kernel_optimize_test/drivers/fmc/fmc-sdb.c
Thomas Gleixner 4319c7f77a treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 60
Based on 1 normalized pattern(s):

  released according to the gnu gpl version 2 or any later version

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 10 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190520071858.650321694@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-24 17:36:45 +02:00

220 lines
5.2 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2012 CERN (www.cern.ch)
* Author: Alessandro Rubini <rubini@gnudd.com>
*
* This work is part of the White Rabbit project, a research effort led
* by CERN, the European Institute for Nuclear Research.
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/fmc.h>
#include <linux/sdb.h>
#include <linux/err.h>
#include <linux/fmc-sdb.h>
#include <asm/byteorder.h>
static uint32_t __sdb_rd(struct fmc_device *fmc, unsigned long address,
int convert)
{
uint32_t res = fmc_readl(fmc, address);
if (convert)
return __be32_to_cpu(res);
return res;
}
static struct sdb_array *__fmc_scan_sdb_tree(struct fmc_device *fmc,
unsigned long sdb_addr,
unsigned long reg_base, int level)
{
uint32_t onew;
int i, j, n, convert = 0;
struct sdb_array *arr, *sub;
onew = fmc_readl(fmc, sdb_addr);
if (onew == SDB_MAGIC) {
/* Uh! If we are little-endian, we must convert */
if (SDB_MAGIC != __be32_to_cpu(SDB_MAGIC))
convert = 1;
} else if (onew == __be32_to_cpu(SDB_MAGIC)) {
/* ok, don't convert */
} else {
return ERR_PTR(-ENOENT);
}
/* So, the magic was there: get the count from offset 4*/
onew = __sdb_rd(fmc, sdb_addr + 4, convert);
n = __be16_to_cpu(*(uint16_t *)&onew);
arr = kzalloc(sizeof(*arr), GFP_KERNEL);
if (!arr)
return ERR_PTR(-ENOMEM);
arr->record = kcalloc(n, sizeof(arr->record[0]), GFP_KERNEL);
arr->subtree = kcalloc(n, sizeof(arr->subtree[0]), GFP_KERNEL);
if (!arr->record || !arr->subtree) {
kfree(arr->record);
kfree(arr->subtree);
kfree(arr);
return ERR_PTR(-ENOMEM);
}
arr->len = n;
arr->level = level;
arr->fmc = fmc;
for (i = 0; i < n; i++) {
union sdb_record *r;
for (j = 0; j < sizeof(arr->record[0]); j += 4) {
*(uint32_t *)((void *)(arr->record + i) + j) =
__sdb_rd(fmc, sdb_addr + (i * 64) + j, convert);
}
r = &arr->record[i];
arr->subtree[i] = ERR_PTR(-ENODEV);
if (r->empty.record_type == sdb_type_bridge) {
struct sdb_component *c = &r->bridge.sdb_component;
uint64_t subaddr = __be64_to_cpu(r->bridge.sdb_child);
uint64_t newbase = __be64_to_cpu(c->addr_first);
subaddr += reg_base;
newbase += reg_base;
sub = __fmc_scan_sdb_tree(fmc, subaddr, newbase,
level + 1);
arr->subtree[i] = sub; /* may be error */
if (IS_ERR(sub))
continue;
sub->parent = arr;
sub->baseaddr = newbase;
}
}
return arr;
}
int fmc_scan_sdb_tree(struct fmc_device *fmc, unsigned long address)
{
struct sdb_array *ret;
if (fmc->sdb)
return -EBUSY;
ret = __fmc_scan_sdb_tree(fmc, address, 0 /* regs */, 0);
if (IS_ERR(ret))
return PTR_ERR(ret);
fmc->sdb = ret;
return 0;
}
EXPORT_SYMBOL(fmc_scan_sdb_tree);
static void __fmc_sdb_free(struct sdb_array *arr)
{
int i, n;
if (!arr)
return;
n = arr->len;
for (i = 0; i < n; i++) {
if (IS_ERR(arr->subtree[i]))
continue;
__fmc_sdb_free(arr->subtree[i]);
}
kfree(arr->record);
kfree(arr->subtree);
kfree(arr);
}
int fmc_free_sdb_tree(struct fmc_device *fmc)
{
__fmc_sdb_free(fmc->sdb);
fmc->sdb = NULL;
return 0;
}
EXPORT_SYMBOL(fmc_free_sdb_tree);
/* This helper calls reprogram and inizialized sdb as well */
int fmc_reprogram_raw(struct fmc_device *fmc, struct fmc_driver *d,
void *gw, unsigned long len, int sdb_entry)
{
int ret;
ret = fmc->op->reprogram_raw(fmc, d, gw, len);
if (ret < 0)
return ret;
if (sdb_entry < 0)
return ret;
/* We are required to find SDB at a given offset */
ret = fmc_scan_sdb_tree(fmc, sdb_entry);
if (ret < 0) {
dev_err(&fmc->dev, "Can't find SDB at address 0x%x\n",
sdb_entry);
return -ENODEV;
}
return 0;
}
EXPORT_SYMBOL(fmc_reprogram_raw);
/* This helper calls reprogram and inizialized sdb as well */
int fmc_reprogram(struct fmc_device *fmc, struct fmc_driver *d, char *gw,
int sdb_entry)
{
int ret;
ret = fmc->op->reprogram(fmc, d, gw);
if (ret < 0)
return ret;
if (sdb_entry < 0)
return ret;
/* We are required to find SDB at a given offset */
ret = fmc_scan_sdb_tree(fmc, sdb_entry);
if (ret < 0) {
dev_err(&fmc->dev, "Can't find SDB at address 0x%x\n",
sdb_entry);
return -ENODEV;
}
return 0;
}
EXPORT_SYMBOL(fmc_reprogram);
void fmc_show_sdb_tree(const struct fmc_device *fmc)
{
pr_err("%s: not supported anymore, use debugfs to dump SDB\n",
__func__);
}
EXPORT_SYMBOL(fmc_show_sdb_tree);
signed long fmc_find_sdb_device(struct sdb_array *tree,
uint64_t vid, uint32_t did, unsigned long *sz)
{
signed long res = -ENODEV;
union sdb_record *r;
struct sdb_product *p;
struct sdb_component *c;
int i, n = tree->len;
uint64_t last, first;
/* FIXME: what if the first interconnect is not at zero? */
for (i = 0; i < n; i++) {
r = &tree->record[i];
c = &r->dev.sdb_component;
p = &c->product;
if (!IS_ERR(tree->subtree[i]))
res = fmc_find_sdb_device(tree->subtree[i],
vid, did, sz);
if (res >= 0)
return res + tree->baseaddr;
if (r->empty.record_type != sdb_type_device)
continue;
if (__be64_to_cpu(p->vendor_id) != vid)
continue;
if (__be32_to_cpu(p->device_id) != did)
continue;
/* found */
last = __be64_to_cpu(c->addr_last);
first = __be64_to_cpu(c->addr_first);
if (sz)
*sz = (typeof(*sz))(last + 1 - first);
return first + tree->baseaddr;
}
return res;
}
EXPORT_SYMBOL(fmc_find_sdb_device);