
if (s & PHY_STAT_ANC)
printk(", auto-negotiation complete");
}
if (s & PHY_STAT_FAULT)
printk(", remote fault");
printk(".\n");
}
static void mii_display_config(struct work_struct *work)
{
volatile struct fcc_enet_private *fep =
container_of(work, struct fcc_enet_private,
phy_display_config);
struct net_device *dev = fep->dev;
uint s = fep->phy_status;
printk("%s: config: auto-negotiation ", dev->name);
if (s & PHY_CONF_ANE)
printk("on");
else
printk("off");
if (s & PHY_CONF_100FDX)
printk(", 100FDX");
if (s & PHY_CONF_100HDX)
printk(", 100HDX");
if (s & PHY_CONF_10FDX)
printk(", 10FDX");
if (s & PHY_CONF_10HDX)
printk(", 10HDX");
if (!(s & PHY_CONF_SPMASK))
printk(", No speed/duplex selected?");
if (s & PHY_CONF_LOOP)
printk(", loopback enabled");
printk(".\n");
fep->sequence_done = 1;
}
static void mii_relink(struct net_device *dev)
{
struct fcc_enet_private *fep = dev->priv;
int duplex = 0;
fep->old_link = fep->link;
fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
#ifdef MDIO_DEBUG
printk(" mii_relink: link=%d\n", fep->link);
#endif
if (fep->link) {
if (fep->phy_status
& (PHY_STAT_100FDX | PHY_STAT_10FDX))
duplex = 1;
fcc_restart(dev, duplex);
#ifdef MDIO_DEBUG
printk(" mii_relink: duplex=%d\n", duplex);
#endif
}
}
static void mii_queue_relink(uint mii_reg, struct net_device *dev)
{
struct fcc_enet_private *fep = dev->priv;
mii_relink(dev);
schedule_work(&fep->phy_relink);
}
static void mii_queue_config(uint mii_reg, struct net_device *dev)
{
struct fcc_enet_private *fep = dev->priv;
schedule_work(&fep->phy_display_config);
}
phy_cmd_t phy_cmd_relink[] = { { mk_mii_read(MII_BMCR), mii_queue_relink },
{ mk_mii_end, } };
phy_cmd_t phy_cmd_config[] = { { mk_mii_read(MII_BMCR), mii_queue_config },
{ mk_mii_end, } };
/* Read remainder of PHY ID.
*/
static void
mii_discover_phy3(uint mii_reg, struct net_device *dev)
{
struct fcc_enet_private *fep;
int i;
fep = dev->priv;
printk("mii_reg: %08x\n", mii_reg);
fep->phy_id |= (mii_reg & 0xffff);
for(i = 0; phy_info[i]; i++)
if((phy_info[i]->id == (fep->phy_id >> 4)) || !phy_info[i]->id)
break;
if(!phy_info[i])
panic("%s: PHY id 0x%08x is not supported!\n",
dev->name, fep->phy_id);
fep->phy = phy_info[i];
fep->phy_id_done = 1;
printk("%s: Phy @ 0x%x, type %s (0x%08x)\n",
dev->name, fep->phy_addr, fep->phy->name, fep->phy_id);
}
/* Scan all of the MII PHY addresses looking for someone to respond
* with a valid ID. This usually happens quickly.
*/
static void
mii_discover_phy(uint mii_reg, struct net_device *dev)
{
struct fcc_enet_private *fep;
uint phytype;
fep = dev->priv;
if ((phytype = (mii_reg & 0xffff)) != 0xffff) {
/* Got first part of ID, now get remainder. */
fep->phy_id = phytype << 16;
mii_queue(dev, mk_mii_read(MII_PHYSID2), mii_discover_phy3);
} else {
fep->phy_addr++;
if (fep->phy_addr < 32) {
mii_queue(dev, mk_mii_read(MII_PHYSID1),
mii_discover_phy);
} else {
printk("fec: No PHY device found.\n");
}
}
}
#endif /* CONFIG_USE_MDIO */
#ifdef PHY_INTERRUPT
/* This interrupt occurs when the PHY detects a link change. */
static irqreturn_t
mii_link_interrupt(int irq, void * dev_id)
{
struct net_device *dev = dev_id;
struct fcc_enet_private *fep = dev->priv;
fcc_info_t *fip = fep->fip;
if (fep->phy) {
/* We don't want to be interrupted by an FCC
* interrupt here.
*/
disable_irq_nosync(fip->fc_interrupt);
mii_do_cmd(dev, fep->phy->ack_int);
/* restart and display status */
mii_do_cmd(dev, phy_cmd_relink);
enable_irq(fip->fc_interrupt);
}
return IRQ_HANDLED;
}
#endif /* ifdef PHY_INTERRUPT */
#if 0 /* This should be fixed someday */
/* Set or clear the multicast filter for this adaptor.
* Skeleton taken from sunlance driver.
* The CPM Ethernet implementation allows Multicast as well as individual
* MAC address filtering. Some of the drivers check to make sure it is
* a group multicast address, and discard those that are not. I guess I
* will do the same for now, but just remove the test if you want
* individual filtering as well (do the upper net layers want or support
* this kind of feature?).
*/
static void
set_multicast_list(struct net_device *dev)
{
struct fcc_enet_private *cep;
struct dev_mc_list *dmi;
u_char *mcptr, *tdptr;
volatile fcc_enet_t *ep;
int i, j;
cep = (struct fcc_enet_private *)dev->priv;
return;
/* Get pointer to FCC area in parameter RAM.
*/
ep = (fcc_enet_t *)dev->base_addr;
if (dev->flags&IFF_PROMISC) {
/* Log any net taps. */
printk("%s: Promiscuous mode enabled.\n", dev->name);
cep->fccp->fcc_fpsmr |= FCC_PSMR_PRO;
} else {
cep->fccp->fcc_fpsmr &= ~FCC_PSMR_PRO;
if (dev->flags & IFF_ALLMULTI) {
/* Catch all multicast addresses, so set the
* filter to all 1's.
*/
ep->fen_gaddrh = 0xffffffff;
ep->fen_gaddrl = 0xffffffff;
}
else {
/* Clear filter and add the addresses in the list.
*/
ep->fen_gaddrh = 0;
ep->fen_gaddrl = 0;
dmi = dev->mc_list;
for (i=0; i<dev->mc_count; i++, dmi = dmi->next) {
/* Only support group multicast for now.
*/
if (!(dmi->dmi_addr[0] & 1))
continue;
/* The address in dmi_addr is LSB first,
* and taddr is MSB first. We have to
* copy bytes MSB first from dmi_addr.
*/
mcptr = (u_char *)dmi->dmi_addr + 5;
tdptr = (u_char *)&ep->fen_taddrh;
for (j=0; j<6; j++)
*tdptr++ = *mcptr--;
/* Ask CPM to run CRC and set bit in
* filter mask.
*/
cpmp->cp_cpcr = mk_cr_cmd(cep->fip->fc_cpmpage,
cep->fip->fc_cpmblock, 0x0c,
CPM_CR_SET_GADDR) | CPM_CR_FLG;
udelay(10);
while (cpmp->cp_cpcr & CPM_CR_FLG);
}
}
}
}
#endif /* if 0 */
/* Set the individual MAC address.
*/
int fcc_enet_set_mac_address(struct net_device *dev, void *p)
{
struct sockaddr *addr= (struct sockaddr *) p;
struct fcc_enet_private *cep;
volatile fcc_enet_t *ep;
unsigned char *eap;
int i;
cep = (struct fcc_enet_private *)(dev->priv);
ep = cep->ep;
if (netif_running(dev))
return -EBUSY;
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
eap = (unsigned char *) &(ep->fen_paddrh);
for (i=5; i>=0; i--)
*eap++ = addr->sa_data[i];
return 0;
}
/* Initialize the CPM Ethernet on FCC.
*/
static int __init fec_enet_init(void)
{
struct net_device *dev;
struct fcc_enet_private *cep;
fcc_info_t *fip;
int i, np, err;
volatile cpm2_map_t *immap;
volatile iop_cpm2_t *io;
immap = (cpm2_map_t *)CPM_MAP_ADDR; /* and to internal registers */
io = &immap->im_ioport;
np = sizeof(fcc_ports) / sizeof(fcc_info_t);
fip = fcc_ports;
while (np-- > 0) {
/* Create an Ethernet device instance.
*/
dev = alloc_etherdev(sizeof(*cep));
if (!dev)
return -ENOMEM;
cep = dev->priv;
spin_lock_init(&cep->lock);
cep->fip = fip;
init_fcc_shutdown(fip, cep, immap);
init_fcc_ioports(fip, io, immap);
init_fcc_param(fip, dev, immap);
dev->base_addr = (unsigned long)(cep->ep);
/* The CPM Ethernet specific entries in the device
* structure.
*/
dev->open = fcc_enet_open;
dev->hard_start_xmit = fcc_enet_start_xmit;
dev->tx_timeout = fcc_enet_timeout;
dev->watchdog_timeo = TX_TIMEOUT;
dev->stop = fcc_enet_close;
dev->get_stats = fcc_enet_get_stats;
/* dev->set_multicast_list = set_multicast_list; */
dev->set_mac_address = fcc_enet_set_mac_address;
init_fcc_startup(fip, dev);
err = register_netdev(dev);
if (err) {
free_netdev(dev);
return err;
}
printk("%s: FCC ENET Version 0.3, ", dev->name);
for (i=0; i<5; i++)
printk("%02x:", dev->dev_addr[i]);
printk("%02x\n", dev->dev_addr[5]);
#ifdef CONFIG_USE_MDIO
/* Queue up command to detect the PHY and initialize the
* remainder of the interface.
*/
cep->phy_id_done = 0;
cep->phy_addr = fip->fc_phyaddr;
mii_queue(dev, mk_mii_read(MII_PHYSID1), mii_discover_phy);
INIT_WORK(&cep->phy_relink, mii_display_status);
INIT_WORK(&cep->phy_display_config, mii_display_config);
cep->dev = dev;
#endif /* CONFIG_USE_MDIO */
fip++;
}
return 0;
}
module_init(fec_enet_init);
/* Make sure the device is shut down during initialization.
*/
static void __init
init_fcc_shutdown(fcc_info_t *fip, struct fcc_enet_private *cep,
volatile cpm2_map_t *immap)
{
volatile fcc_enet_t *ep;
volatile fcc_t *fccp;
/* Get pointer to FCC area in parameter RAM.
*/
ep = (fcc_enet_t *)(&immap->im_dprambase[fip->fc_proff]);
/* And another to the FCC register area.
*/
fccp = (volatile fcc_t *)(&immap->im_fcc[fip->fc_fccnum]);
cep->fccp = fccp; /* Keep the pointers handy */
cep->ep = ep;
/* Disable receive and transmit in case someone left it running.
*/
fccp->fcc_gfmr &= ~(FCC_GFMR_ENR | FCC_GFMR_ENT);
}
/* Initialize the I/O pins for the FCC Ethernet.
*/
static void __init
init_fcc_ioports(fcc_info_t *fip, volatile iop_cpm2_t *io,
volatile cpm2_map_t *immap)
{
/* FCC1 pins are on port A/C. FCC2/3 are port B/C.
*/
if (fip->fc_proff == PROFF_FCC1) {
/* Configure port A and C pins for FCC1 Ethernet.
*/
io->iop_pdira &= ~PA1_DIRA_BOUT;
io->iop_pdira |= PA1_DIRA_BIN;
io->iop_psora &= ~PA1_PSORA_BOUT;
io->iop_psora |= PA1_PSORA_BIN;
io->iop_ppara |= (PA1_DIRA_BOUT | PA1_DIRA_BIN);
}
if (fip->fc_proff == PROFF_FCC2) {
/* Configure port B and C pins for FCC Ethernet.
*/
io->iop_pdirb &= ~PB2_DIRB_BOUT;
io->iop_pdirb |= PB2_DIRB_BIN;
io->iop_psorb &= ~PB2_PSORB_BOUT;
io->iop_psorb |= PB2_PSORB_BIN;
io->iop_pparb |= (PB2_DIRB_BOUT | PB2_DIRB_BIN);
}
if (fip->fc_proff == PROFF_FCC3) {
/* Configure port B and C pins for FCC Ethernet.
*/
io->iop_pdirb &= ~PB3_DIRB_BOUT;
io->iop_pdirb |= PB3_DIRB_BIN;
io->iop_psorb &= ~PB3_PSORB_BOUT;
io->iop_psorb |= PB3_PSORB_BIN;
io->iop_pparb |= (PB3_DIRB_BOUT | PB3_DIRB_BIN);
io->iop_pdirc &= ~PC3_DIRC_BOUT;
io->iop_pdirc |= PC3_DIRC_BIN;
io->iop_psorc &= ~PC3_PSORC_BOUT;
io->iop_psorc |= PC3_PSORC_BIN;
io->iop_pparc |= (PC3_DIRC_BOUT | PC3_DIRC_BIN);
}
/* Port C has clocks......
*/
io->iop_psorc &= ~(fip->fc_trxclocks);
io->iop_pdirc &= ~(fip->fc_trxclocks);
io->iop_pparc |= fip->fc_trxclocks;
#ifdef CONFIG_USE_MDIO
/* ....and the MII serial clock/data.
*/
io->iop_pdatc |= (fip->fc_mdio | fip->fc_mdck);
io->iop_podrc &= ~(fip->fc_mdio | fip->fc_mdck);
io->iop_pdirc |= (fip->fc_mdio | fip->fc_mdck);
io->iop_pparc &= ~(fip->fc_mdio | fip->fc_mdck);
#endif /* CONFIG_USE_MDIO */
/* Configure Serial Interface clock routing.
* First, clear all FCC bits to zero,
* then set the ones we want.
*/
immap->im_cpmux.cmx_fcr &= ~(fip->fc_clockmask);
immap->im_cpmux.cmx_fcr |= fip->fc_clockroute;
}
static void __init
init_fcc_param(fcc_info_t *fip, struct net_device *dev,
volatile cpm2_map_t *immap)
{
unsigned char *eap;
unsigned long mem_addr;
bd_t *bd;
int i, j;
struct fcc_enet_private *cep;
volatile fcc_enet_t *ep;
volatile cbd_t *bdp;
volatile cpm_cpm2_t *cp;
cep = (struct fcc_enet_private *)(dev->priv);
ep = cep->ep;
cp = cpmp;
bd = (bd_t *)__res;
/* Zero the whole thing.....I must have missed some individually.
* It works when I do this.
*/
memset((char *)ep, 0, sizeof(fcc_enet_t));
/* Allocate space for the buffer descriptors from regular memory.
* Initialize base addresses for the buffer descriptors.
*/
cep->rx_bd_base = kmalloc(sizeof(cbd_t) * RX_RING_SIZE,
GFP_KERNEL | GFP_DMA);
ep->fen_genfcc.fcc_rbase = __pa(cep->rx_bd_base);
cep->tx_bd_base = kmalloc(sizeof(cbd_t) * TX_RING_SIZE,
GFP_KERNEL | GFP_DMA);
ep->fen_genfcc.fcc_tbase = __pa(cep->tx_bd_base);
cep->dirty_tx = cep->cur_tx = cep->tx_bd_base;
cep->cur_rx = cep->rx_bd_base;
ep->fen_genfcc.fcc_rstate = (CPMFCR_GBL | CPMFCR_EB) << 24;
ep->fen_genfcc.fcc_tstate = (CPMFCR_GBL | CPMFCR_EB) << 24;
/* Set maximum bytes per receive buffer.
* It must be a multiple of 32.
*/
ep->fen_genfcc.fcc_mrblr = PKT_MAXBLR_SIZE;
/* Allocate space in the reserved FCC area of DPRAM for the
* internal buffers. No one uses this space (yet), so we
* can do this. Later, we will add resource management for
* this area.
*/
mem_addr = CPM_FCC_SPECIAL_BASE + (fip->fc_fccnum * 128);
ep->fen_genfcc.fcc_riptr = mem_addr;
ep->fen_genfcc.fcc_tiptr = mem_addr+32;
ep->fen_padptr = mem_addr+64;
memset((char *)(&(immap->im_dprambase[(mem_addr+64)])), 0x88, 32);
ep->fen_genfcc.fcc_rbptr = 0;
ep->fen_genfcc.fcc_tbptr = 0;
ep->fen_genfcc.fcc_rcrc = 0;
ep->fen_genfcc.fcc_tcrc = 0;
ep->fen_genfcc.fcc_res1 = 0;
ep->fen_genfcc.fcc_res2 = 0;
ep->fen_camptr = 0; /* CAM isn't used in this driver */
/* Set CRC preset and mask.
*/
ep->fen_cmask = 0xdebb20e3;
ep->fen_cpres = 0xffffffff;
ep->fen_crcec = 0; /* CRC Error counter */
ep->fen_alec = 0; /* alignment error counter */
ep->fen_disfc = 0; /* discard frame counter */
ep->fen_retlim = 15; /* Retry limit threshold */
ep->fen_pper = 0; /* Normal persistence */
/* Clear hash filter tables.
*/
ep->fen_gaddrh = 0;
ep->fen_gaddrl = 0;
ep->fen_iaddrh = 0;
ep->fen_iaddrl = 0;
/* Clear the Out-of-sequence TxBD.
*/
ep->fen_tfcstat = 0;
ep->fen_tfclen = 0;
ep->fen_tfcptr = 0;
ep->fen_mflr = PKT_MAXBUF_SIZE; /* maximum frame length register */
ep->fen_minflr = PKT_MINBUF_SIZE; /* minimum frame length register */
/* Set Ethernet station address.
*
* This is supplied in the board information structure, so we
* copy that into the controller.
* So, far we have only been given one Ethernet address. We make
* it unique by setting a few bits in the upper byte of the
* non-static part of the address.
*/
eap = (unsigned char *)&(ep->fen_paddrh);
for (i=5; i>=0; i--) {
/*
* The EP8260 only uses FCC3, so we can safely give it the real
* MAC address.
*/
#ifdef CONFIG_SBC82xx
if (i == 5) {
/* bd->bi_enetaddr holds the SCC0 address; the FCC
devices count up from there */
dev->dev_addr[i] = bd->bi_enetaddr[i] & ~3;
dev->dev_addr[i] += 1 + fip->fc_fccnum;
*eap++ = dev->dev_addr[i];
}
#else
#ifndef CONFIG_RPX8260
if (i == 3) {
dev->dev_addr[i] = bd->bi_enetaddr[i];
dev->dev_addr[i] |= (1 << (7 - fip->fc_fccnum));
*eap++ = dev->dev_addr[i];
} else
#endif
{
*eap++ = dev->dev_addr[i] = bd->bi_enetaddr[i];
}
#endif
}
ep->fen_taddrh = 0;
ep->fen_taddrm = 0;
ep->fen_taddrl = 0;
ep->fen_maxd1 = PKT_MAXDMA_SIZE; /* maximum DMA1 length */
ep->fen_maxd2 = PKT_MAXDMA_SIZE; /* maximum DMA2 length */
/* Clear stat counters, in case we ever enable RMON.
*/
ep->fen_octc = 0;
ep->fen_colc = 0;
ep->fen_broc = 0;
ep->fen_mulc = 0;
ep->fen_uspc = 0;
ep->fen_frgc = 0;
ep->fen_ospc = 0;
ep->fen_jbrc = 0;
ep->fen_p64c = 0;
ep->fen_p65c = 0;
ep->fen_p128c = 0;
ep->fen_p256c = 0;
ep->fen_p512c = 0;
ep->fen_p1024c = 0;
ep->fen_rfthr = 0; /* Suggested by manual */
ep->fen_rfcnt = 0;
ep->fen_cftype = 0;
/* Now allocate the host memory pages and initialize the
* buffer descriptors.
*/
bdp = cep->tx_bd_base;
for (i=0; i<TX_RING_SIZE; i++) {
/* Initialize the BD for every fragment in the page.
*/
bdp->cbd_sc = 0;
bdp->cbd_datlen = 0;
bdp->cbd_bufaddr = 0;
bdp++;
}
/* Set the last buffer to wrap.
*/
bdp--;
bdp->cbd_sc |= BD_SC_WRAP;
bdp = cep->rx_bd_base;
for (i=0; i<FCC_ENET_RX_PAGES; i++) {
/* Allocate a page.
*/
mem_addr = __get_free_page(GFP_KERNEL);
/* Initialize the BD for every fragment in the page.
*/
for (j=0; j<FCC_ENET_RX_FRPPG; j++) {
bdp->cbd_sc = BD_ENET_RX_EMPTY | BD_ENET_RX_INTR;
bdp->cbd_datlen = 0;
bdp->cbd_bufaddr = __pa(mem_addr);
mem_addr += FCC_ENET_RX_FRSIZE;
bdp++;
}
}
/* Set the last buffer to wrap.
*/
bdp--;
bdp->cbd_sc |= BD_SC_WRAP;
/* Let's re-initialize the channel now. We have to do it later
* than the manual describes because we have just now finished
* the BD initialization.
*/
cp->cp_cpcr = mk_cr_cmd(fip->fc_cpmpage, fip->fc_cpmblock, 0x0c,
CPM_CR_INIT_TRX) | CPM_CR_FLG;
while (cp->cp_cpcr & CPM_CR_FLG);
cep->skb_cur = cep->skb_dirty = 0;
}
/* Let 'er rip.
*/
static void __init
init_fcc_startup(fcc_info_t *fip, struct net_device *dev)
{
volatile fcc_t *fccp;
struct fcc_enet_private *cep;
cep = (struct fcc_enet_private *)(dev->priv);
fccp = cep->fccp;
#ifdef CONFIG_RPX8260
#ifdef PHY_INTERRUPT
/* Route PHY interrupt to IRQ. The following code only works for
* IRQ1 - IRQ7. It does not work for Port C interrupts.
*/
*((volatile u_char *) (RPX_CSR_ADDR + 13)) &= ~BCSR13_FETH_IRQMASK;
*((volatile u_char *) (RPX_CSR_ADDR + 13)) |=
((PHY_INTERRUPT - SIU_INT_IRQ1 + 1) << 4);
#endif
/* Initialize MDIO pins. */
*((volatile u_char *) (RPX_CSR_ADDR + 4)) &= ~BCSR4_MII_MDC;
*((volatile u_char *) (RPX_CSR_ADDR + 4)) |=
BCSR4_MII_READ | BCSR4_MII_MDIO;
/* Enable external LXT971 PHY. */
*((volatile u_char *) (RPX_CSR_ADDR + 4)) |= BCSR4_EN_PHY;
udelay(1000);
*((volatile u_char *) (RPX_CSR_ADDR+ 4)) |= BCSR4_EN_MII;
udelay(1000);
#endif /* ifdef CONFIG_RPX8260 */
fccp->fcc_fcce = 0xffff; /* Clear any pending events */
/* Leave FCC interrupts masked for now. Will be unmasked by
* fcc_restart().
*/
fccp->fcc_fccm = 0;
/* Install our interrupt handler.
*/
if (request_irq(fip->fc_interrupt, fcc_enet_interrupt, 0, "fenet",
dev) < 0)
printk("Can't get FCC IRQ %d\n", fip->fc_interrupt);
#ifdef PHY_INTERRUPT
#ifdef CONFIG_ADS8272
if (request_irq(PHY_INTERRUPT, mii_link_interrupt, IRQF_SHARED,
"mii", dev) < 0)
printk(KERN_CRIT "Can't get MII IRQ %d\n", PHY_INTERRUPT);
#else
/* Make IRQn edge triggered. This does not work if PHY_INTERRUPT is
* on Port C.
*/
((volatile cpm2_map_t *) CPM_MAP_ADDR)->im_intctl.ic_siexr |=
(1 << (14 - (PHY_INTERRUPT - SIU_INT_IRQ1)));
if (request_irq(PHY_INTERRUPT, mii_link_interrupt, 0,
"mii", dev) < 0)
printk(KERN_CRIT "Can't get MII IRQ %d\n", PHY_INTERRUPT);
#endif
#endif /* PHY_INTERRUPT */
/* Set GFMR to enable Ethernet operating mode.
*/
fccp->fcc_gfmr = (FCC_GFMR_TCI | FCC_GFMR_MODE_ENET);
/* Set sync/delimiters.
*/
fccp->fcc_fdsr = 0xd555;
/* Set protocol specific processing mode for Ethernet.
* This has to be adjusted for Full Duplex operation after we can
* determine how to detect that.
*/
fccp->fcc_fpsmr = FCC_PSMR_ENCRC;
#ifdef CONFIG_PQ2ADS
/* Enable the PHY. */
*(volatile uint *)(BCSR_ADDR + 4) &= ~BCSR1_FETHIEN;
*(volatile uint *)(BCSR_ADDR + 4) |= BCSR1_FETH_RST;
#endif
#if defined(CONFIG_PQ2ADS) || defined(CONFIG_PQ2FADS)
/* Enable the 2nd PHY. */
*(volatile uint *)(BCSR_ADDR + 12) &= ~BCSR3_FETHIEN2;
*(volatile uint *)(BCSR_ADDR + 12) |= BCSR3_FETH2_RST;
#endif
#if defined(CONFIG_USE_MDIO) || defined(CONFIG_TQM8260)
/* start in full duplex mode, and negotiate speed
*/
fcc_restart (dev, 1);
#else
/* start in half duplex mode
*/
fcc_restart (dev, 0);
#endif
}
#ifdef CONFIG_USE_MDIO
/* MII command/status interface.
* I'm not going to describe all of the details. You can find the
* protocol definition in many other places, including the data sheet
* of most PHY parts.
* I wonder what "they" were thinking (maybe weren't) when they leave
* the I2C in the CPM but I have to toggle these bits......
*/
#ifdef CONFIG_RPX8260
/* The EP8260 has the MDIO pins in a BCSR instead of on Port C
* like most other boards.
*/
#define MDIO_ADDR ((volatile u_char *)(RPX_CSR_ADDR + 4))
#define MAKE_MDIO_OUTPUT *MDIO_ADDR &= ~BCSR4_MII_READ
#define MAKE_MDIO_INPUT *MDIO_ADDR |= BCSR4_MII_READ | BCSR4_MII_MDIO
#define OUT_MDIO(bit) \
if (bit) \
*MDIO_ADDR |= BCSR4_MII_MDIO; \
else \
*MDIO_ADDR &= ~BCSR4_MII_MDIO;
#define IN_MDIO (*MDIO_ADDR & BCSR4_MII_MDIO)
#define OUT_MDC(bit) \
if (bit) \
*MDIO_ADDR |= BCSR4_MII_MDC; \
else \
*MDIO_ADDR &= ~BCSR4_MII_MDC;
#else /* ifdef CONFIG_RPX8260 */
/* This is for the usual case where the MDIO pins are on Port C.
*/
#define MDIO_ADDR (((volatile cpm2_map_t *)CPM_MAP_ADDR)->im_ioport)
#define MAKE_MDIO_OUTPUT MDIO_ADDR.iop_pdirc |= fip->fc_mdio
#define MAKE_MDIO_INPUT MDIO_ADDR.iop_pdirc &= ~fip->fc_mdio
#define OUT_MDIO(bit) \
if (bit) \
MDIO_ADDR.iop_pdatc |= fip->fc_mdio; \
else \
MDIO_ADDR.iop_pdatc &= ~fip->fc_mdio;
#define IN_MDIO ((MDIO_ADDR.iop_pdatc) & fip->fc_mdio)
#define OUT_MDC(bit) \
if (bit) \
MDIO_ADDR.iop_pdatc |= fip->fc_mdck; \
else \
MDIO_ADDR.iop_pdatc &= ~fip->fc_mdck;
#endif /* ifdef CONFIG_RPX8260 */
static uint
mii_send_receive(fcc_info_t *fip, uint cmd)
{
uint retval;
int read_op, i, off;
const int us = 1;
read_op = ((cmd & 0xf0000000) == 0x60000000);
/* Write preamble
*/
OUT_MDIO(1);
MAKE_MDIO_OUTPUT;
OUT_MDIO(1);
for (i = 0; i < 32; i++)
{
udelay(us);
OUT_MDC(1);
udelay(us);
OUT_MDC(0);
}
/* Write data
*/
for (i = 0, off = 31; i < (read_op ? 14 : 32); i++, --off)
{
OUT_MDIO((cmd >> off) & 0x00000001);
udelay(us);
OUT_MDC(1);
udelay(us);
OUT_MDC(0);
}
retval = cmd;
if (read_op)
{
retval >>= 16;
MAKE_MDIO_INPUT;
udelay(us);
OUT_MDC(1);
udelay(us);
OUT_MDC(0);
for (i = 0; i < 16; i++)
{
udelay(us);
OUT_MDC(1);
udelay(us);
retval <<= 1;
if (IN_MDIO)
retval++;
OUT_MDC(0);
}
}
MAKE_MDIO_INPUT;
udelay(us);
OUT_MDC(1);
udelay(us);
OUT_MDC(0);
return retval;
}
#endif /* CONFIG_USE_MDIO */
static void
fcc_stop(struct net_device *dev)
{
struct fcc_enet_private *fep= (struct fcc_enet_private *)(dev->priv);
volatile fcc_t *fccp = fep->fccp;
fcc_info_t *fip = fep->fip;
volatile fcc_enet_t *ep = fep->ep;
volatile cpm_cpm2_t *cp = cpmp;
volatile cbd_t *bdp;
int i;
if ((fccp->fcc_gfmr & (FCC_GFMR_ENR | FCC_GFMR_ENT)) == 0)
return; /* already down */
fccp->fcc_fccm = 0;
/* issue the graceful stop tx command */
while (cp->cp_cpcr & CPM_CR_FLG);
cp->cp_cpcr = mk_cr_cmd(fip->fc_cpmpage, fip->fc_cpmblock,
0x0c, CPM_CR_GRA_STOP_TX) | CPM_CR_FLG;
while (cp->cp_cpcr & CPM_CR_FLG);
/* Disable transmit/receive */
fccp->fcc_gfmr &= ~(FCC_GFMR_ENR | FCC_GFMR_ENT);
/* issue the restart tx command */
fccp->fcc_fcce = FCC_ENET_GRA;
while (cp->cp_cpcr & CPM_CR_FLG);
cp->cp_cpcr = mk_cr_cmd(fip->fc_cpmpage, fip->fc_cpmblock,
0x0c, CPM_CR_RESTART_TX) | CPM_CR_FLG;
while (cp->cp_cpcr & CPM_CR_FLG);
/* free tx buffers */
fep->skb_cur = fep->skb_dirty = 0;
for (i=0; i<=TX_RING_MOD_MASK; i++) {
if (fep->tx_skbuff[i] != NULL) {
dev_kfree_skb(fep->tx_skbuff[i]);
fep->tx_skbuff[i] = NULL;
}
}
fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
fep->tx_free = TX_RING_SIZE;
ep->fen_genfcc.fcc_tbptr = ep->fen_genfcc.fcc_tbase;
/* Initialize the tx buffer descriptors. */
bdp = fep->tx_bd_base;
for (i=0; i<TX_RING_SIZE; i++) {
bdp->cbd_sc = 0;
bdp->cbd_datlen = 0;
bdp->cbd_bufaddr = 0;
bdp++;
}
/* Set the last buffer to wrap. */
bdp--;
bdp->cbd_sc |= BD_SC_WRAP;
}
static void
fcc_restart(struct net_device *dev, int duplex)
{
struct fcc_enet_private *fep = (struct fcc_enet_private *)(dev->priv);
volatile fcc_t *fccp = fep->fccp;
/* stop any transmissions in progress */
fcc_stop(dev);
if (duplex)
fccp->fcc_fpsmr |= FCC_PSMR_FDE | FCC_PSMR_LPB;
else
fccp->fcc_fpsmr &= ~(FCC_PSMR_FDE | FCC_PSMR_LPB);
/* Enable interrupts for transmit error, complete frame
* received, and any transmit buffer we have also set the
* interrupt flag.
*/
fccp->fcc_fccm = (FCC_ENET_TXE | FCC_ENET_RXF | FCC_ENET_TXB);
/* Enable transmit/receive */
fccp->fcc_gfmr |= FCC_GFMR_ENR | FCC_GFMR_ENT;
}
static int
fcc_enet_open(struct net_device *dev)
{
struct fcc_enet_private *fep = dev->priv;
#ifdef CONFIG_USE_MDIO
fep->sequence_done = 0;
fep->link = 0;
if (fep->phy) {
fcc_restart(dev, 0); /* always start in half-duplex */
mii_do_cmd(dev, fep->phy->ack_int);
mii_do_cmd(dev, fep->phy->config);
mii_do_cmd(dev, phy_cmd_config); /* display configuration */
while(!fep->sequence_done)
schedule();
mii_do_cmd(dev, fep->phy->startup);
netif_start_queue(dev);
return 0; /* Success */
}
return -ENODEV; /* No PHY we understand */
#else
fep->link = 1;
fcc_restart(dev, 0); /* always start in half-duplex */
netif_start_queue(dev);
return 0; /* Always succeed */
#endif /* CONFIG_USE_MDIO */
}