kernel_optimize_test/mm/mmap.c
Jörn Engel 493af57804 mmap: allow MAP_HUGETLB for hugetlbfs files v2
It is counterintuitive at best that mmap'ing a hugetlbfs file with
MAP_HUGETLB fails, while mmap'ing it without will a) succeed and b)
return huge pages.

v2: use is_file_hugepages(), as suggested by Jianguo

Signed-off-by: Joern Engel <joern@logfs.org>
Cc: Jianguo Wu <wujianguo@huawei.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-09 10:33:24 -07:00

3269 lines
87 KiB
C

/*
* mm/mmap.c
*
* Written by obz.
*
* Address space accounting code <alan@lxorguk.ukuu.org.uk>
*/
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/backing-dev.h>
#include <linux/mm.h>
#include <linux/shm.h>
#include <linux/mman.h>
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/syscalls.h>
#include <linux/capability.h>
#include <linux/init.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/personality.h>
#include <linux/security.h>
#include <linux/hugetlb.h>
#include <linux/profile.h>
#include <linux/export.h>
#include <linux/mount.h>
#include <linux/mempolicy.h>
#include <linux/rmap.h>
#include <linux/mmu_notifier.h>
#include <linux/perf_event.h>
#include <linux/audit.h>
#include <linux/khugepaged.h>
#include <linux/uprobes.h>
#include <linux/rbtree_augmented.h>
#include <linux/sched/sysctl.h>
#include <linux/notifier.h>
#include <linux/memory.h>
#include <asm/uaccess.h>
#include <asm/cacheflush.h>
#include <asm/tlb.h>
#include <asm/mmu_context.h>
#include "internal.h"
#ifndef arch_mmap_check
#define arch_mmap_check(addr, len, flags) (0)
#endif
#ifndef arch_rebalance_pgtables
#define arch_rebalance_pgtables(addr, len) (addr)
#endif
static void unmap_region(struct mm_struct *mm,
struct vm_area_struct *vma, struct vm_area_struct *prev,
unsigned long start, unsigned long end);
/* description of effects of mapping type and prot in current implementation.
* this is due to the limited x86 page protection hardware. The expected
* behavior is in parens:
*
* map_type prot
* PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
* MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
* w: (no) no w: (no) no w: (yes) yes w: (no) no
* x: (no) no x: (no) yes x: (no) yes x: (yes) yes
*
* MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
* w: (no) no w: (no) no w: (copy) copy w: (no) no
* x: (no) no x: (no) yes x: (no) yes x: (yes) yes
*
*/
pgprot_t protection_map[16] = {
__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
};
pgprot_t vm_get_page_prot(unsigned long vm_flags)
{
return __pgprot(pgprot_val(protection_map[vm_flags &
(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
pgprot_val(arch_vm_get_page_prot(vm_flags)));
}
EXPORT_SYMBOL(vm_get_page_prot);
int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
/*
* Make sure vm_committed_as in one cacheline and not cacheline shared with
* other variables. It can be updated by several CPUs frequently.
*/
struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
/*
* The global memory commitment made in the system can be a metric
* that can be used to drive ballooning decisions when Linux is hosted
* as a guest. On Hyper-V, the host implements a policy engine for dynamically
* balancing memory across competing virtual machines that are hosted.
* Several metrics drive this policy engine including the guest reported
* memory commitment.
*/
unsigned long vm_memory_committed(void)
{
return percpu_counter_read_positive(&vm_committed_as);
}
EXPORT_SYMBOL_GPL(vm_memory_committed);
/*
* Check that a process has enough memory to allocate a new virtual
* mapping. 0 means there is enough memory for the allocation to
* succeed and -ENOMEM implies there is not.
*
* We currently support three overcommit policies, which are set via the
* vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
*
* Strict overcommit modes added 2002 Feb 26 by Alan Cox.
* Additional code 2002 Jul 20 by Robert Love.
*
* cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
*
* Note this is a helper function intended to be used by LSMs which
* wish to use this logic.
*/
int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
{
unsigned long free, allowed, reserve;
vm_acct_memory(pages);
/*
* Sometimes we want to use more memory than we have
*/
if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
return 0;
if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
free = global_page_state(NR_FREE_PAGES);
free += global_page_state(NR_FILE_PAGES);
/*
* shmem pages shouldn't be counted as free in this
* case, they can't be purged, only swapped out, and
* that won't affect the overall amount of available
* memory in the system.
*/
free -= global_page_state(NR_SHMEM);
free += get_nr_swap_pages();
/*
* Any slabs which are created with the
* SLAB_RECLAIM_ACCOUNT flag claim to have contents
* which are reclaimable, under pressure. The dentry
* cache and most inode caches should fall into this
*/
free += global_page_state(NR_SLAB_RECLAIMABLE);
/*
* Leave reserved pages. The pages are not for anonymous pages.
*/
if (free <= totalreserve_pages)
goto error;
else
free -= totalreserve_pages;
/*
* Reserve some for root
*/
if (!cap_sys_admin)
free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
if (free > pages)
return 0;
goto error;
}
allowed = (totalram_pages - hugetlb_total_pages())
* sysctl_overcommit_ratio / 100;
/*
* Reserve some for root
*/
if (!cap_sys_admin)
allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
allowed += total_swap_pages;
/*
* Don't let a single process grow so big a user can't recover
*/
if (mm) {
reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
allowed -= min(mm->total_vm / 32, reserve);
}
if (percpu_counter_read_positive(&vm_committed_as) < allowed)
return 0;
error:
vm_unacct_memory(pages);
return -ENOMEM;
}
/*
* Requires inode->i_mapping->i_mmap_mutex
*/
static void __remove_shared_vm_struct(struct vm_area_struct *vma,
struct file *file, struct address_space *mapping)
{
if (vma->vm_flags & VM_DENYWRITE)
atomic_inc(&file_inode(file)->i_writecount);
if (vma->vm_flags & VM_SHARED)
mapping->i_mmap_writable--;
flush_dcache_mmap_lock(mapping);
if (unlikely(vma->vm_flags & VM_NONLINEAR))
list_del_init(&vma->shared.nonlinear);
else
vma_interval_tree_remove(vma, &mapping->i_mmap);
flush_dcache_mmap_unlock(mapping);
}
/*
* Unlink a file-based vm structure from its interval tree, to hide
* vma from rmap and vmtruncate before freeing its page tables.
*/
void unlink_file_vma(struct vm_area_struct *vma)
{
struct file *file = vma->vm_file;
if (file) {
struct address_space *mapping = file->f_mapping;
mutex_lock(&mapping->i_mmap_mutex);
__remove_shared_vm_struct(vma, file, mapping);
mutex_unlock(&mapping->i_mmap_mutex);
}
}
/*
* Close a vm structure and free it, returning the next.
*/
static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
{
struct vm_area_struct *next = vma->vm_next;
might_sleep();
if (vma->vm_ops && vma->vm_ops->close)
vma->vm_ops->close(vma);
if (vma->vm_file)
fput(vma->vm_file);
mpol_put(vma_policy(vma));
kmem_cache_free(vm_area_cachep, vma);
return next;
}
static unsigned long do_brk(unsigned long addr, unsigned long len);
SYSCALL_DEFINE1(brk, unsigned long, brk)
{
unsigned long rlim, retval;
unsigned long newbrk, oldbrk;
struct mm_struct *mm = current->mm;
unsigned long min_brk;
bool populate;
down_write(&mm->mmap_sem);
#ifdef CONFIG_COMPAT_BRK
/*
* CONFIG_COMPAT_BRK can still be overridden by setting
* randomize_va_space to 2, which will still cause mm->start_brk
* to be arbitrarily shifted
*/
if (current->brk_randomized)
min_brk = mm->start_brk;
else
min_brk = mm->end_data;
#else
min_brk = mm->start_brk;
#endif
if (brk < min_brk)
goto out;
/*
* Check against rlimit here. If this check is done later after the test
* of oldbrk with newbrk then it can escape the test and let the data
* segment grow beyond its set limit the in case where the limit is
* not page aligned -Ram Gupta
*/
rlim = rlimit(RLIMIT_DATA);
if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
(mm->end_data - mm->start_data) > rlim)
goto out;
newbrk = PAGE_ALIGN(brk);
oldbrk = PAGE_ALIGN(mm->brk);
if (oldbrk == newbrk)
goto set_brk;
/* Always allow shrinking brk. */
if (brk <= mm->brk) {
if (!do_munmap(mm, newbrk, oldbrk-newbrk))
goto set_brk;
goto out;
}
/* Check against existing mmap mappings. */
if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
goto out;
/* Ok, looks good - let it rip. */
if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
goto out;
set_brk:
mm->brk = brk;
populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
up_write(&mm->mmap_sem);
if (populate)
mm_populate(oldbrk, newbrk - oldbrk);
return brk;
out:
retval = mm->brk;
up_write(&mm->mmap_sem);
return retval;
}
static long vma_compute_subtree_gap(struct vm_area_struct *vma)
{
unsigned long max, subtree_gap;
max = vma->vm_start;
if (vma->vm_prev)
max -= vma->vm_prev->vm_end;
if (vma->vm_rb.rb_left) {
subtree_gap = rb_entry(vma->vm_rb.rb_left,
struct vm_area_struct, vm_rb)->rb_subtree_gap;
if (subtree_gap > max)
max = subtree_gap;
}
if (vma->vm_rb.rb_right) {
subtree_gap = rb_entry(vma->vm_rb.rb_right,
struct vm_area_struct, vm_rb)->rb_subtree_gap;
if (subtree_gap > max)
max = subtree_gap;
}
return max;
}
#ifdef CONFIG_DEBUG_VM_RB
static int browse_rb(struct rb_root *root)
{
int i = 0, j, bug = 0;
struct rb_node *nd, *pn = NULL;
unsigned long prev = 0, pend = 0;
for (nd = rb_first(root); nd; nd = rb_next(nd)) {
struct vm_area_struct *vma;
vma = rb_entry(nd, struct vm_area_struct, vm_rb);
if (vma->vm_start < prev) {
printk("vm_start %lx prev %lx\n", vma->vm_start, prev);
bug = 1;
}
if (vma->vm_start < pend) {
printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
bug = 1;
}
if (vma->vm_start > vma->vm_end) {
printk("vm_end %lx < vm_start %lx\n",
vma->vm_end, vma->vm_start);
bug = 1;
}
if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
printk("free gap %lx, correct %lx\n",
vma->rb_subtree_gap,
vma_compute_subtree_gap(vma));
bug = 1;
}
i++;
pn = nd;
prev = vma->vm_start;
pend = vma->vm_end;
}
j = 0;
for (nd = pn; nd; nd = rb_prev(nd))
j++;
if (i != j) {
printk("backwards %d, forwards %d\n", j, i);
bug = 1;
}
return bug ? -1 : i;
}
static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
{
struct rb_node *nd;
for (nd = rb_first(root); nd; nd = rb_next(nd)) {
struct vm_area_struct *vma;
vma = rb_entry(nd, struct vm_area_struct, vm_rb);
BUG_ON(vma != ignore &&
vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
}
}
void validate_mm(struct mm_struct *mm)
{
int bug = 0;
int i = 0;
unsigned long highest_address = 0;
struct vm_area_struct *vma = mm->mmap;
while (vma) {
struct anon_vma_chain *avc;
vma_lock_anon_vma(vma);
list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
anon_vma_interval_tree_verify(avc);
vma_unlock_anon_vma(vma);
highest_address = vma->vm_end;
vma = vma->vm_next;
i++;
}
if (i != mm->map_count) {
printk("map_count %d vm_next %d\n", mm->map_count, i);
bug = 1;
}
if (highest_address != mm->highest_vm_end) {
printk("mm->highest_vm_end %lx, found %lx\n",
mm->highest_vm_end, highest_address);
bug = 1;
}
i = browse_rb(&mm->mm_rb);
if (i != mm->map_count) {
printk("map_count %d rb %d\n", mm->map_count, i);
bug = 1;
}
BUG_ON(bug);
}
#else
#define validate_mm_rb(root, ignore) do { } while (0)
#define validate_mm(mm) do { } while (0)
#endif
RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
/*
* Update augmented rbtree rb_subtree_gap values after vma->vm_start or
* vma->vm_prev->vm_end values changed, without modifying the vma's position
* in the rbtree.
*/
static void vma_gap_update(struct vm_area_struct *vma)
{
/*
* As it turns out, RB_DECLARE_CALLBACKS() already created a callback
* function that does exacltly what we want.
*/
vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
}
static inline void vma_rb_insert(struct vm_area_struct *vma,
struct rb_root *root)
{
/* All rb_subtree_gap values must be consistent prior to insertion */
validate_mm_rb(root, NULL);
rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
}
static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
{
/*
* All rb_subtree_gap values must be consistent prior to erase,
* with the possible exception of the vma being erased.
*/
validate_mm_rb(root, vma);
/*
* Note rb_erase_augmented is a fairly large inline function,
* so make sure we instantiate it only once with our desired
* augmented rbtree callbacks.
*/
rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
}
/*
* vma has some anon_vma assigned, and is already inserted on that
* anon_vma's interval trees.
*
* Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
* vma must be removed from the anon_vma's interval trees using
* anon_vma_interval_tree_pre_update_vma().
*
* After the update, the vma will be reinserted using
* anon_vma_interval_tree_post_update_vma().
*
* The entire update must be protected by exclusive mmap_sem and by
* the root anon_vma's mutex.
*/
static inline void
anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
{
struct anon_vma_chain *avc;
list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
}
static inline void
anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
{
struct anon_vma_chain *avc;
list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
}
static int find_vma_links(struct mm_struct *mm, unsigned long addr,
unsigned long end, struct vm_area_struct **pprev,
struct rb_node ***rb_link, struct rb_node **rb_parent)
{
struct rb_node **__rb_link, *__rb_parent, *rb_prev;
__rb_link = &mm->mm_rb.rb_node;
rb_prev = __rb_parent = NULL;
while (*__rb_link) {
struct vm_area_struct *vma_tmp;
__rb_parent = *__rb_link;
vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
if (vma_tmp->vm_end > addr) {
/* Fail if an existing vma overlaps the area */
if (vma_tmp->vm_start < end)
return -ENOMEM;
__rb_link = &__rb_parent->rb_left;
} else {
rb_prev = __rb_parent;
__rb_link = &__rb_parent->rb_right;
}
}
*pprev = NULL;
if (rb_prev)
*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
*rb_link = __rb_link;
*rb_parent = __rb_parent;
return 0;
}
static unsigned long count_vma_pages_range(struct mm_struct *mm,
unsigned long addr, unsigned long end)
{
unsigned long nr_pages = 0;
struct vm_area_struct *vma;
/* Find first overlaping mapping */
vma = find_vma_intersection(mm, addr, end);
if (!vma)
return 0;
nr_pages = (min(end, vma->vm_end) -
max(addr, vma->vm_start)) >> PAGE_SHIFT;
/* Iterate over the rest of the overlaps */
for (vma = vma->vm_next; vma; vma = vma->vm_next) {
unsigned long overlap_len;
if (vma->vm_start > end)
break;
overlap_len = min(end, vma->vm_end) - vma->vm_start;
nr_pages += overlap_len >> PAGE_SHIFT;
}
return nr_pages;
}
void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
struct rb_node **rb_link, struct rb_node *rb_parent)
{
/* Update tracking information for the gap following the new vma. */
if (vma->vm_next)
vma_gap_update(vma->vm_next);
else
mm->highest_vm_end = vma->vm_end;
/*
* vma->vm_prev wasn't known when we followed the rbtree to find the
* correct insertion point for that vma. As a result, we could not
* update the vma vm_rb parents rb_subtree_gap values on the way down.
* So, we first insert the vma with a zero rb_subtree_gap value
* (to be consistent with what we did on the way down), and then
* immediately update the gap to the correct value. Finally we
* rebalance the rbtree after all augmented values have been set.
*/
rb_link_node(&vma->vm_rb, rb_parent, rb_link);
vma->rb_subtree_gap = 0;
vma_gap_update(vma);
vma_rb_insert(vma, &mm->mm_rb);
}
static void __vma_link_file(struct vm_area_struct *vma)
{
struct file *file;
file = vma->vm_file;
if (file) {
struct address_space *mapping = file->f_mapping;
if (vma->vm_flags & VM_DENYWRITE)
atomic_dec(&file_inode(file)->i_writecount);
if (vma->vm_flags & VM_SHARED)
mapping->i_mmap_writable++;
flush_dcache_mmap_lock(mapping);
if (unlikely(vma->vm_flags & VM_NONLINEAR))
vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
else
vma_interval_tree_insert(vma, &mapping->i_mmap);
flush_dcache_mmap_unlock(mapping);
}
}
static void
__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
struct vm_area_struct *prev, struct rb_node **rb_link,
struct rb_node *rb_parent)
{
__vma_link_list(mm, vma, prev, rb_parent);
__vma_link_rb(mm, vma, rb_link, rb_parent);
}
static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
struct vm_area_struct *prev, struct rb_node **rb_link,
struct rb_node *rb_parent)
{
struct address_space *mapping = NULL;
if (vma->vm_file)
mapping = vma->vm_file->f_mapping;
if (mapping)
mutex_lock(&mapping->i_mmap_mutex);
__vma_link(mm, vma, prev, rb_link, rb_parent);
__vma_link_file(vma);
if (mapping)
mutex_unlock(&mapping->i_mmap_mutex);
mm->map_count++;
validate_mm(mm);
}
/*
* Helper for vma_adjust() in the split_vma insert case: insert a vma into the
* mm's list and rbtree. It has already been inserted into the interval tree.
*/
static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
{
struct vm_area_struct *prev;
struct rb_node **rb_link, *rb_parent;
if (find_vma_links(mm, vma->vm_start, vma->vm_end,
&prev, &rb_link, &rb_parent))
BUG();
__vma_link(mm, vma, prev, rb_link, rb_parent);
mm->map_count++;
}
static inline void
__vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
struct vm_area_struct *prev)
{
struct vm_area_struct *next;
vma_rb_erase(vma, &mm->mm_rb);
prev->vm_next = next = vma->vm_next;
if (next)
next->vm_prev = prev;
if (mm->mmap_cache == vma)
mm->mmap_cache = prev;
}
/*
* We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
* is already present in an i_mmap tree without adjusting the tree.
* The following helper function should be used when such adjustments
* are necessary. The "insert" vma (if any) is to be inserted
* before we drop the necessary locks.
*/
int vma_adjust(struct vm_area_struct *vma, unsigned long start,
unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
{
struct mm_struct *mm = vma->vm_mm;
struct vm_area_struct *next = vma->vm_next;
struct vm_area_struct *importer = NULL;
struct address_space *mapping = NULL;
struct rb_root *root = NULL;
struct anon_vma *anon_vma = NULL;
struct file *file = vma->vm_file;
bool start_changed = false, end_changed = false;
long adjust_next = 0;
int remove_next = 0;
if (next && !insert) {
struct vm_area_struct *exporter = NULL;
if (end >= next->vm_end) {
/*
* vma expands, overlapping all the next, and
* perhaps the one after too (mprotect case 6).
*/
again: remove_next = 1 + (end > next->vm_end);
end = next->vm_end;
exporter = next;
importer = vma;
} else if (end > next->vm_start) {
/*
* vma expands, overlapping part of the next:
* mprotect case 5 shifting the boundary up.
*/
adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
exporter = next;
importer = vma;
} else if (end < vma->vm_end) {
/*
* vma shrinks, and !insert tells it's not
* split_vma inserting another: so it must be
* mprotect case 4 shifting the boundary down.
*/
adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
exporter = vma;
importer = next;
}
/*
* Easily overlooked: when mprotect shifts the boundary,
* make sure the expanding vma has anon_vma set if the
* shrinking vma had, to cover any anon pages imported.
*/
if (exporter && exporter->anon_vma && !importer->anon_vma) {
if (anon_vma_clone(importer, exporter))
return -ENOMEM;
importer->anon_vma = exporter->anon_vma;
}
}
if (file) {
mapping = file->f_mapping;
if (!(vma->vm_flags & VM_NONLINEAR)) {
root = &mapping->i_mmap;
uprobe_munmap(vma, vma->vm_start, vma->vm_end);
if (adjust_next)
uprobe_munmap(next, next->vm_start,
next->vm_end);
}
mutex_lock(&mapping->i_mmap_mutex);
if (insert) {
/*
* Put into interval tree now, so instantiated pages
* are visible to arm/parisc __flush_dcache_page
* throughout; but we cannot insert into address
* space until vma start or end is updated.
*/
__vma_link_file(insert);
}
}
vma_adjust_trans_huge(vma, start, end, adjust_next);
anon_vma = vma->anon_vma;
if (!anon_vma && adjust_next)
anon_vma = next->anon_vma;
if (anon_vma) {
VM_BUG_ON(adjust_next && next->anon_vma &&
anon_vma != next->anon_vma);
anon_vma_lock_write(anon_vma);
anon_vma_interval_tree_pre_update_vma(vma);
if (adjust_next)
anon_vma_interval_tree_pre_update_vma(next);
}
if (root) {
flush_dcache_mmap_lock(mapping);
vma_interval_tree_remove(vma, root);
if (adjust_next)
vma_interval_tree_remove(next, root);
}
if (start != vma->vm_start) {
vma->vm_start = start;
start_changed = true;
}
if (end != vma->vm_end) {
vma->vm_end = end;
end_changed = true;
}
vma->vm_pgoff = pgoff;
if (adjust_next) {
next->vm_start += adjust_next << PAGE_SHIFT;
next->vm_pgoff += adjust_next;
}
if (root) {
if (adjust_next)
vma_interval_tree_insert(next, root);
vma_interval_tree_insert(vma, root);
flush_dcache_mmap_unlock(mapping);
}
if (remove_next) {
/*
* vma_merge has merged next into vma, and needs
* us to remove next before dropping the locks.
*/
__vma_unlink(mm, next, vma);
if (file)
__remove_shared_vm_struct(next, file, mapping);
} else if (insert) {
/*
* split_vma has split insert from vma, and needs
* us to insert it before dropping the locks
* (it may either follow vma or precede it).
*/
__insert_vm_struct(mm, insert);
} else {
if (start_changed)
vma_gap_update(vma);
if (end_changed) {
if (!next)
mm->highest_vm_end = end;
else if (!adjust_next)
vma_gap_update(next);
}
}
if (anon_vma) {
anon_vma_interval_tree_post_update_vma(vma);
if (adjust_next)
anon_vma_interval_tree_post_update_vma(next);
anon_vma_unlock_write(anon_vma);
}
if (mapping)
mutex_unlock(&mapping->i_mmap_mutex);
if (root) {
uprobe_mmap(vma);
if (adjust_next)
uprobe_mmap(next);
}
if (remove_next) {
if (file) {
uprobe_munmap(next, next->vm_start, next->vm_end);
fput(file);
}
if (next->anon_vma)
anon_vma_merge(vma, next);
mm->map_count--;
vma_set_policy(vma, vma_policy(next));
kmem_cache_free(vm_area_cachep, next);
/*
* In mprotect's case 6 (see comments on vma_merge),
* we must remove another next too. It would clutter
* up the code too much to do both in one go.
*/
next = vma->vm_next;
if (remove_next == 2)
goto again;
else if (next)
vma_gap_update(next);
else
mm->highest_vm_end = end;
}
if (insert && file)
uprobe_mmap(insert);
validate_mm(mm);
return 0;
}
/*
* If the vma has a ->close operation then the driver probably needs to release
* per-vma resources, so we don't attempt to merge those.
*/
static inline int is_mergeable_vma(struct vm_area_struct *vma,
struct file *file, unsigned long vm_flags)
{
if (vma->vm_flags ^ vm_flags)
return 0;
if (vma->vm_file != file)
return 0;
if (vma->vm_ops && vma->vm_ops->close)
return 0;
return 1;
}
static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
struct anon_vma *anon_vma2,
struct vm_area_struct *vma)
{
/*
* The list_is_singular() test is to avoid merging VMA cloned from
* parents. This can improve scalability caused by anon_vma lock.
*/
if ((!anon_vma1 || !anon_vma2) && (!vma ||
list_is_singular(&vma->anon_vma_chain)))
return 1;
return anon_vma1 == anon_vma2;
}
/*
* Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
* in front of (at a lower virtual address and file offset than) the vma.
*
* We cannot merge two vmas if they have differently assigned (non-NULL)
* anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
*
* We don't check here for the merged mmap wrapping around the end of pagecache
* indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
* wrap, nor mmaps which cover the final page at index -1UL.
*/
static int
can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
{
if (is_mergeable_vma(vma, file, vm_flags) &&
is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
if (vma->vm_pgoff == vm_pgoff)
return 1;
}
return 0;
}
/*
* Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
* beyond (at a higher virtual address and file offset than) the vma.
*
* We cannot merge two vmas if they have differently assigned (non-NULL)
* anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
*/
static int
can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
{
if (is_mergeable_vma(vma, file, vm_flags) &&
is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
pgoff_t vm_pglen;
vm_pglen = vma_pages(vma);
if (vma->vm_pgoff + vm_pglen == vm_pgoff)
return 1;
}
return 0;
}
/*
* Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
* whether that can be merged with its predecessor or its successor.
* Or both (it neatly fills a hole).
*
* In most cases - when called for mmap, brk or mremap - [addr,end) is
* certain not to be mapped by the time vma_merge is called; but when
* called for mprotect, it is certain to be already mapped (either at
* an offset within prev, or at the start of next), and the flags of
* this area are about to be changed to vm_flags - and the no-change
* case has already been eliminated.
*
* The following mprotect cases have to be considered, where AAAA is
* the area passed down from mprotect_fixup, never extending beyond one
* vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
*
* AAAA AAAA AAAA AAAA
* PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
* cannot merge might become might become might become
* PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
* mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
* mremap move: PPPPNNNNNNNN 8
* AAAA
* PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
* might become case 1 below case 2 below case 3 below
*
* Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
* mprotect_fixup updates vm_flags & vm_page_prot on successful return.
*/
struct vm_area_struct *vma_merge(struct mm_struct *mm,
struct vm_area_struct *prev, unsigned long addr,
unsigned long end, unsigned long vm_flags,
struct anon_vma *anon_vma, struct file *file,
pgoff_t pgoff, struct mempolicy *policy)
{
pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
struct vm_area_struct *area, *next;
int err;
/*
* We later require that vma->vm_flags == vm_flags,
* so this tests vma->vm_flags & VM_SPECIAL, too.
*/
if (vm_flags & VM_SPECIAL)
return NULL;
if (prev)
next = prev->vm_next;
else
next = mm->mmap;
area = next;
if (next && next->vm_end == end) /* cases 6, 7, 8 */
next = next->vm_next;
/*
* Can it merge with the predecessor?
*/
if (prev && prev->vm_end == addr &&
mpol_equal(vma_policy(prev), policy) &&
can_vma_merge_after(prev, vm_flags,
anon_vma, file, pgoff)) {
/*
* OK, it can. Can we now merge in the successor as well?
*/
if (next && end == next->vm_start &&
mpol_equal(policy, vma_policy(next)) &&
can_vma_merge_before(next, vm_flags,
anon_vma, file, pgoff+pglen) &&
is_mergeable_anon_vma(prev->anon_vma,
next->anon_vma, NULL)) {
/* cases 1, 6 */
err = vma_adjust(prev, prev->vm_start,
next->vm_end, prev->vm_pgoff, NULL);
} else /* cases 2, 5, 7 */
err = vma_adjust(prev, prev->vm_start,
end, prev->vm_pgoff, NULL);
if (err)
return NULL;
khugepaged_enter_vma_merge(prev);
return prev;
}
/*
* Can this new request be merged in front of next?
*/
if (next && end == next->vm_start &&
mpol_equal(policy, vma_policy(next)) &&
can_vma_merge_before(next, vm_flags,
anon_vma, file, pgoff+pglen)) {
if (prev && addr < prev->vm_end) /* case 4 */
err = vma_adjust(prev, prev->vm_start,
addr, prev->vm_pgoff, NULL);
else /* cases 3, 8 */
err = vma_adjust(area, addr, next->vm_end,
next->vm_pgoff - pglen, NULL);
if (err)
return NULL;
khugepaged_enter_vma_merge(area);
return area;
}
return NULL;
}
/*
* Rough compatbility check to quickly see if it's even worth looking
* at sharing an anon_vma.
*
* They need to have the same vm_file, and the flags can only differ
* in things that mprotect may change.
*
* NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
* we can merge the two vma's. For example, we refuse to merge a vma if
* there is a vm_ops->close() function, because that indicates that the
* driver is doing some kind of reference counting. But that doesn't
* really matter for the anon_vma sharing case.
*/
static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
{
return a->vm_end == b->vm_start &&
mpol_equal(vma_policy(a), vma_policy(b)) &&
a->vm_file == b->vm_file &&
!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
}
/*
* Do some basic sanity checking to see if we can re-use the anon_vma
* from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
* the same as 'old', the other will be the new one that is trying
* to share the anon_vma.
*
* NOTE! This runs with mm_sem held for reading, so it is possible that
* the anon_vma of 'old' is concurrently in the process of being set up
* by another page fault trying to merge _that_. But that's ok: if it
* is being set up, that automatically means that it will be a singleton
* acceptable for merging, so we can do all of this optimistically. But
* we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
*
* IOW: that the "list_is_singular()" test on the anon_vma_chain only
* matters for the 'stable anon_vma' case (ie the thing we want to avoid
* is to return an anon_vma that is "complex" due to having gone through
* a fork).
*
* We also make sure that the two vma's are compatible (adjacent,
* and with the same memory policies). That's all stable, even with just
* a read lock on the mm_sem.
*/
static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
{
if (anon_vma_compatible(a, b)) {
struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
if (anon_vma && list_is_singular(&old->anon_vma_chain))
return anon_vma;
}
return NULL;
}
/*
* find_mergeable_anon_vma is used by anon_vma_prepare, to check
* neighbouring vmas for a suitable anon_vma, before it goes off
* to allocate a new anon_vma. It checks because a repetitive
* sequence of mprotects and faults may otherwise lead to distinct
* anon_vmas being allocated, preventing vma merge in subsequent
* mprotect.
*/
struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
{
struct anon_vma *anon_vma;
struct vm_area_struct *near;
near = vma->vm_next;
if (!near)
goto try_prev;
anon_vma = reusable_anon_vma(near, vma, near);
if (anon_vma)
return anon_vma;
try_prev:
near = vma->vm_prev;
if (!near)
goto none;
anon_vma = reusable_anon_vma(near, near, vma);
if (anon_vma)
return anon_vma;
none:
/*
* There's no absolute need to look only at touching neighbours:
* we could search further afield for "compatible" anon_vmas.
* But it would probably just be a waste of time searching,
* or lead to too many vmas hanging off the same anon_vma.
* We're trying to allow mprotect remerging later on,
* not trying to minimize memory used for anon_vmas.
*/
return NULL;
}
#ifdef CONFIG_PROC_FS
void vm_stat_account(struct mm_struct *mm, unsigned long flags,
struct file *file, long pages)
{
const unsigned long stack_flags
= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
mm->total_vm += pages;
if (file) {
mm->shared_vm += pages;
if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
mm->exec_vm += pages;
} else if (flags & stack_flags)
mm->stack_vm += pages;
}
#endif /* CONFIG_PROC_FS */
/*
* If a hint addr is less than mmap_min_addr change hint to be as
* low as possible but still greater than mmap_min_addr
*/
static inline unsigned long round_hint_to_min(unsigned long hint)
{
hint &= PAGE_MASK;
if (((void *)hint != NULL) &&
(hint < mmap_min_addr))
return PAGE_ALIGN(mmap_min_addr);
return hint;
}
/*
* The caller must hold down_write(&current->mm->mmap_sem).
*/
unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
unsigned long len, unsigned long prot,
unsigned long flags, unsigned long pgoff,
unsigned long *populate)
{
struct mm_struct * mm = current->mm;
struct inode *inode;
vm_flags_t vm_flags;
*populate = 0;
/*
* Does the application expect PROT_READ to imply PROT_EXEC?
*
* (the exception is when the underlying filesystem is noexec
* mounted, in which case we dont add PROT_EXEC.)
*/
if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
prot |= PROT_EXEC;
if (!len)
return -EINVAL;
if (!(flags & MAP_FIXED))
addr = round_hint_to_min(addr);
/* Careful about overflows.. */
len = PAGE_ALIGN(len);
if (!len)
return -ENOMEM;
/* offset overflow? */
if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
return -EOVERFLOW;
/* Too many mappings? */
if (mm->map_count > sysctl_max_map_count)
return -ENOMEM;
/* Obtain the address to map to. we verify (or select) it and ensure
* that it represents a valid section of the address space.
*/
addr = get_unmapped_area(file, addr, len, pgoff, flags);
if (addr & ~PAGE_MASK)
return addr;
/* Do simple checking here so the lower-level routines won't have
* to. we assume access permissions have been handled by the open
* of the memory object, so we don't do any here.
*/
vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
if (flags & MAP_LOCKED)
if (!can_do_mlock())
return -EPERM;
/* mlock MCL_FUTURE? */
if (vm_flags & VM_LOCKED) {
unsigned long locked, lock_limit;
locked = len >> PAGE_SHIFT;
locked += mm->locked_vm;
lock_limit = rlimit(RLIMIT_MEMLOCK);
lock_limit >>= PAGE_SHIFT;
if (locked > lock_limit && !capable(CAP_IPC_LOCK))
return -EAGAIN;
}
inode = file ? file_inode(file) : NULL;
if (file) {
switch (flags & MAP_TYPE) {
case MAP_SHARED:
if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
return -EACCES;
/*
* Make sure we don't allow writing to an append-only
* file..
*/
if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
return -EACCES;
/*
* Make sure there are no mandatory locks on the file.
*/
if (locks_verify_locked(inode))
return -EAGAIN;
vm_flags |= VM_SHARED | VM_MAYSHARE;
if (!(file->f_mode & FMODE_WRITE))
vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
/* fall through */
case MAP_PRIVATE:
if (!(file->f_mode & FMODE_READ))
return -EACCES;
if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
if (vm_flags & VM_EXEC)
return -EPERM;
vm_flags &= ~VM_MAYEXEC;
}
if (!file->f_op || !file->f_op->mmap)
return -ENODEV;
break;
default:
return -EINVAL;
}
} else {
switch (flags & MAP_TYPE) {
case MAP_SHARED:
/*
* Ignore pgoff.
*/
pgoff = 0;
vm_flags |= VM_SHARED | VM_MAYSHARE;
break;
case MAP_PRIVATE:
/*
* Set pgoff according to addr for anon_vma.
*/
pgoff = addr >> PAGE_SHIFT;
break;
default:
return -EINVAL;
}
}
/*
* Set 'VM_NORESERVE' if we should not account for the
* memory use of this mapping.
*/
if (flags & MAP_NORESERVE) {
/* We honor MAP_NORESERVE if allowed to overcommit */
if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
vm_flags |= VM_NORESERVE;
/* hugetlb applies strict overcommit unless MAP_NORESERVE */
if (file && is_file_hugepages(file))
vm_flags |= VM_NORESERVE;
}
addr = mmap_region(file, addr, len, vm_flags, pgoff);
if (!IS_ERR_VALUE(addr) &&
((vm_flags & VM_LOCKED) ||
(flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
*populate = len;
return addr;
}
SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
unsigned long, prot, unsigned long, flags,
unsigned long, fd, unsigned long, pgoff)
{
struct file *file = NULL;
unsigned long retval = -EBADF;
if (!(flags & MAP_ANONYMOUS)) {
audit_mmap_fd(fd, flags);
file = fget(fd);
if (!file)
goto out;
if (is_file_hugepages(file))
len = ALIGN(len, huge_page_size(hstate_file(file)));
retval = -EINVAL;
if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
goto out_fput;
} else if (flags & MAP_HUGETLB) {
struct user_struct *user = NULL;
struct hstate *hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) &
SHM_HUGE_MASK);
if (!hs)
return -EINVAL;
len = ALIGN(len, huge_page_size(hs));
/*
* VM_NORESERVE is used because the reservations will be
* taken when vm_ops->mmap() is called
* A dummy user value is used because we are not locking
* memory so no accounting is necessary
*/
file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
VM_NORESERVE,
&user, HUGETLB_ANONHUGE_INODE,
(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
if (IS_ERR(file))
return PTR_ERR(file);
}
flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
out_fput:
if (file)
fput(file);
out:
return retval;
}
#ifdef __ARCH_WANT_SYS_OLD_MMAP
struct mmap_arg_struct {
unsigned long addr;
unsigned long len;
unsigned long prot;
unsigned long flags;
unsigned long fd;
unsigned long offset;
};
SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
{
struct mmap_arg_struct a;
if (copy_from_user(&a, arg, sizeof(a)))
return -EFAULT;
if (a.offset & ~PAGE_MASK)
return -EINVAL;
return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
a.offset >> PAGE_SHIFT);
}
#endif /* __ARCH_WANT_SYS_OLD_MMAP */
/*
* Some shared mappigns will want the pages marked read-only
* to track write events. If so, we'll downgrade vm_page_prot
* to the private version (using protection_map[] without the
* VM_SHARED bit).
*/
int vma_wants_writenotify(struct vm_area_struct *vma)
{
vm_flags_t vm_flags = vma->vm_flags;
/* If it was private or non-writable, the write bit is already clear */
if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
return 0;
/* The backer wishes to know when pages are first written to? */
if (vma->vm_ops && vma->vm_ops->page_mkwrite)
return 1;
/* The open routine did something to the protections already? */
if (pgprot_val(vma->vm_page_prot) !=
pgprot_val(vm_get_page_prot(vm_flags)))
return 0;
/* Specialty mapping? */
if (vm_flags & VM_PFNMAP)
return 0;
/* Can the mapping track the dirty pages? */
return vma->vm_file && vma->vm_file->f_mapping &&
mapping_cap_account_dirty(vma->vm_file->f_mapping);
}
/*
* We account for memory if it's a private writeable mapping,
* not hugepages and VM_NORESERVE wasn't set.
*/
static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
{
/*
* hugetlb has its own accounting separate from the core VM
* VM_HUGETLB may not be set yet so we cannot check for that flag.
*/
if (file && is_file_hugepages(file))
return 0;
return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
}
unsigned long mmap_region(struct file *file, unsigned long addr,
unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma, *prev;
int correct_wcount = 0;
int error;
struct rb_node **rb_link, *rb_parent;
unsigned long charged = 0;
struct inode *inode = file ? file_inode(file) : NULL;
/* Check against address space limit. */
if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
unsigned long nr_pages;
/*
* MAP_FIXED may remove pages of mappings that intersects with
* requested mapping. Account for the pages it would unmap.
*/
if (!(vm_flags & MAP_FIXED))
return -ENOMEM;
nr_pages = count_vma_pages_range(mm, addr, addr + len);
if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
return -ENOMEM;
}
/* Clear old maps */
error = -ENOMEM;
munmap_back:
if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
if (do_munmap(mm, addr, len))
return -ENOMEM;
goto munmap_back;
}
/*
* Private writable mapping: check memory availability
*/
if (accountable_mapping(file, vm_flags)) {
charged = len >> PAGE_SHIFT;
if (security_vm_enough_memory_mm(mm, charged))
return -ENOMEM;
vm_flags |= VM_ACCOUNT;
}
/*
* Can we just expand an old mapping?
*/
vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
if (vma)
goto out;
/*
* Determine the object being mapped and call the appropriate
* specific mapper. the address has already been validated, but
* not unmapped, but the maps are removed from the list.
*/
vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
if (!vma) {
error = -ENOMEM;
goto unacct_error;
}
vma->vm_mm = mm;
vma->vm_start = addr;
vma->vm_end = addr + len;
vma->vm_flags = vm_flags;
vma->vm_page_prot = vm_get_page_prot(vm_flags);
vma->vm_pgoff = pgoff;
INIT_LIST_HEAD(&vma->anon_vma_chain);
error = -EINVAL; /* when rejecting VM_GROWSDOWN|VM_GROWSUP */
if (file) {
if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
goto free_vma;
if (vm_flags & VM_DENYWRITE) {
error = deny_write_access(file);
if (error)
goto free_vma;
correct_wcount = 1;
}
vma->vm_file = get_file(file);
error = file->f_op->mmap(file, vma);
if (error)
goto unmap_and_free_vma;
/* Can addr have changed??
*
* Answer: Yes, several device drivers can do it in their
* f_op->mmap method. -DaveM
* Bug: If addr is changed, prev, rb_link, rb_parent should
* be updated for vma_link()
*/
WARN_ON_ONCE(addr != vma->vm_start);
addr = vma->vm_start;
pgoff = vma->vm_pgoff;
vm_flags = vma->vm_flags;
} else if (vm_flags & VM_SHARED) {
if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
goto free_vma;
error = shmem_zero_setup(vma);
if (error)
goto free_vma;
}
if (vma_wants_writenotify(vma)) {
pgprot_t pprot = vma->vm_page_prot;
/* Can vma->vm_page_prot have changed??
*
* Answer: Yes, drivers may have changed it in their
* f_op->mmap method.
*
* Ensures that vmas marked as uncached stay that way.
*/
vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
}
vma_link(mm, vma, prev, rb_link, rb_parent);
file = vma->vm_file;
/* Once vma denies write, undo our temporary denial count */
if (correct_wcount)
atomic_inc(&inode->i_writecount);
out:
perf_event_mmap(vma);
vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
if (vm_flags & VM_LOCKED) {
if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
vma == get_gate_vma(current->mm)))
mm->locked_vm += (len >> PAGE_SHIFT);
else
vma->vm_flags &= ~VM_LOCKED;
}
if (file)
uprobe_mmap(vma);
return addr;
unmap_and_free_vma:
if (correct_wcount)
atomic_inc(&inode->i_writecount);
vma->vm_file = NULL;
fput(file);
/* Undo any partial mapping done by a device driver. */
unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
charged = 0;
free_vma:
kmem_cache_free(vm_area_cachep, vma);
unacct_error:
if (charged)
vm_unacct_memory(charged);
return error;
}
unsigned long unmapped_area(struct vm_unmapped_area_info *info)
{
/*
* We implement the search by looking for an rbtree node that
* immediately follows a suitable gap. That is,
* - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
* - gap_end = vma->vm_start >= info->low_limit + length;
* - gap_end - gap_start >= length
*/
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
unsigned long length, low_limit, high_limit, gap_start, gap_end;
/* Adjust search length to account for worst case alignment overhead */
length = info->length + info->align_mask;
if (length < info->length)
return -ENOMEM;
/* Adjust search limits by the desired length */
if (info->high_limit < length)
return -ENOMEM;
high_limit = info->high_limit - length;
if (info->low_limit > high_limit)
return -ENOMEM;
low_limit = info->low_limit + length;
/* Check if rbtree root looks promising */
if (RB_EMPTY_ROOT(&mm->mm_rb))
goto check_highest;
vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
if (vma->rb_subtree_gap < length)
goto check_highest;
while (true) {
/* Visit left subtree if it looks promising */
gap_end = vma->vm_start;
if (gap_end >= low_limit && vma->vm_rb.rb_left) {
struct vm_area_struct *left =
rb_entry(vma->vm_rb.rb_left,
struct vm_area_struct, vm_rb);
if (left->rb_subtree_gap >= length) {
vma = left;
continue;
}
}
gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
check_current:
/* Check if current node has a suitable gap */
if (gap_start > high_limit)
return -ENOMEM;
if (gap_end >= low_limit && gap_end - gap_start >= length)
goto found;
/* Visit right subtree if it looks promising */
if (vma->vm_rb.rb_right) {
struct vm_area_struct *right =
rb_entry(vma->vm_rb.rb_right,
struct vm_area_struct, vm_rb);
if (right->rb_subtree_gap >= length) {
vma = right;
continue;
}
}
/* Go back up the rbtree to find next candidate node */
while (true) {
struct rb_node *prev = &vma->vm_rb;
if (!rb_parent(prev))
goto check_highest;
vma = rb_entry(rb_parent(prev),
struct vm_area_struct, vm_rb);
if (prev == vma->vm_rb.rb_left) {
gap_start = vma->vm_prev->vm_end;
gap_end = vma->vm_start;
goto check_current;
}
}
}
check_highest:
/* Check highest gap, which does not precede any rbtree node */
gap_start = mm->highest_vm_end;
gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
if (gap_start > high_limit)
return -ENOMEM;
found:
/* We found a suitable gap. Clip it with the original low_limit. */
if (gap_start < info->low_limit)
gap_start = info->low_limit;
/* Adjust gap address to the desired alignment */
gap_start += (info->align_offset - gap_start) & info->align_mask;
VM_BUG_ON(gap_start + info->length > info->high_limit);
VM_BUG_ON(gap_start + info->length > gap_end);
return gap_start;
}
unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
unsigned long length, low_limit, high_limit, gap_start, gap_end;
/* Adjust search length to account for worst case alignment overhead */
length = info->length + info->align_mask;
if (length < info->length)
return -ENOMEM;
/*
* Adjust search limits by the desired length.
* See implementation comment at top of unmapped_area().
*/
gap_end = info->high_limit;
if (gap_end < length)
return -ENOMEM;
high_limit = gap_end - length;
if (info->low_limit > high_limit)
return -ENOMEM;
low_limit = info->low_limit + length;
/* Check highest gap, which does not precede any rbtree node */
gap_start = mm->highest_vm_end;
if (gap_start <= high_limit)
goto found_highest;
/* Check if rbtree root looks promising */
if (RB_EMPTY_ROOT(&mm->mm_rb))
return -ENOMEM;
vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
if (vma->rb_subtree_gap < length)
return -ENOMEM;
while (true) {
/* Visit right subtree if it looks promising */
gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
if (gap_start <= high_limit && vma->vm_rb.rb_right) {
struct vm_area_struct *right =
rb_entry(vma->vm_rb.rb_right,
struct vm_area_struct, vm_rb);
if (right->rb_subtree_gap >= length) {
vma = right;
continue;
}
}
check_current:
/* Check if current node has a suitable gap */
gap_end = vma->vm_start;
if (gap_end < low_limit)
return -ENOMEM;
if (gap_start <= high_limit && gap_end - gap_start >= length)
goto found;
/* Visit left subtree if it looks promising */
if (vma->vm_rb.rb_left) {
struct vm_area_struct *left =
rb_entry(vma->vm_rb.rb_left,
struct vm_area_struct, vm_rb);
if (left->rb_subtree_gap >= length) {
vma = left;
continue;
}
}
/* Go back up the rbtree to find next candidate node */
while (true) {
struct rb_node *prev = &vma->vm_rb;
if (!rb_parent(prev))
return -ENOMEM;
vma = rb_entry(rb_parent(prev),
struct vm_area_struct, vm_rb);
if (prev == vma->vm_rb.rb_right) {
gap_start = vma->vm_prev ?
vma->vm_prev->vm_end : 0;
goto check_current;
}
}
}
found:
/* We found a suitable gap. Clip it with the original high_limit. */
if (gap_end > info->high_limit)
gap_end = info->high_limit;
found_highest:
/* Compute highest gap address at the desired alignment */
gap_end -= info->length;
gap_end -= (gap_end - info->align_offset) & info->align_mask;
VM_BUG_ON(gap_end < info->low_limit);
VM_BUG_ON(gap_end < gap_start);
return gap_end;
}
/* Get an address range which is currently unmapped.
* For shmat() with addr=0.
*
* Ugly calling convention alert:
* Return value with the low bits set means error value,
* ie
* if (ret & ~PAGE_MASK)
* error = ret;
*
* This function "knows" that -ENOMEM has the bits set.
*/
#ifndef HAVE_ARCH_UNMAPPED_AREA
unsigned long
arch_get_unmapped_area(struct file *filp, unsigned long addr,
unsigned long len, unsigned long pgoff, unsigned long flags)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
struct vm_unmapped_area_info info;
if (len > TASK_SIZE)
return -ENOMEM;
if (flags & MAP_FIXED)
return addr;
if (addr) {
addr = PAGE_ALIGN(addr);
vma = find_vma(mm, addr);
if (TASK_SIZE - len >= addr &&
(!vma || addr + len <= vma->vm_start))
return addr;
}
info.flags = 0;
info.length = len;
info.low_limit = TASK_UNMAPPED_BASE;
info.high_limit = TASK_SIZE;
info.align_mask = 0;
return vm_unmapped_area(&info);
}
#endif
void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
{
/*
* Is this a new hole at the lowest possible address?
*/
if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
mm->free_area_cache = addr;
}
/*
* This mmap-allocator allocates new areas top-down from below the
* stack's low limit (the base):
*/
#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
unsigned long
arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
const unsigned long len, const unsigned long pgoff,
const unsigned long flags)
{
struct vm_area_struct *vma;
struct mm_struct *mm = current->mm;
unsigned long addr = addr0;
struct vm_unmapped_area_info info;
/* requested length too big for entire address space */
if (len > TASK_SIZE)
return -ENOMEM;
if (flags & MAP_FIXED)
return addr;
/* requesting a specific address */
if (addr) {
addr = PAGE_ALIGN(addr);
vma = find_vma(mm, addr);
if (TASK_SIZE - len >= addr &&
(!vma || addr + len <= vma->vm_start))
return addr;
}
info.flags = VM_UNMAPPED_AREA_TOPDOWN;
info.length = len;
info.low_limit = PAGE_SIZE;
info.high_limit = mm->mmap_base;
info.align_mask = 0;
addr = vm_unmapped_area(&info);
/*
* A failed mmap() very likely causes application failure,
* so fall back to the bottom-up function here. This scenario
* can happen with large stack limits and large mmap()
* allocations.
*/
if (addr & ~PAGE_MASK) {
VM_BUG_ON(addr != -ENOMEM);
info.flags = 0;
info.low_limit = TASK_UNMAPPED_BASE;
info.high_limit = TASK_SIZE;
addr = vm_unmapped_area(&info);
}
return addr;
}
#endif
void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
{
/*
* Is this a new hole at the highest possible address?
*/
if (addr > mm->free_area_cache)
mm->free_area_cache = addr;
/* dont allow allocations above current base */
if (mm->free_area_cache > mm->mmap_base)
mm->free_area_cache = mm->mmap_base;
}
unsigned long
get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
unsigned long pgoff, unsigned long flags)
{
unsigned long (*get_area)(struct file *, unsigned long,
unsigned long, unsigned long, unsigned long);
unsigned long error = arch_mmap_check(addr, len, flags);
if (error)
return error;
/* Careful about overflows.. */
if (len > TASK_SIZE)
return -ENOMEM;
get_area = current->mm->get_unmapped_area;
if (file && file->f_op && file->f_op->get_unmapped_area)
get_area = file->f_op->get_unmapped_area;
addr = get_area(file, addr, len, pgoff, flags);
if (IS_ERR_VALUE(addr))
return addr;
if (addr > TASK_SIZE - len)
return -ENOMEM;
if (addr & ~PAGE_MASK)
return -EINVAL;
addr = arch_rebalance_pgtables(addr, len);
error = security_mmap_addr(addr);
return error ? error : addr;
}
EXPORT_SYMBOL(get_unmapped_area);
/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
{
struct vm_area_struct *vma = NULL;
/* Check the cache first. */
/* (Cache hit rate is typically around 35%.) */
vma = ACCESS_ONCE(mm->mmap_cache);
if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
struct rb_node *rb_node;
rb_node = mm->mm_rb.rb_node;
vma = NULL;
while (rb_node) {
struct vm_area_struct *vma_tmp;
vma_tmp = rb_entry(rb_node,
struct vm_area_struct, vm_rb);
if (vma_tmp->vm_end > addr) {
vma = vma_tmp;
if (vma_tmp->vm_start <= addr)
break;
rb_node = rb_node->rb_left;
} else
rb_node = rb_node->rb_right;
}
if (vma)
mm->mmap_cache = vma;
}
return vma;
}
EXPORT_SYMBOL(find_vma);
/*
* Same as find_vma, but also return a pointer to the previous VMA in *pprev.
*/
struct vm_area_struct *
find_vma_prev(struct mm_struct *mm, unsigned long addr,
struct vm_area_struct **pprev)
{
struct vm_area_struct *vma;
vma = find_vma(mm, addr);
if (vma) {
*pprev = vma->vm_prev;
} else {
struct rb_node *rb_node = mm->mm_rb.rb_node;
*pprev = NULL;
while (rb_node) {
*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
rb_node = rb_node->rb_right;
}
}
return vma;
}
/*
* Verify that the stack growth is acceptable and
* update accounting. This is shared with both the
* grow-up and grow-down cases.
*/
static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
{
struct mm_struct *mm = vma->vm_mm;
struct rlimit *rlim = current->signal->rlim;
unsigned long new_start;
/* address space limit tests */
if (!may_expand_vm(mm, grow))
return -ENOMEM;
/* Stack limit test */
if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
return -ENOMEM;
/* mlock limit tests */
if (vma->vm_flags & VM_LOCKED) {
unsigned long locked;
unsigned long limit;
locked = mm->locked_vm + grow;
limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
limit >>= PAGE_SHIFT;
if (locked > limit && !capable(CAP_IPC_LOCK))
return -ENOMEM;
}
/* Check to ensure the stack will not grow into a hugetlb-only region */
new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
vma->vm_end - size;
if (is_hugepage_only_range(vma->vm_mm, new_start, size))
return -EFAULT;
/*
* Overcommit.. This must be the final test, as it will
* update security statistics.
*/
if (security_vm_enough_memory_mm(mm, grow))
return -ENOMEM;
/* Ok, everything looks good - let it rip */
if (vma->vm_flags & VM_LOCKED)
mm->locked_vm += grow;
vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
return 0;
}
#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
/*
* PA-RISC uses this for its stack; IA64 for its Register Backing Store.
* vma is the last one with address > vma->vm_end. Have to extend vma.
*/
int expand_upwards(struct vm_area_struct *vma, unsigned long address)
{
int error;
if (!(vma->vm_flags & VM_GROWSUP))
return -EFAULT;
/*
* We must make sure the anon_vma is allocated
* so that the anon_vma locking is not a noop.
*/
if (unlikely(anon_vma_prepare(vma)))
return -ENOMEM;
vma_lock_anon_vma(vma);
/*
* vma->vm_start/vm_end cannot change under us because the caller
* is required to hold the mmap_sem in read mode. We need the
* anon_vma lock to serialize against concurrent expand_stacks.
* Also guard against wrapping around to address 0.
*/
if (address < PAGE_ALIGN(address+4))
address = PAGE_ALIGN(address+4);
else {
vma_unlock_anon_vma(vma);
return -ENOMEM;
}
error = 0;
/* Somebody else might have raced and expanded it already */
if (address > vma->vm_end) {
unsigned long size, grow;
size = address - vma->vm_start;
grow = (address - vma->vm_end) >> PAGE_SHIFT;
error = -ENOMEM;
if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
error = acct_stack_growth(vma, size, grow);
if (!error) {
/*
* vma_gap_update() doesn't support concurrent
* updates, but we only hold a shared mmap_sem
* lock here, so we need to protect against
* concurrent vma expansions.
* vma_lock_anon_vma() doesn't help here, as
* we don't guarantee that all growable vmas
* in a mm share the same root anon vma.
* So, we reuse mm->page_table_lock to guard
* against concurrent vma expansions.
*/
spin_lock(&vma->vm_mm->page_table_lock);
anon_vma_interval_tree_pre_update_vma(vma);
vma->vm_end = address;
anon_vma_interval_tree_post_update_vma(vma);
if (vma->vm_next)
vma_gap_update(vma->vm_next);
else
vma->vm_mm->highest_vm_end = address;
spin_unlock(&vma->vm_mm->page_table_lock);
perf_event_mmap(vma);
}
}
}
vma_unlock_anon_vma(vma);
khugepaged_enter_vma_merge(vma);
validate_mm(vma->vm_mm);
return error;
}
#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
/*
* vma is the first one with address < vma->vm_start. Have to extend vma.
*/
int expand_downwards(struct vm_area_struct *vma,
unsigned long address)
{
int error;
/*
* We must make sure the anon_vma is allocated
* so that the anon_vma locking is not a noop.
*/
if (unlikely(anon_vma_prepare(vma)))
return -ENOMEM;
address &= PAGE_MASK;
error = security_mmap_addr(address);
if (error)
return error;
vma_lock_anon_vma(vma);
/*
* vma->vm_start/vm_end cannot change under us because the caller
* is required to hold the mmap_sem in read mode. We need the
* anon_vma lock to serialize against concurrent expand_stacks.
*/
/* Somebody else might have raced and expanded it already */
if (address < vma->vm_start) {
unsigned long size, grow;
size = vma->vm_end - address;
grow = (vma->vm_start - address) >> PAGE_SHIFT;
error = -ENOMEM;
if (grow <= vma->vm_pgoff) {
error = acct_stack_growth(vma, size, grow);
if (!error) {
/*
* vma_gap_update() doesn't support concurrent
* updates, but we only hold a shared mmap_sem
* lock here, so we need to protect against
* concurrent vma expansions.
* vma_lock_anon_vma() doesn't help here, as
* we don't guarantee that all growable vmas
* in a mm share the same root anon vma.
* So, we reuse mm->page_table_lock to guard
* against concurrent vma expansions.
*/
spin_lock(&vma->vm_mm->page_table_lock);
anon_vma_interval_tree_pre_update_vma(vma);
vma->vm_start = address;
vma->vm_pgoff -= grow;
anon_vma_interval_tree_post_update_vma(vma);
vma_gap_update(vma);
spin_unlock(&vma->vm_mm->page_table_lock);
perf_event_mmap(vma);
}
}
}
vma_unlock_anon_vma(vma);
khugepaged_enter_vma_merge(vma);
validate_mm(vma->vm_mm);
return error;
}
/*
* Note how expand_stack() refuses to expand the stack all the way to
* abut the next virtual mapping, *unless* that mapping itself is also
* a stack mapping. We want to leave room for a guard page, after all
* (the guard page itself is not added here, that is done by the
* actual page faulting logic)
*
* This matches the behavior of the guard page logic (see mm/memory.c:
* check_stack_guard_page()), which only allows the guard page to be
* removed under these circumstances.
*/
#ifdef CONFIG_STACK_GROWSUP
int expand_stack(struct vm_area_struct *vma, unsigned long address)
{
struct vm_area_struct *next;
address &= PAGE_MASK;
next = vma->vm_next;
if (next && next->vm_start == address + PAGE_SIZE) {
if (!(next->vm_flags & VM_GROWSUP))
return -ENOMEM;
}
return expand_upwards(vma, address);
}
struct vm_area_struct *
find_extend_vma(struct mm_struct *mm, unsigned long addr)
{
struct vm_area_struct *vma, *prev;
addr &= PAGE_MASK;
vma = find_vma_prev(mm, addr, &prev);
if (vma && (vma->vm_start <= addr))
return vma;
if (!prev || expand_stack(prev, addr))
return NULL;
if (prev->vm_flags & VM_LOCKED)
__mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
return prev;
}
#else
int expand_stack(struct vm_area_struct *vma, unsigned long address)
{
struct vm_area_struct *prev;
address &= PAGE_MASK;
prev = vma->vm_prev;
if (prev && prev->vm_end == address) {
if (!(prev->vm_flags & VM_GROWSDOWN))
return -ENOMEM;
}
return expand_downwards(vma, address);
}
struct vm_area_struct *
find_extend_vma(struct mm_struct * mm, unsigned long addr)
{
struct vm_area_struct * vma;
unsigned long start;
addr &= PAGE_MASK;
vma = find_vma(mm,addr);
if (!vma)
return NULL;
if (vma->vm_start <= addr)
return vma;
if (!(vma->vm_flags & VM_GROWSDOWN))
return NULL;
start = vma->vm_start;
if (expand_stack(vma, addr))
return NULL;
if (vma->vm_flags & VM_LOCKED)
__mlock_vma_pages_range(vma, addr, start, NULL);
return vma;
}
#endif
/*
* Ok - we have the memory areas we should free on the vma list,
* so release them, and do the vma updates.
*
* Called with the mm semaphore held.
*/
static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
{
unsigned long nr_accounted = 0;
/* Update high watermark before we lower total_vm */
update_hiwater_vm(mm);
do {
long nrpages = vma_pages(vma);
if (vma->vm_flags & VM_ACCOUNT)
nr_accounted += nrpages;
vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
vma = remove_vma(vma);
} while (vma);
vm_unacct_memory(nr_accounted);
validate_mm(mm);
}
/*
* Get rid of page table information in the indicated region.
*
* Called with the mm semaphore held.
*/
static void unmap_region(struct mm_struct *mm,
struct vm_area_struct *vma, struct vm_area_struct *prev,
unsigned long start, unsigned long end)
{
struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
struct mmu_gather tlb;
lru_add_drain();
tlb_gather_mmu(&tlb, mm, 0);
update_hiwater_rss(mm);
unmap_vmas(&tlb, vma, start, end);
free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
next ? next->vm_start : USER_PGTABLES_CEILING);
tlb_finish_mmu(&tlb, start, end);
}
/*
* Create a list of vma's touched by the unmap, removing them from the mm's
* vma list as we go..
*/
static void
detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
struct vm_area_struct *prev, unsigned long end)
{
struct vm_area_struct **insertion_point;
struct vm_area_struct *tail_vma = NULL;
unsigned long addr;
insertion_point = (prev ? &prev->vm_next : &mm->mmap);
vma->vm_prev = NULL;
do {
vma_rb_erase(vma, &mm->mm_rb);
mm->map_count--;
tail_vma = vma;
vma = vma->vm_next;
} while (vma && vma->vm_start < end);
*insertion_point = vma;
if (vma) {
vma->vm_prev = prev;
vma_gap_update(vma);
} else
mm->highest_vm_end = prev ? prev->vm_end : 0;
tail_vma->vm_next = NULL;
if (mm->unmap_area == arch_unmap_area)
addr = prev ? prev->vm_end : mm->mmap_base;
else
addr = vma ? vma->vm_start : mm->mmap_base;
mm->unmap_area(mm, addr);
mm->mmap_cache = NULL; /* Kill the cache. */
}
/*
* __split_vma() bypasses sysctl_max_map_count checking. We use this on the
* munmap path where it doesn't make sense to fail.
*/
static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
unsigned long addr, int new_below)
{
struct mempolicy *pol;
struct vm_area_struct *new;
int err = -ENOMEM;
if (is_vm_hugetlb_page(vma) && (addr &
~(huge_page_mask(hstate_vma(vma)))))
return -EINVAL;
new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
if (!new)
goto out_err;
/* most fields are the same, copy all, and then fixup */
*new = *vma;
INIT_LIST_HEAD(&new->anon_vma_chain);
if (new_below)
new->vm_end = addr;
else {
new->vm_start = addr;
new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
}
pol = mpol_dup(vma_policy(vma));
if (IS_ERR(pol)) {
err = PTR_ERR(pol);
goto out_free_vma;
}
vma_set_policy(new, pol);
if (anon_vma_clone(new, vma))
goto out_free_mpol;
if (new->vm_file)
get_file(new->vm_file);
if (new->vm_ops && new->vm_ops->open)
new->vm_ops->open(new);
if (new_below)
err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
((addr - new->vm_start) >> PAGE_SHIFT), new);
else
err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
/* Success. */
if (!err)
return 0;
/* Clean everything up if vma_adjust failed. */
if (new->vm_ops && new->vm_ops->close)
new->vm_ops->close(new);
if (new->vm_file)
fput(new->vm_file);
unlink_anon_vmas(new);
out_free_mpol:
mpol_put(pol);
out_free_vma:
kmem_cache_free(vm_area_cachep, new);
out_err:
return err;
}
/*
* Split a vma into two pieces at address 'addr', a new vma is allocated
* either for the first part or the tail.
*/
int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long addr, int new_below)
{
if (mm->map_count >= sysctl_max_map_count)
return -ENOMEM;
return __split_vma(mm, vma, addr, new_below);
}
/* Munmap is split into 2 main parts -- this part which finds
* what needs doing, and the areas themselves, which do the
* work. This now handles partial unmappings.
* Jeremy Fitzhardinge <jeremy@goop.org>
*/
int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
{
unsigned long end;
struct vm_area_struct *vma, *prev, *last;
if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
return -EINVAL;
if ((len = PAGE_ALIGN(len)) == 0)
return -EINVAL;
/* Find the first overlapping VMA */
vma = find_vma(mm, start);
if (!vma)
return 0;
prev = vma->vm_prev;
/* we have start < vma->vm_end */
/* if it doesn't overlap, we have nothing.. */
end = start + len;
if (vma->vm_start >= end)
return 0;
/*
* If we need to split any vma, do it now to save pain later.
*
* Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
* unmapped vm_area_struct will remain in use: so lower split_vma
* places tmp vma above, and higher split_vma places tmp vma below.
*/
if (start > vma->vm_start) {
int error;
/*
* Make sure that map_count on return from munmap() will
* not exceed its limit; but let map_count go just above
* its limit temporarily, to help free resources as expected.
*/
if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
return -ENOMEM;
error = __split_vma(mm, vma, start, 0);
if (error)
return error;
prev = vma;
}
/* Does it split the last one? */
last = find_vma(mm, end);
if (last && end > last->vm_start) {
int error = __split_vma(mm, last, end, 1);
if (error)
return error;
}
vma = prev? prev->vm_next: mm->mmap;
/*
* unlock any mlock()ed ranges before detaching vmas
*/
if (mm->locked_vm) {
struct vm_area_struct *tmp = vma;
while (tmp && tmp->vm_start < end) {
if (tmp->vm_flags & VM_LOCKED) {
mm->locked_vm -= vma_pages(tmp);
munlock_vma_pages_all(tmp);
}
tmp = tmp->vm_next;
}
}
/*
* Remove the vma's, and unmap the actual pages
*/
detach_vmas_to_be_unmapped(mm, vma, prev, end);
unmap_region(mm, vma, prev, start, end);
/* Fix up all other VM information */
remove_vma_list(mm, vma);
return 0;
}
int vm_munmap(unsigned long start, size_t len)
{
int ret;
struct mm_struct *mm = current->mm;
down_write(&mm->mmap_sem);
ret = do_munmap(mm, start, len);
up_write(&mm->mmap_sem);
return ret;
}
EXPORT_SYMBOL(vm_munmap);
SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
{
profile_munmap(addr);
return vm_munmap(addr, len);
}
static inline void verify_mm_writelocked(struct mm_struct *mm)
{
#ifdef CONFIG_DEBUG_VM
if (unlikely(down_read_trylock(&mm->mmap_sem))) {
WARN_ON(1);
up_read(&mm->mmap_sem);
}
#endif
}
/*
* this is really a simplified "do_mmap". it only handles
* anonymous maps. eventually we may be able to do some
* brk-specific accounting here.
*/
static unsigned long do_brk(unsigned long addr, unsigned long len)
{
struct mm_struct * mm = current->mm;
struct vm_area_struct * vma, * prev;
unsigned long flags;
struct rb_node ** rb_link, * rb_parent;
pgoff_t pgoff = addr >> PAGE_SHIFT;
int error;
len = PAGE_ALIGN(len);
if (!len)
return addr;
flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
if (error & ~PAGE_MASK)
return error;
/*
* mlock MCL_FUTURE?
*/
if (mm->def_flags & VM_LOCKED) {
unsigned long locked, lock_limit;
locked = len >> PAGE_SHIFT;
locked += mm->locked_vm;
lock_limit = rlimit(RLIMIT_MEMLOCK);
lock_limit >>= PAGE_SHIFT;
if (locked > lock_limit && !capable(CAP_IPC_LOCK))
return -EAGAIN;
}
/*
* mm->mmap_sem is required to protect against another thread
* changing the mappings in case we sleep.
*/
verify_mm_writelocked(mm);
/*
* Clear old maps. this also does some error checking for us
*/
munmap_back:
if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
if (do_munmap(mm, addr, len))
return -ENOMEM;
goto munmap_back;
}
/* Check against address space limits *after* clearing old maps... */
if (!may_expand_vm(mm, len >> PAGE_SHIFT))
return -ENOMEM;
if (mm->map_count > sysctl_max_map_count)
return -ENOMEM;
if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
return -ENOMEM;
/* Can we just expand an old private anonymous mapping? */
vma = vma_merge(mm, prev, addr, addr + len, flags,
NULL, NULL, pgoff, NULL);
if (vma)
goto out;
/*
* create a vma struct for an anonymous mapping
*/
vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
if (!vma) {
vm_unacct_memory(len >> PAGE_SHIFT);
return -ENOMEM;
}
INIT_LIST_HEAD(&vma->anon_vma_chain);
vma->vm_mm = mm;
vma->vm_start = addr;
vma->vm_end = addr + len;
vma->vm_pgoff = pgoff;
vma->vm_flags = flags;
vma->vm_page_prot = vm_get_page_prot(flags);
vma_link(mm, vma, prev, rb_link, rb_parent);
out:
perf_event_mmap(vma);
mm->total_vm += len >> PAGE_SHIFT;
if (flags & VM_LOCKED)
mm->locked_vm += (len >> PAGE_SHIFT);
return addr;
}
unsigned long vm_brk(unsigned long addr, unsigned long len)
{
struct mm_struct *mm = current->mm;
unsigned long ret;
bool populate;
down_write(&mm->mmap_sem);
ret = do_brk(addr, len);
populate = ((mm->def_flags & VM_LOCKED) != 0);
up_write(&mm->mmap_sem);
if (populate)
mm_populate(addr, len);
return ret;
}
EXPORT_SYMBOL(vm_brk);
/* Release all mmaps. */
void exit_mmap(struct mm_struct *mm)
{
struct mmu_gather tlb;
struct vm_area_struct *vma;
unsigned long nr_accounted = 0;
/* mm's last user has gone, and its about to be pulled down */
mmu_notifier_release(mm);
if (mm->locked_vm) {
vma = mm->mmap;
while (vma) {
if (vma->vm_flags & VM_LOCKED)
munlock_vma_pages_all(vma);
vma = vma->vm_next;
}
}
arch_exit_mmap(mm);
vma = mm->mmap;
if (!vma) /* Can happen if dup_mmap() received an OOM */
return;
lru_add_drain();
flush_cache_mm(mm);
tlb_gather_mmu(&tlb, mm, 1);
/* update_hiwater_rss(mm) here? but nobody should be looking */
/* Use -1 here to ensure all VMAs in the mm are unmapped */
unmap_vmas(&tlb, vma, 0, -1);
free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
tlb_finish_mmu(&tlb, 0, -1);
/*
* Walk the list again, actually closing and freeing it,
* with preemption enabled, without holding any MM locks.
*/
while (vma) {
if (vma->vm_flags & VM_ACCOUNT)
nr_accounted += vma_pages(vma);
vma = remove_vma(vma);
}
vm_unacct_memory(nr_accounted);
WARN_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
}
/* Insert vm structure into process list sorted by address
* and into the inode's i_mmap tree. If vm_file is non-NULL
* then i_mmap_mutex is taken here.
*/
int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
{
struct vm_area_struct *prev;
struct rb_node **rb_link, *rb_parent;
/*
* The vm_pgoff of a purely anonymous vma should be irrelevant
* until its first write fault, when page's anon_vma and index
* are set. But now set the vm_pgoff it will almost certainly
* end up with (unless mremap moves it elsewhere before that
* first wfault), so /proc/pid/maps tells a consistent story.
*
* By setting it to reflect the virtual start address of the
* vma, merges and splits can happen in a seamless way, just
* using the existing file pgoff checks and manipulations.
* Similarly in do_mmap_pgoff and in do_brk.
*/
if (!vma->vm_file) {
BUG_ON(vma->anon_vma);
vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
}
if (find_vma_links(mm, vma->vm_start, vma->vm_end,
&prev, &rb_link, &rb_parent))
return -ENOMEM;
if ((vma->vm_flags & VM_ACCOUNT) &&
security_vm_enough_memory_mm(mm, vma_pages(vma)))
return -ENOMEM;
vma_link(mm, vma, prev, rb_link, rb_parent);
return 0;
}
/*
* Copy the vma structure to a new location in the same mm,
* prior to moving page table entries, to effect an mremap move.
*/
struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
unsigned long addr, unsigned long len, pgoff_t pgoff,
bool *need_rmap_locks)
{
struct vm_area_struct *vma = *vmap;
unsigned long vma_start = vma->vm_start;
struct mm_struct *mm = vma->vm_mm;
struct vm_area_struct *new_vma, *prev;
struct rb_node **rb_link, *rb_parent;
struct mempolicy *pol;
bool faulted_in_anon_vma = true;
/*
* If anonymous vma has not yet been faulted, update new pgoff
* to match new location, to increase its chance of merging.
*/
if (unlikely(!vma->vm_file && !vma->anon_vma)) {
pgoff = addr >> PAGE_SHIFT;
faulted_in_anon_vma = false;
}
if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
return NULL; /* should never get here */
new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
if (new_vma) {
/*
* Source vma may have been merged into new_vma
*/
if (unlikely(vma_start >= new_vma->vm_start &&
vma_start < new_vma->vm_end)) {
/*
* The only way we can get a vma_merge with
* self during an mremap is if the vma hasn't
* been faulted in yet and we were allowed to
* reset the dst vma->vm_pgoff to the
* destination address of the mremap to allow
* the merge to happen. mremap must change the
* vm_pgoff linearity between src and dst vmas
* (in turn preventing a vma_merge) to be
* safe. It is only safe to keep the vm_pgoff
* linear if there are no pages mapped yet.
*/
VM_BUG_ON(faulted_in_anon_vma);
*vmap = vma = new_vma;
}
*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
} else {
new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
if (new_vma) {
*new_vma = *vma;
new_vma->vm_start = addr;
new_vma->vm_end = addr + len;
new_vma->vm_pgoff = pgoff;
pol = mpol_dup(vma_policy(vma));
if (IS_ERR(pol))
goto out_free_vma;
vma_set_policy(new_vma, pol);
INIT_LIST_HEAD(&new_vma->anon_vma_chain);
if (anon_vma_clone(new_vma, vma))
goto out_free_mempol;
if (new_vma->vm_file)
get_file(new_vma->vm_file);
if (new_vma->vm_ops && new_vma->vm_ops->open)
new_vma->vm_ops->open(new_vma);
vma_link(mm, new_vma, prev, rb_link, rb_parent);
*need_rmap_locks = false;
}
}
return new_vma;
out_free_mempol:
mpol_put(pol);
out_free_vma:
kmem_cache_free(vm_area_cachep, new_vma);
return NULL;
}
/*
* Return true if the calling process may expand its vm space by the passed
* number of pages
*/
int may_expand_vm(struct mm_struct *mm, unsigned long npages)
{
unsigned long cur = mm->total_vm; /* pages */
unsigned long lim;
lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
if (cur + npages > lim)
return 0;
return 1;
}
static int special_mapping_fault(struct vm_area_struct *vma,
struct vm_fault *vmf)
{
pgoff_t pgoff;
struct page **pages;
/*
* special mappings have no vm_file, and in that case, the mm
* uses vm_pgoff internally. So we have to subtract it from here.
* We are allowed to do this because we are the mm; do not copy
* this code into drivers!
*/
pgoff = vmf->pgoff - vma->vm_pgoff;
for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
pgoff--;
if (*pages) {
struct page *page = *pages;
get_page(page);
vmf->page = page;
return 0;
}
return VM_FAULT_SIGBUS;
}
/*
* Having a close hook prevents vma merging regardless of flags.
*/
static void special_mapping_close(struct vm_area_struct *vma)
{
}
static const struct vm_operations_struct special_mapping_vmops = {
.close = special_mapping_close,
.fault = special_mapping_fault,
};
/*
* Called with mm->mmap_sem held for writing.
* Insert a new vma covering the given region, with the given flags.
* Its pages are supplied by the given array of struct page *.
* The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
* The region past the last page supplied will always produce SIGBUS.
* The array pointer and the pages it points to are assumed to stay alive
* for as long as this mapping might exist.
*/
int install_special_mapping(struct mm_struct *mm,
unsigned long addr, unsigned long len,
unsigned long vm_flags, struct page **pages)
{
int ret;
struct vm_area_struct *vma;
vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
if (unlikely(vma == NULL))
return -ENOMEM;
INIT_LIST_HEAD(&vma->anon_vma_chain);
vma->vm_mm = mm;
vma->vm_start = addr;
vma->vm_end = addr + len;
vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
vma->vm_ops = &special_mapping_vmops;
vma->vm_private_data = pages;
ret = insert_vm_struct(mm, vma);
if (ret)
goto out;
mm->total_vm += len >> PAGE_SHIFT;
perf_event_mmap(vma);
return 0;
out:
kmem_cache_free(vm_area_cachep, vma);
return ret;
}
static DEFINE_MUTEX(mm_all_locks_mutex);
static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
{
if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
/*
* The LSB of head.next can't change from under us
* because we hold the mm_all_locks_mutex.
*/
down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
/*
* We can safely modify head.next after taking the
* anon_vma->root->rwsem. If some other vma in this mm shares
* the same anon_vma we won't take it again.
*
* No need of atomic instructions here, head.next
* can't change from under us thanks to the
* anon_vma->root->rwsem.
*/
if (__test_and_set_bit(0, (unsigned long *)
&anon_vma->root->rb_root.rb_node))
BUG();
}
}
static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
{
if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
/*
* AS_MM_ALL_LOCKS can't change from under us because
* we hold the mm_all_locks_mutex.
*
* Operations on ->flags have to be atomic because
* even if AS_MM_ALL_LOCKS is stable thanks to the
* mm_all_locks_mutex, there may be other cpus
* changing other bitflags in parallel to us.
*/
if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
BUG();
mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
}
}
/*
* This operation locks against the VM for all pte/vma/mm related
* operations that could ever happen on a certain mm. This includes
* vmtruncate, try_to_unmap, and all page faults.
*
* The caller must take the mmap_sem in write mode before calling
* mm_take_all_locks(). The caller isn't allowed to release the
* mmap_sem until mm_drop_all_locks() returns.
*
* mmap_sem in write mode is required in order to block all operations
* that could modify pagetables and free pages without need of
* altering the vma layout (for example populate_range() with
* nonlinear vmas). It's also needed in write mode to avoid new
* anon_vmas to be associated with existing vmas.
*
* A single task can't take more than one mm_take_all_locks() in a row
* or it would deadlock.
*
* The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
* mapping->flags avoid to take the same lock twice, if more than one
* vma in this mm is backed by the same anon_vma or address_space.
*
* We can take all the locks in random order because the VM code
* taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
* takes more than one of them in a row. Secondly we're protected
* against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
*
* mm_take_all_locks() and mm_drop_all_locks are expensive operations
* that may have to take thousand of locks.
*
* mm_take_all_locks() can fail if it's interrupted by signals.
*/
int mm_take_all_locks(struct mm_struct *mm)
{
struct vm_area_struct *vma;
struct anon_vma_chain *avc;
BUG_ON(down_read_trylock(&mm->mmap_sem));
mutex_lock(&mm_all_locks_mutex);
for (vma = mm->mmap; vma; vma = vma->vm_next) {
if (signal_pending(current))
goto out_unlock;
if (vma->vm_file && vma->vm_file->f_mapping)
vm_lock_mapping(mm, vma->vm_file->f_mapping);
}
for (vma = mm->mmap; vma; vma = vma->vm_next) {
if (signal_pending(current))
goto out_unlock;
if (vma->anon_vma)
list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
vm_lock_anon_vma(mm, avc->anon_vma);
}
return 0;
out_unlock:
mm_drop_all_locks(mm);
return -EINTR;
}
static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
{
if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
/*
* The LSB of head.next can't change to 0 from under
* us because we hold the mm_all_locks_mutex.
*
* We must however clear the bitflag before unlocking
* the vma so the users using the anon_vma->rb_root will
* never see our bitflag.
*
* No need of atomic instructions here, head.next
* can't change from under us until we release the
* anon_vma->root->rwsem.
*/
if (!__test_and_clear_bit(0, (unsigned long *)
&anon_vma->root->rb_root.rb_node))
BUG();
anon_vma_unlock_write(anon_vma);
}
}
static void vm_unlock_mapping(struct address_space *mapping)
{
if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
/*
* AS_MM_ALL_LOCKS can't change to 0 from under us
* because we hold the mm_all_locks_mutex.
*/
mutex_unlock(&mapping->i_mmap_mutex);
if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
&mapping->flags))
BUG();
}
}
/*
* The mmap_sem cannot be released by the caller until
* mm_drop_all_locks() returns.
*/
void mm_drop_all_locks(struct mm_struct *mm)
{
struct vm_area_struct *vma;
struct anon_vma_chain *avc;
BUG_ON(down_read_trylock(&mm->mmap_sem));
BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
for (vma = mm->mmap; vma; vma = vma->vm_next) {
if (vma->anon_vma)
list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
vm_unlock_anon_vma(avc->anon_vma);
if (vma->vm_file && vma->vm_file->f_mapping)
vm_unlock_mapping(vma->vm_file->f_mapping);
}
mutex_unlock(&mm_all_locks_mutex);
}
/*
* initialise the VMA slab
*/
void __init mmap_init(void)
{
int ret;
ret = percpu_counter_init(&vm_committed_as, 0);
VM_BUG_ON(ret);
}
/*
* Initialise sysctl_user_reserve_kbytes.
*
* This is intended to prevent a user from starting a single memory hogging
* process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
* mode.
*
* The default value is min(3% of free memory, 128MB)
* 128MB is enough to recover with sshd/login, bash, and top/kill.
*/
static int init_user_reserve(void)
{
unsigned long free_kbytes;
free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
return 0;
}
module_init(init_user_reserve)
/*
* Initialise sysctl_admin_reserve_kbytes.
*
* The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
* to log in and kill a memory hogging process.
*
* Systems with more than 256MB will reserve 8MB, enough to recover
* with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
* only reserve 3% of free pages by default.
*/
static int init_admin_reserve(void)
{
unsigned long free_kbytes;
free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
return 0;
}
module_init(init_admin_reserve)
/*
* Reinititalise user and admin reserves if memory is added or removed.
*
* The default user reserve max is 128MB, and the default max for the
* admin reserve is 8MB. These are usually, but not always, enough to
* enable recovery from a memory hogging process using login/sshd, a shell,
* and tools like top. It may make sense to increase or even disable the
* reserve depending on the existence of swap or variations in the recovery
* tools. So, the admin may have changed them.
*
* If memory is added and the reserves have been eliminated or increased above
* the default max, then we'll trust the admin.
*
* If memory is removed and there isn't enough free memory, then we
* need to reset the reserves.
*
* Otherwise keep the reserve set by the admin.
*/
static int reserve_mem_notifier(struct notifier_block *nb,
unsigned long action, void *data)
{
unsigned long tmp, free_kbytes;
switch (action) {
case MEM_ONLINE:
/* Default max is 128MB. Leave alone if modified by operator. */
tmp = sysctl_user_reserve_kbytes;
if (0 < tmp && tmp < (1UL << 17))
init_user_reserve();
/* Default max is 8MB. Leave alone if modified by operator. */
tmp = sysctl_admin_reserve_kbytes;
if (0 < tmp && tmp < (1UL << 13))
init_admin_reserve();
break;
case MEM_OFFLINE:
free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
if (sysctl_user_reserve_kbytes > free_kbytes) {
init_user_reserve();
pr_info("vm.user_reserve_kbytes reset to %lu\n",
sysctl_user_reserve_kbytes);
}
if (sysctl_admin_reserve_kbytes > free_kbytes) {
init_admin_reserve();
pr_info("vm.admin_reserve_kbytes reset to %lu\n",
sysctl_admin_reserve_kbytes);
}
break;
default:
break;
}
return NOTIFY_OK;
}
static struct notifier_block reserve_mem_nb = {
.notifier_call = reserve_mem_notifier,
};
static int __meminit init_reserve_notifier(void)
{
if (register_hotmemory_notifier(&reserve_mem_nb))
printk("Failed registering memory add/remove notifier for admin reserve");
return 0;
}
module_init(init_reserve_notifier)