forked from luck/tmp_suning_uos_patched
978c0b8814
Before this patch, all of the rcu_node structures were in the same lockdep class, so that lockdep would complain when rcu_preempt_offline_tasks() acquired the root rcu_node structure's lock while holding one of the leaf rcu_nodes' locks. This patch changes rcu_init_one() to use a separate spin_lock_init() for the root rcu_node structure's lock than is used for that of all of the rest of the rcu_node structures, which puts the root rcu_node structure's lock in its own lockdep class. Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: akpm@linux-foundation.org Cc: mathieu.desnoyers@polymtl.ca Cc: josh@joshtriplett.org Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: rostedt@goodmis.org Cc: Valdis.Kletnieks@vt.edu Cc: dhowells@redhat.com LKML-Reference: <12548908983277-git-send-email-> Signed-off-by: Ingo Molnar <mingo@elte.hu>
1713 lines
48 KiB
C
1713 lines
48 KiB
C
/*
|
|
* Read-Copy Update mechanism for mutual exclusion
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*
|
|
* Copyright IBM Corporation, 2008
|
|
*
|
|
* Authors: Dipankar Sarma <dipankar@in.ibm.com>
|
|
* Manfred Spraul <manfred@colorfullife.com>
|
|
* Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
|
|
*
|
|
* Based on the original work by Paul McKenney <paulmck@us.ibm.com>
|
|
* and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
|
|
*
|
|
* For detailed explanation of Read-Copy Update mechanism see -
|
|
* Documentation/RCU
|
|
*/
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/nmi.h>
|
|
#include <asm/atomic.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/module.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/time.h>
|
|
|
|
#include "rcutree.h"
|
|
|
|
/* Data structures. */
|
|
|
|
#define RCU_STATE_INITIALIZER(name) { \
|
|
.level = { &name.node[0] }, \
|
|
.levelcnt = { \
|
|
NUM_RCU_LVL_0, /* root of hierarchy. */ \
|
|
NUM_RCU_LVL_1, \
|
|
NUM_RCU_LVL_2, \
|
|
NUM_RCU_LVL_3, /* == MAX_RCU_LVLS */ \
|
|
}, \
|
|
.signaled = RCU_SIGNAL_INIT, \
|
|
.gpnum = -300, \
|
|
.completed = -300, \
|
|
.onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \
|
|
.orphan_cbs_list = NULL, \
|
|
.orphan_cbs_tail = &name.orphan_cbs_list, \
|
|
.orphan_qlen = 0, \
|
|
.fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \
|
|
.n_force_qs = 0, \
|
|
.n_force_qs_ngp = 0, \
|
|
}
|
|
|
|
struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
|
|
DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
|
|
|
|
struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
|
|
DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
|
|
|
|
|
|
/*
|
|
* Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
|
|
* permit this function to be invoked without holding the root rcu_node
|
|
* structure's ->lock, but of course results can be subject to change.
|
|
*/
|
|
static int rcu_gp_in_progress(struct rcu_state *rsp)
|
|
{
|
|
return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
|
|
}
|
|
|
|
/*
|
|
* Note a quiescent state. Because we do not need to know
|
|
* how many quiescent states passed, just if there was at least
|
|
* one since the start of the grace period, this just sets a flag.
|
|
*/
|
|
void rcu_sched_qs(int cpu)
|
|
{
|
|
struct rcu_data *rdp;
|
|
|
|
rdp = &per_cpu(rcu_sched_data, cpu);
|
|
rdp->passed_quiesc_completed = rdp->completed;
|
|
barrier();
|
|
rdp->passed_quiesc = 1;
|
|
rcu_preempt_note_context_switch(cpu);
|
|
}
|
|
|
|
void rcu_bh_qs(int cpu)
|
|
{
|
|
struct rcu_data *rdp;
|
|
|
|
rdp = &per_cpu(rcu_bh_data, cpu);
|
|
rdp->passed_quiesc_completed = rdp->completed;
|
|
barrier();
|
|
rdp->passed_quiesc = 1;
|
|
}
|
|
|
|
#ifdef CONFIG_NO_HZ
|
|
DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
|
|
.dynticks_nesting = 1,
|
|
.dynticks = 1,
|
|
};
|
|
#endif /* #ifdef CONFIG_NO_HZ */
|
|
|
|
static int blimit = 10; /* Maximum callbacks per softirq. */
|
|
static int qhimark = 10000; /* If this many pending, ignore blimit. */
|
|
static int qlowmark = 100; /* Once only this many pending, use blimit. */
|
|
|
|
module_param(blimit, int, 0);
|
|
module_param(qhimark, int, 0);
|
|
module_param(qlowmark, int, 0);
|
|
|
|
static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
|
|
static int rcu_pending(int cpu);
|
|
|
|
/*
|
|
* Return the number of RCU-sched batches processed thus far for debug & stats.
|
|
*/
|
|
long rcu_batches_completed_sched(void)
|
|
{
|
|
return rcu_sched_state.completed;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
|
|
|
|
/*
|
|
* Return the number of RCU BH batches processed thus far for debug & stats.
|
|
*/
|
|
long rcu_batches_completed_bh(void)
|
|
{
|
|
return rcu_bh_state.completed;
|
|
}
|
|
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
|
|
|
|
/*
|
|
* Does the CPU have callbacks ready to be invoked?
|
|
*/
|
|
static int
|
|
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
|
|
{
|
|
return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
|
|
}
|
|
|
|
/*
|
|
* Does the current CPU require a yet-as-unscheduled grace period?
|
|
*/
|
|
static int
|
|
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
|
|
{
|
|
return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
|
|
}
|
|
|
|
/*
|
|
* Return the root node of the specified rcu_state structure.
|
|
*/
|
|
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
|
|
{
|
|
return &rsp->node[0];
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
/*
|
|
* If the specified CPU is offline, tell the caller that it is in
|
|
* a quiescent state. Otherwise, whack it with a reschedule IPI.
|
|
* Grace periods can end up waiting on an offline CPU when that
|
|
* CPU is in the process of coming online -- it will be added to the
|
|
* rcu_node bitmasks before it actually makes it online. The same thing
|
|
* can happen while a CPU is in the process of coming online. Because this
|
|
* race is quite rare, we check for it after detecting that the grace
|
|
* period has been delayed rather than checking each and every CPU
|
|
* each and every time we start a new grace period.
|
|
*/
|
|
static int rcu_implicit_offline_qs(struct rcu_data *rdp)
|
|
{
|
|
/*
|
|
* If the CPU is offline, it is in a quiescent state. We can
|
|
* trust its state not to change because interrupts are disabled.
|
|
*/
|
|
if (cpu_is_offline(rdp->cpu)) {
|
|
rdp->offline_fqs++;
|
|
return 1;
|
|
}
|
|
|
|
/* If preemptable RCU, no point in sending reschedule IPI. */
|
|
if (rdp->preemptable)
|
|
return 0;
|
|
|
|
/* The CPU is online, so send it a reschedule IPI. */
|
|
if (rdp->cpu != smp_processor_id())
|
|
smp_send_reschedule(rdp->cpu);
|
|
else
|
|
set_need_resched();
|
|
rdp->resched_ipi++;
|
|
return 0;
|
|
}
|
|
|
|
#endif /* #ifdef CONFIG_SMP */
|
|
|
|
#ifdef CONFIG_NO_HZ
|
|
|
|
/**
|
|
* rcu_enter_nohz - inform RCU that current CPU is entering nohz
|
|
*
|
|
* Enter nohz mode, in other words, -leave- the mode in which RCU
|
|
* read-side critical sections can occur. (Though RCU read-side
|
|
* critical sections can occur in irq handlers in nohz mode, a possibility
|
|
* handled by rcu_irq_enter() and rcu_irq_exit()).
|
|
*/
|
|
void rcu_enter_nohz(void)
|
|
{
|
|
unsigned long flags;
|
|
struct rcu_dynticks *rdtp;
|
|
|
|
smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
|
|
local_irq_save(flags);
|
|
rdtp = &__get_cpu_var(rcu_dynticks);
|
|
rdtp->dynticks++;
|
|
rdtp->dynticks_nesting--;
|
|
WARN_ON_ONCE(rdtp->dynticks & 0x1);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/*
|
|
* rcu_exit_nohz - inform RCU that current CPU is leaving nohz
|
|
*
|
|
* Exit nohz mode, in other words, -enter- the mode in which RCU
|
|
* read-side critical sections normally occur.
|
|
*/
|
|
void rcu_exit_nohz(void)
|
|
{
|
|
unsigned long flags;
|
|
struct rcu_dynticks *rdtp;
|
|
|
|
local_irq_save(flags);
|
|
rdtp = &__get_cpu_var(rcu_dynticks);
|
|
rdtp->dynticks++;
|
|
rdtp->dynticks_nesting++;
|
|
WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
|
|
local_irq_restore(flags);
|
|
smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
|
|
}
|
|
|
|
/**
|
|
* rcu_nmi_enter - inform RCU of entry to NMI context
|
|
*
|
|
* If the CPU was idle with dynamic ticks active, and there is no
|
|
* irq handler running, this updates rdtp->dynticks_nmi to let the
|
|
* RCU grace-period handling know that the CPU is active.
|
|
*/
|
|
void rcu_nmi_enter(void)
|
|
{
|
|
struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
|
|
|
|
if (rdtp->dynticks & 0x1)
|
|
return;
|
|
rdtp->dynticks_nmi++;
|
|
WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1));
|
|
smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
|
|
}
|
|
|
|
/**
|
|
* rcu_nmi_exit - inform RCU of exit from NMI context
|
|
*
|
|
* If the CPU was idle with dynamic ticks active, and there is no
|
|
* irq handler running, this updates rdtp->dynticks_nmi to let the
|
|
* RCU grace-period handling know that the CPU is no longer active.
|
|
*/
|
|
void rcu_nmi_exit(void)
|
|
{
|
|
struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
|
|
|
|
if (rdtp->dynticks & 0x1)
|
|
return;
|
|
smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
|
|
rdtp->dynticks_nmi++;
|
|
WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1);
|
|
}
|
|
|
|
/**
|
|
* rcu_irq_enter - inform RCU of entry to hard irq context
|
|
*
|
|
* If the CPU was idle with dynamic ticks active, this updates the
|
|
* rdtp->dynticks to let the RCU handling know that the CPU is active.
|
|
*/
|
|
void rcu_irq_enter(void)
|
|
{
|
|
struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
|
|
|
|
if (rdtp->dynticks_nesting++)
|
|
return;
|
|
rdtp->dynticks++;
|
|
WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
|
|
smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
|
|
}
|
|
|
|
/**
|
|
* rcu_irq_exit - inform RCU of exit from hard irq context
|
|
*
|
|
* If the CPU was idle with dynamic ticks active, update the rdp->dynticks
|
|
* to put let the RCU handling be aware that the CPU is going back to idle
|
|
* with no ticks.
|
|
*/
|
|
void rcu_irq_exit(void)
|
|
{
|
|
struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
|
|
|
|
if (--rdtp->dynticks_nesting)
|
|
return;
|
|
smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
|
|
rdtp->dynticks++;
|
|
WARN_ON_ONCE(rdtp->dynticks & 0x1);
|
|
|
|
/* If the interrupt queued a callback, get out of dyntick mode. */
|
|
if (__get_cpu_var(rcu_sched_data).nxtlist ||
|
|
__get_cpu_var(rcu_bh_data).nxtlist)
|
|
set_need_resched();
|
|
}
|
|
|
|
/*
|
|
* Record the specified "completed" value, which is later used to validate
|
|
* dynticks counter manipulations. Specify "rsp->completed - 1" to
|
|
* unconditionally invalidate any future dynticks manipulations (which is
|
|
* useful at the beginning of a grace period).
|
|
*/
|
|
static void dyntick_record_completed(struct rcu_state *rsp, long comp)
|
|
{
|
|
rsp->dynticks_completed = comp;
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
/*
|
|
* Recall the previously recorded value of the completion for dynticks.
|
|
*/
|
|
static long dyntick_recall_completed(struct rcu_state *rsp)
|
|
{
|
|
return rsp->dynticks_completed;
|
|
}
|
|
|
|
/*
|
|
* Snapshot the specified CPU's dynticks counter so that we can later
|
|
* credit them with an implicit quiescent state. Return 1 if this CPU
|
|
* is in dynticks idle mode, which is an extended quiescent state.
|
|
*/
|
|
static int dyntick_save_progress_counter(struct rcu_data *rdp)
|
|
{
|
|
int ret;
|
|
int snap;
|
|
int snap_nmi;
|
|
|
|
snap = rdp->dynticks->dynticks;
|
|
snap_nmi = rdp->dynticks->dynticks_nmi;
|
|
smp_mb(); /* Order sampling of snap with end of grace period. */
|
|
rdp->dynticks_snap = snap;
|
|
rdp->dynticks_nmi_snap = snap_nmi;
|
|
ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
|
|
if (ret)
|
|
rdp->dynticks_fqs++;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Return true if the specified CPU has passed through a quiescent
|
|
* state by virtue of being in or having passed through an dynticks
|
|
* idle state since the last call to dyntick_save_progress_counter()
|
|
* for this same CPU.
|
|
*/
|
|
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
|
|
{
|
|
long curr;
|
|
long curr_nmi;
|
|
long snap;
|
|
long snap_nmi;
|
|
|
|
curr = rdp->dynticks->dynticks;
|
|
snap = rdp->dynticks_snap;
|
|
curr_nmi = rdp->dynticks->dynticks_nmi;
|
|
snap_nmi = rdp->dynticks_nmi_snap;
|
|
smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
|
|
|
|
/*
|
|
* If the CPU passed through or entered a dynticks idle phase with
|
|
* no active irq/NMI handlers, then we can safely pretend that the CPU
|
|
* already acknowledged the request to pass through a quiescent
|
|
* state. Either way, that CPU cannot possibly be in an RCU
|
|
* read-side critical section that started before the beginning
|
|
* of the current RCU grace period.
|
|
*/
|
|
if ((curr != snap || (curr & 0x1) == 0) &&
|
|
(curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
|
|
rdp->dynticks_fqs++;
|
|
return 1;
|
|
}
|
|
|
|
/* Go check for the CPU being offline. */
|
|
return rcu_implicit_offline_qs(rdp);
|
|
}
|
|
|
|
#endif /* #ifdef CONFIG_SMP */
|
|
|
|
#else /* #ifdef CONFIG_NO_HZ */
|
|
|
|
static void dyntick_record_completed(struct rcu_state *rsp, long comp)
|
|
{
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
/*
|
|
* If there are no dynticks, then the only way that a CPU can passively
|
|
* be in a quiescent state is to be offline. Unlike dynticks idle, which
|
|
* is a point in time during the prior (already finished) grace period,
|
|
* an offline CPU is always in a quiescent state, and thus can be
|
|
* unconditionally applied. So just return the current value of completed.
|
|
*/
|
|
static long dyntick_recall_completed(struct rcu_state *rsp)
|
|
{
|
|
return rsp->completed;
|
|
}
|
|
|
|
static int dyntick_save_progress_counter(struct rcu_data *rdp)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
|
|
{
|
|
return rcu_implicit_offline_qs(rdp);
|
|
}
|
|
|
|
#endif /* #ifdef CONFIG_SMP */
|
|
|
|
#endif /* #else #ifdef CONFIG_NO_HZ */
|
|
|
|
#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
|
|
|
|
static void record_gp_stall_check_time(struct rcu_state *rsp)
|
|
{
|
|
rsp->gp_start = jiffies;
|
|
rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
|
|
}
|
|
|
|
static void print_other_cpu_stall(struct rcu_state *rsp)
|
|
{
|
|
int cpu;
|
|
long delta;
|
|
unsigned long flags;
|
|
struct rcu_node *rnp = rcu_get_root(rsp);
|
|
|
|
/* Only let one CPU complain about others per time interval. */
|
|
|
|
spin_lock_irqsave(&rnp->lock, flags);
|
|
delta = jiffies - rsp->jiffies_stall;
|
|
if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
|
|
spin_unlock_irqrestore(&rnp->lock, flags);
|
|
return;
|
|
}
|
|
rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
|
|
|
|
/*
|
|
* Now rat on any tasks that got kicked up to the root rcu_node
|
|
* due to CPU offlining.
|
|
*/
|
|
rcu_print_task_stall(rnp);
|
|
spin_unlock_irqrestore(&rnp->lock, flags);
|
|
|
|
/* OK, time to rat on our buddy... */
|
|
|
|
printk(KERN_ERR "INFO: RCU detected CPU stalls:");
|
|
rcu_for_each_leaf_node(rsp, rnp) {
|
|
rcu_print_task_stall(rnp);
|
|
if (rnp->qsmask == 0)
|
|
continue;
|
|
for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
|
|
if (rnp->qsmask & (1UL << cpu))
|
|
printk(" %d", rnp->grplo + cpu);
|
|
}
|
|
printk(" (detected by %d, t=%ld jiffies)\n",
|
|
smp_processor_id(), (long)(jiffies - rsp->gp_start));
|
|
trigger_all_cpu_backtrace();
|
|
|
|
force_quiescent_state(rsp, 0); /* Kick them all. */
|
|
}
|
|
|
|
static void print_cpu_stall(struct rcu_state *rsp)
|
|
{
|
|
unsigned long flags;
|
|
struct rcu_node *rnp = rcu_get_root(rsp);
|
|
|
|
printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n",
|
|
smp_processor_id(), jiffies - rsp->gp_start);
|
|
trigger_all_cpu_backtrace();
|
|
|
|
spin_lock_irqsave(&rnp->lock, flags);
|
|
if ((long)(jiffies - rsp->jiffies_stall) >= 0)
|
|
rsp->jiffies_stall =
|
|
jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
|
|
spin_unlock_irqrestore(&rnp->lock, flags);
|
|
|
|
set_need_resched(); /* kick ourselves to get things going. */
|
|
}
|
|
|
|
static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
|
|
{
|
|
long delta;
|
|
struct rcu_node *rnp;
|
|
|
|
delta = jiffies - rsp->jiffies_stall;
|
|
rnp = rdp->mynode;
|
|
if ((rnp->qsmask & rdp->grpmask) && delta >= 0) {
|
|
|
|
/* We haven't checked in, so go dump stack. */
|
|
print_cpu_stall(rsp);
|
|
|
|
} else if (rcu_gp_in_progress(rsp) && delta >= RCU_STALL_RAT_DELAY) {
|
|
|
|
/* They had two time units to dump stack, so complain. */
|
|
print_other_cpu_stall(rsp);
|
|
}
|
|
}
|
|
|
|
#else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
|
|
|
|
static void record_gp_stall_check_time(struct rcu_state *rsp)
|
|
{
|
|
}
|
|
|
|
static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
|
|
{
|
|
}
|
|
|
|
#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
|
|
|
|
/*
|
|
* Update CPU-local rcu_data state to record the newly noticed grace period.
|
|
* This is used both when we started the grace period and when we notice
|
|
* that someone else started the grace period.
|
|
*/
|
|
static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
|
|
{
|
|
rdp->qs_pending = 1;
|
|
rdp->passed_quiesc = 0;
|
|
rdp->gpnum = rsp->gpnum;
|
|
}
|
|
|
|
/*
|
|
* Did someone else start a new RCU grace period start since we last
|
|
* checked? Update local state appropriately if so. Must be called
|
|
* on the CPU corresponding to rdp.
|
|
*/
|
|
static int
|
|
check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
|
|
{
|
|
unsigned long flags;
|
|
int ret = 0;
|
|
|
|
local_irq_save(flags);
|
|
if (rdp->gpnum != rsp->gpnum) {
|
|
note_new_gpnum(rsp, rdp);
|
|
ret = 1;
|
|
}
|
|
local_irq_restore(flags);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Start a new RCU grace period if warranted, re-initializing the hierarchy
|
|
* in preparation for detecting the next grace period. The caller must hold
|
|
* the root node's ->lock, which is released before return. Hard irqs must
|
|
* be disabled.
|
|
*/
|
|
static void
|
|
rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
|
|
__releases(rcu_get_root(rsp)->lock)
|
|
{
|
|
struct rcu_data *rdp = rsp->rda[smp_processor_id()];
|
|
struct rcu_node *rnp = rcu_get_root(rsp);
|
|
|
|
if (!cpu_needs_another_gp(rsp, rdp)) {
|
|
spin_unlock_irqrestore(&rnp->lock, flags);
|
|
return;
|
|
}
|
|
|
|
/* Advance to a new grace period and initialize state. */
|
|
rsp->gpnum++;
|
|
WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
|
|
rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
|
|
rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
|
|
record_gp_stall_check_time(rsp);
|
|
dyntick_record_completed(rsp, rsp->completed - 1);
|
|
note_new_gpnum(rsp, rdp);
|
|
|
|
/*
|
|
* Because this CPU just now started the new grace period, we know
|
|
* that all of its callbacks will be covered by this upcoming grace
|
|
* period, even the ones that were registered arbitrarily recently.
|
|
* Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
|
|
*
|
|
* Other CPUs cannot be sure exactly when the grace period started.
|
|
* Therefore, their recently registered callbacks must pass through
|
|
* an additional RCU_NEXT_READY stage, so that they will be handled
|
|
* by the next RCU grace period.
|
|
*/
|
|
rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
|
|
rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
|
|
|
|
/* Special-case the common single-level case. */
|
|
if (NUM_RCU_NODES == 1) {
|
|
rcu_preempt_check_blocked_tasks(rnp);
|
|
rnp->qsmask = rnp->qsmaskinit;
|
|
rnp->gpnum = rsp->gpnum;
|
|
rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
|
|
spin_unlock_irqrestore(&rnp->lock, flags);
|
|
return;
|
|
}
|
|
|
|
spin_unlock(&rnp->lock); /* leave irqs disabled. */
|
|
|
|
|
|
/* Exclude any concurrent CPU-hotplug operations. */
|
|
spin_lock(&rsp->onofflock); /* irqs already disabled. */
|
|
|
|
/*
|
|
* Set the quiescent-state-needed bits in all the rcu_node
|
|
* structures for all currently online CPUs in breadth-first
|
|
* order, starting from the root rcu_node structure. This
|
|
* operation relies on the layout of the hierarchy within the
|
|
* rsp->node[] array. Note that other CPUs will access only
|
|
* the leaves of the hierarchy, which still indicate that no
|
|
* grace period is in progress, at least until the corresponding
|
|
* leaf node has been initialized. In addition, we have excluded
|
|
* CPU-hotplug operations.
|
|
*
|
|
* Note that the grace period cannot complete until we finish
|
|
* the initialization process, as there will be at least one
|
|
* qsmask bit set in the root node until that time, namely the
|
|
* one corresponding to this CPU, due to the fact that we have
|
|
* irqs disabled.
|
|
*/
|
|
rcu_for_each_node_breadth_first(rsp, rnp) {
|
|
spin_lock(&rnp->lock); /* irqs already disabled. */
|
|
rcu_preempt_check_blocked_tasks(rnp);
|
|
rnp->qsmask = rnp->qsmaskinit;
|
|
rnp->gpnum = rsp->gpnum;
|
|
spin_unlock(&rnp->lock); /* irqs already disabled. */
|
|
}
|
|
|
|
rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
|
|
spin_unlock_irqrestore(&rsp->onofflock, flags);
|
|
}
|
|
|
|
/*
|
|
* Advance this CPU's callbacks, but only if the current grace period
|
|
* has ended. This may be called only from the CPU to whom the rdp
|
|
* belongs.
|
|
*/
|
|
static void
|
|
rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
|
|
{
|
|
long completed_snap;
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
completed_snap = ACCESS_ONCE(rsp->completed); /* outside of lock. */
|
|
|
|
/* Did another grace period end? */
|
|
if (rdp->completed != completed_snap) {
|
|
|
|
/* Advance callbacks. No harm if list empty. */
|
|
rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
|
|
rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
|
|
rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
|
|
|
|
/* Remember that we saw this grace-period completion. */
|
|
rdp->completed = completed_snap;
|
|
}
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/*
|
|
* Clean up after the prior grace period and let rcu_start_gp() start up
|
|
* the next grace period if one is needed. Note that the caller must
|
|
* hold rnp->lock, as required by rcu_start_gp(), which will release it.
|
|
*/
|
|
static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags)
|
|
__releases(rcu_get_root(rsp)->lock)
|
|
{
|
|
WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
|
|
rsp->completed = rsp->gpnum;
|
|
rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]);
|
|
rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
|
|
}
|
|
|
|
/*
|
|
* Similar to cpu_quiet(), for which it is a helper function. Allows
|
|
* a group of CPUs to be quieted at one go, though all the CPUs in the
|
|
* group must be represented by the same leaf rcu_node structure.
|
|
* That structure's lock must be held upon entry, and it is released
|
|
* before return.
|
|
*/
|
|
static void
|
|
cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp,
|
|
unsigned long flags)
|
|
__releases(rnp->lock)
|
|
{
|
|
struct rcu_node *rnp_c;
|
|
|
|
/* Walk up the rcu_node hierarchy. */
|
|
for (;;) {
|
|
if (!(rnp->qsmask & mask)) {
|
|
|
|
/* Our bit has already been cleared, so done. */
|
|
spin_unlock_irqrestore(&rnp->lock, flags);
|
|
return;
|
|
}
|
|
rnp->qsmask &= ~mask;
|
|
if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
|
|
|
|
/* Other bits still set at this level, so done. */
|
|
spin_unlock_irqrestore(&rnp->lock, flags);
|
|
return;
|
|
}
|
|
mask = rnp->grpmask;
|
|
if (rnp->parent == NULL) {
|
|
|
|
/* No more levels. Exit loop holding root lock. */
|
|
|
|
break;
|
|
}
|
|
spin_unlock_irqrestore(&rnp->lock, flags);
|
|
rnp_c = rnp;
|
|
rnp = rnp->parent;
|
|
spin_lock_irqsave(&rnp->lock, flags);
|
|
WARN_ON_ONCE(rnp_c->qsmask);
|
|
}
|
|
|
|
/*
|
|
* Get here if we are the last CPU to pass through a quiescent
|
|
* state for this grace period. Invoke cpu_quiet_msk_finish()
|
|
* to clean up and start the next grace period if one is needed.
|
|
*/
|
|
cpu_quiet_msk_finish(rsp, flags); /* releases rnp->lock. */
|
|
}
|
|
|
|
/*
|
|
* Record a quiescent state for the specified CPU, which must either be
|
|
* the current CPU. The lastcomp argument is used to make sure we are
|
|
* still in the grace period of interest. We don't want to end the current
|
|
* grace period based on quiescent states detected in an earlier grace
|
|
* period!
|
|
*/
|
|
static void
|
|
cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
|
|
{
|
|
unsigned long flags;
|
|
unsigned long mask;
|
|
struct rcu_node *rnp;
|
|
|
|
rnp = rdp->mynode;
|
|
spin_lock_irqsave(&rnp->lock, flags);
|
|
if (lastcomp != ACCESS_ONCE(rsp->completed)) {
|
|
|
|
/*
|
|
* Someone beat us to it for this grace period, so leave.
|
|
* The race with GP start is resolved by the fact that we
|
|
* hold the leaf rcu_node lock, so that the per-CPU bits
|
|
* cannot yet be initialized -- so we would simply find our
|
|
* CPU's bit already cleared in cpu_quiet_msk() if this race
|
|
* occurred.
|
|
*/
|
|
rdp->passed_quiesc = 0; /* try again later! */
|
|
spin_unlock_irqrestore(&rnp->lock, flags);
|
|
return;
|
|
}
|
|
mask = rdp->grpmask;
|
|
if ((rnp->qsmask & mask) == 0) {
|
|
spin_unlock_irqrestore(&rnp->lock, flags);
|
|
} else {
|
|
rdp->qs_pending = 0;
|
|
|
|
/*
|
|
* This GP can't end until cpu checks in, so all of our
|
|
* callbacks can be processed during the next GP.
|
|
*/
|
|
rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
|
|
|
|
cpu_quiet_msk(mask, rsp, rnp, flags); /* releases rnp->lock */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check to see if there is a new grace period of which this CPU
|
|
* is not yet aware, and if so, set up local rcu_data state for it.
|
|
* Otherwise, see if this CPU has just passed through its first
|
|
* quiescent state for this grace period, and record that fact if so.
|
|
*/
|
|
static void
|
|
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
|
|
{
|
|
/* If there is now a new grace period, record and return. */
|
|
if (check_for_new_grace_period(rsp, rdp))
|
|
return;
|
|
|
|
/*
|
|
* Does this CPU still need to do its part for current grace period?
|
|
* If no, return and let the other CPUs do their part as well.
|
|
*/
|
|
if (!rdp->qs_pending)
|
|
return;
|
|
|
|
/*
|
|
* Was there a quiescent state since the beginning of the grace
|
|
* period? If no, then exit and wait for the next call.
|
|
*/
|
|
if (!rdp->passed_quiesc)
|
|
return;
|
|
|
|
/* Tell RCU we are done (but cpu_quiet() will be the judge of that). */
|
|
cpu_quiet(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
|
|
/*
|
|
* Move a dying CPU's RCU callbacks to the ->orphan_cbs_list for the
|
|
* specified flavor of RCU. The callbacks will be adopted by the next
|
|
* _rcu_barrier() invocation or by the CPU_DEAD notifier, whichever
|
|
* comes first. Because this is invoked from the CPU_DYING notifier,
|
|
* irqs are already disabled.
|
|
*/
|
|
static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
|
|
{
|
|
int i;
|
|
struct rcu_data *rdp = rsp->rda[smp_processor_id()];
|
|
|
|
if (rdp->nxtlist == NULL)
|
|
return; /* irqs disabled, so comparison is stable. */
|
|
spin_lock(&rsp->onofflock); /* irqs already disabled. */
|
|
*rsp->orphan_cbs_tail = rdp->nxtlist;
|
|
rsp->orphan_cbs_tail = rdp->nxttail[RCU_NEXT_TAIL];
|
|
rdp->nxtlist = NULL;
|
|
for (i = 0; i < RCU_NEXT_SIZE; i++)
|
|
rdp->nxttail[i] = &rdp->nxtlist;
|
|
rsp->orphan_qlen += rdp->qlen;
|
|
rdp->qlen = 0;
|
|
spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
|
|
}
|
|
|
|
/*
|
|
* Adopt previously orphaned RCU callbacks.
|
|
*/
|
|
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
|
|
{
|
|
unsigned long flags;
|
|
struct rcu_data *rdp;
|
|
|
|
spin_lock_irqsave(&rsp->onofflock, flags);
|
|
rdp = rsp->rda[smp_processor_id()];
|
|
if (rsp->orphan_cbs_list == NULL) {
|
|
spin_unlock_irqrestore(&rsp->onofflock, flags);
|
|
return;
|
|
}
|
|
*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_list;
|
|
rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_tail;
|
|
rdp->qlen += rsp->orphan_qlen;
|
|
rsp->orphan_cbs_list = NULL;
|
|
rsp->orphan_cbs_tail = &rsp->orphan_cbs_list;
|
|
rsp->orphan_qlen = 0;
|
|
spin_unlock_irqrestore(&rsp->onofflock, flags);
|
|
}
|
|
|
|
/*
|
|
* Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
|
|
* and move all callbacks from the outgoing CPU to the current one.
|
|
*/
|
|
static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
|
|
{
|
|
unsigned long flags;
|
|
long lastcomp;
|
|
unsigned long mask;
|
|
struct rcu_data *rdp = rsp->rda[cpu];
|
|
struct rcu_node *rnp;
|
|
|
|
/* Exclude any attempts to start a new grace period. */
|
|
spin_lock_irqsave(&rsp->onofflock, flags);
|
|
|
|
/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
|
|
rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
|
|
mask = rdp->grpmask; /* rnp->grplo is constant. */
|
|
do {
|
|
spin_lock(&rnp->lock); /* irqs already disabled. */
|
|
rnp->qsmaskinit &= ~mask;
|
|
if (rnp->qsmaskinit != 0) {
|
|
spin_unlock(&rnp->lock); /* irqs remain disabled. */
|
|
break;
|
|
}
|
|
rcu_preempt_offline_tasks(rsp, rnp, rdp);
|
|
mask = rnp->grpmask;
|
|
spin_unlock(&rnp->lock); /* irqs remain disabled. */
|
|
rnp = rnp->parent;
|
|
} while (rnp != NULL);
|
|
lastcomp = rsp->completed;
|
|
|
|
spin_unlock_irqrestore(&rsp->onofflock, flags);
|
|
|
|
rcu_adopt_orphan_cbs(rsp);
|
|
}
|
|
|
|
/*
|
|
* Remove the specified CPU from the RCU hierarchy and move any pending
|
|
* callbacks that it might have to the current CPU. This code assumes
|
|
* that at least one CPU in the system will remain running at all times.
|
|
* Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
|
|
*/
|
|
static void rcu_offline_cpu(int cpu)
|
|
{
|
|
__rcu_offline_cpu(cpu, &rcu_sched_state);
|
|
__rcu_offline_cpu(cpu, &rcu_bh_state);
|
|
rcu_preempt_offline_cpu(cpu);
|
|
}
|
|
|
|
#else /* #ifdef CONFIG_HOTPLUG_CPU */
|
|
|
|
static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
|
|
{
|
|
}
|
|
|
|
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
|
|
{
|
|
}
|
|
|
|
static void rcu_offline_cpu(int cpu)
|
|
{
|
|
}
|
|
|
|
#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
|
|
|
|
/*
|
|
* Invoke any RCU callbacks that have made it to the end of their grace
|
|
* period. Thottle as specified by rdp->blimit.
|
|
*/
|
|
static void rcu_do_batch(struct rcu_data *rdp)
|
|
{
|
|
unsigned long flags;
|
|
struct rcu_head *next, *list, **tail;
|
|
int count;
|
|
|
|
/* If no callbacks are ready, just return.*/
|
|
if (!cpu_has_callbacks_ready_to_invoke(rdp))
|
|
return;
|
|
|
|
/*
|
|
* Extract the list of ready callbacks, disabling to prevent
|
|
* races with call_rcu() from interrupt handlers.
|
|
*/
|
|
local_irq_save(flags);
|
|
list = rdp->nxtlist;
|
|
rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
|
|
*rdp->nxttail[RCU_DONE_TAIL] = NULL;
|
|
tail = rdp->nxttail[RCU_DONE_TAIL];
|
|
for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
|
|
if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
|
|
rdp->nxttail[count] = &rdp->nxtlist;
|
|
local_irq_restore(flags);
|
|
|
|
/* Invoke callbacks. */
|
|
count = 0;
|
|
while (list) {
|
|
next = list->next;
|
|
prefetch(next);
|
|
list->func(list);
|
|
list = next;
|
|
if (++count >= rdp->blimit)
|
|
break;
|
|
}
|
|
|
|
local_irq_save(flags);
|
|
|
|
/* Update count, and requeue any remaining callbacks. */
|
|
rdp->qlen -= count;
|
|
if (list != NULL) {
|
|
*tail = rdp->nxtlist;
|
|
rdp->nxtlist = list;
|
|
for (count = 0; count < RCU_NEXT_SIZE; count++)
|
|
if (&rdp->nxtlist == rdp->nxttail[count])
|
|
rdp->nxttail[count] = tail;
|
|
else
|
|
break;
|
|
}
|
|
|
|
/* Reinstate batch limit if we have worked down the excess. */
|
|
if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
|
|
rdp->blimit = blimit;
|
|
|
|
local_irq_restore(flags);
|
|
|
|
/* Re-raise the RCU softirq if there are callbacks remaining. */
|
|
if (cpu_has_callbacks_ready_to_invoke(rdp))
|
|
raise_softirq(RCU_SOFTIRQ);
|
|
}
|
|
|
|
/*
|
|
* Check to see if this CPU is in a non-context-switch quiescent state
|
|
* (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
|
|
* Also schedule the RCU softirq handler.
|
|
*
|
|
* This function must be called with hardirqs disabled. It is normally
|
|
* invoked from the scheduling-clock interrupt. If rcu_pending returns
|
|
* false, there is no point in invoking rcu_check_callbacks().
|
|
*/
|
|
void rcu_check_callbacks(int cpu, int user)
|
|
{
|
|
if (!rcu_pending(cpu))
|
|
return; /* if nothing for RCU to do. */
|
|
if (user ||
|
|
(idle_cpu(cpu) && rcu_scheduler_active &&
|
|
!in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
|
|
|
|
/*
|
|
* Get here if this CPU took its interrupt from user
|
|
* mode or from the idle loop, and if this is not a
|
|
* nested interrupt. In this case, the CPU is in
|
|
* a quiescent state, so note it.
|
|
*
|
|
* No memory barrier is required here because both
|
|
* rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
|
|
* variables that other CPUs neither access nor modify,
|
|
* at least not while the corresponding CPU is online.
|
|
*/
|
|
|
|
rcu_sched_qs(cpu);
|
|
rcu_bh_qs(cpu);
|
|
|
|
} else if (!in_softirq()) {
|
|
|
|
/*
|
|
* Get here if this CPU did not take its interrupt from
|
|
* softirq, in other words, if it is not interrupting
|
|
* a rcu_bh read-side critical section. This is an _bh
|
|
* critical section, so note it.
|
|
*/
|
|
|
|
rcu_bh_qs(cpu);
|
|
}
|
|
rcu_preempt_check_callbacks(cpu);
|
|
raise_softirq(RCU_SOFTIRQ);
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
/*
|
|
* Scan the leaf rcu_node structures, processing dyntick state for any that
|
|
* have not yet encountered a quiescent state, using the function specified.
|
|
* Returns 1 if the current grace period ends while scanning (possibly
|
|
* because we made it end).
|
|
*/
|
|
static int rcu_process_dyntick(struct rcu_state *rsp, long lastcomp,
|
|
int (*f)(struct rcu_data *))
|
|
{
|
|
unsigned long bit;
|
|
int cpu;
|
|
unsigned long flags;
|
|
unsigned long mask;
|
|
struct rcu_node *rnp;
|
|
|
|
rcu_for_each_leaf_node(rsp, rnp) {
|
|
mask = 0;
|
|
spin_lock_irqsave(&rnp->lock, flags);
|
|
if (rsp->completed != lastcomp) {
|
|
spin_unlock_irqrestore(&rnp->lock, flags);
|
|
return 1;
|
|
}
|
|
if (rnp->qsmask == 0) {
|
|
spin_unlock_irqrestore(&rnp->lock, flags);
|
|
continue;
|
|
}
|
|
cpu = rnp->grplo;
|
|
bit = 1;
|
|
for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
|
|
if ((rnp->qsmask & bit) != 0 && f(rsp->rda[cpu]))
|
|
mask |= bit;
|
|
}
|
|
if (mask != 0 && rsp->completed == lastcomp) {
|
|
|
|
/* cpu_quiet_msk() releases rnp->lock. */
|
|
cpu_quiet_msk(mask, rsp, rnp, flags);
|
|
continue;
|
|
}
|
|
spin_unlock_irqrestore(&rnp->lock, flags);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Force quiescent states on reluctant CPUs, and also detect which
|
|
* CPUs are in dyntick-idle mode.
|
|
*/
|
|
static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
|
|
{
|
|
unsigned long flags;
|
|
long lastcomp;
|
|
struct rcu_node *rnp = rcu_get_root(rsp);
|
|
u8 signaled;
|
|
|
|
if (!rcu_gp_in_progress(rsp))
|
|
return; /* No grace period in progress, nothing to force. */
|
|
if (!spin_trylock_irqsave(&rsp->fqslock, flags)) {
|
|
rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
|
|
return; /* Someone else is already on the job. */
|
|
}
|
|
if (relaxed &&
|
|
(long)(rsp->jiffies_force_qs - jiffies) >= 0)
|
|
goto unlock_ret; /* no emergency and done recently. */
|
|
rsp->n_force_qs++;
|
|
spin_lock(&rnp->lock);
|
|
lastcomp = rsp->completed;
|
|
signaled = rsp->signaled;
|
|
rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
|
|
if (lastcomp == rsp->gpnum) {
|
|
rsp->n_force_qs_ngp++;
|
|
spin_unlock(&rnp->lock);
|
|
goto unlock_ret; /* no GP in progress, time updated. */
|
|
}
|
|
spin_unlock(&rnp->lock);
|
|
switch (signaled) {
|
|
case RCU_GP_INIT:
|
|
|
|
break; /* grace period still initializing, ignore. */
|
|
|
|
case RCU_SAVE_DYNTICK:
|
|
|
|
if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
|
|
break; /* So gcc recognizes the dead code. */
|
|
|
|
/* Record dyntick-idle state. */
|
|
if (rcu_process_dyntick(rsp, lastcomp,
|
|
dyntick_save_progress_counter))
|
|
goto unlock_ret;
|
|
|
|
/* Update state, record completion counter. */
|
|
spin_lock(&rnp->lock);
|
|
if (lastcomp == rsp->completed) {
|
|
rsp->signaled = RCU_FORCE_QS;
|
|
dyntick_record_completed(rsp, lastcomp);
|
|
}
|
|
spin_unlock(&rnp->lock);
|
|
break;
|
|
|
|
case RCU_FORCE_QS:
|
|
|
|
/* Check dyntick-idle state, send IPI to laggarts. */
|
|
if (rcu_process_dyntick(rsp, dyntick_recall_completed(rsp),
|
|
rcu_implicit_dynticks_qs))
|
|
goto unlock_ret;
|
|
|
|
/* Leave state in case more forcing is required. */
|
|
|
|
break;
|
|
}
|
|
unlock_ret:
|
|
spin_unlock_irqrestore(&rsp->fqslock, flags);
|
|
}
|
|
|
|
#else /* #ifdef CONFIG_SMP */
|
|
|
|
static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
|
|
{
|
|
set_need_resched();
|
|
}
|
|
|
|
#endif /* #else #ifdef CONFIG_SMP */
|
|
|
|
/*
|
|
* This does the RCU processing work from softirq context for the
|
|
* specified rcu_state and rcu_data structures. This may be called
|
|
* only from the CPU to whom the rdp belongs.
|
|
*/
|
|
static void
|
|
__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
|
|
{
|
|
unsigned long flags;
|
|
|
|
WARN_ON_ONCE(rdp->beenonline == 0);
|
|
|
|
/*
|
|
* If an RCU GP has gone long enough, go check for dyntick
|
|
* idle CPUs and, if needed, send resched IPIs.
|
|
*/
|
|
if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
|
|
force_quiescent_state(rsp, 1);
|
|
|
|
/*
|
|
* Advance callbacks in response to end of earlier grace
|
|
* period that some other CPU ended.
|
|
*/
|
|
rcu_process_gp_end(rsp, rdp);
|
|
|
|
/* Update RCU state based on any recent quiescent states. */
|
|
rcu_check_quiescent_state(rsp, rdp);
|
|
|
|
/* Does this CPU require a not-yet-started grace period? */
|
|
if (cpu_needs_another_gp(rsp, rdp)) {
|
|
spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
|
|
rcu_start_gp(rsp, flags); /* releases above lock */
|
|
}
|
|
|
|
/* If there are callbacks ready, invoke them. */
|
|
rcu_do_batch(rdp);
|
|
}
|
|
|
|
/*
|
|
* Do softirq processing for the current CPU.
|
|
*/
|
|
static void rcu_process_callbacks(struct softirq_action *unused)
|
|
{
|
|
/*
|
|
* Memory references from any prior RCU read-side critical sections
|
|
* executed by the interrupted code must be seen before any RCU
|
|
* grace-period manipulations below.
|
|
*/
|
|
smp_mb(); /* See above block comment. */
|
|
|
|
__rcu_process_callbacks(&rcu_sched_state,
|
|
&__get_cpu_var(rcu_sched_data));
|
|
__rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
|
|
rcu_preempt_process_callbacks();
|
|
|
|
/*
|
|
* Memory references from any later RCU read-side critical sections
|
|
* executed by the interrupted code must be seen after any RCU
|
|
* grace-period manipulations above.
|
|
*/
|
|
smp_mb(); /* See above block comment. */
|
|
}
|
|
|
|
static void
|
|
__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
|
|
struct rcu_state *rsp)
|
|
{
|
|
unsigned long flags;
|
|
struct rcu_data *rdp;
|
|
|
|
head->func = func;
|
|
head->next = NULL;
|
|
|
|
smp_mb(); /* Ensure RCU update seen before callback registry. */
|
|
|
|
/*
|
|
* Opportunistically note grace-period endings and beginnings.
|
|
* Note that we might see a beginning right after we see an
|
|
* end, but never vice versa, since this CPU has to pass through
|
|
* a quiescent state betweentimes.
|
|
*/
|
|
local_irq_save(flags);
|
|
rdp = rsp->rda[smp_processor_id()];
|
|
rcu_process_gp_end(rsp, rdp);
|
|
check_for_new_grace_period(rsp, rdp);
|
|
|
|
/* Add the callback to our list. */
|
|
*rdp->nxttail[RCU_NEXT_TAIL] = head;
|
|
rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
|
|
|
|
/* Start a new grace period if one not already started. */
|
|
if (!rcu_gp_in_progress(rsp)) {
|
|
unsigned long nestflag;
|
|
struct rcu_node *rnp_root = rcu_get_root(rsp);
|
|
|
|
spin_lock_irqsave(&rnp_root->lock, nestflag);
|
|
rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */
|
|
}
|
|
|
|
/* Force the grace period if too many callbacks or too long waiting. */
|
|
if (unlikely(++rdp->qlen > qhimark)) {
|
|
rdp->blimit = LONG_MAX;
|
|
force_quiescent_state(rsp, 0);
|
|
} else if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
|
|
force_quiescent_state(rsp, 1);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/*
|
|
* Queue an RCU-sched callback for invocation after a grace period.
|
|
*/
|
|
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
|
|
{
|
|
__call_rcu(head, func, &rcu_sched_state);
|
|
}
|
|
EXPORT_SYMBOL_GPL(call_rcu_sched);
|
|
|
|
/*
|
|
* Queue an RCU for invocation after a quicker grace period.
|
|
*/
|
|
void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
|
|
{
|
|
__call_rcu(head, func, &rcu_bh_state);
|
|
}
|
|
EXPORT_SYMBOL_GPL(call_rcu_bh);
|
|
|
|
/*
|
|
* Check to see if there is any immediate RCU-related work to be done
|
|
* by the current CPU, for the specified type of RCU, returning 1 if so.
|
|
* The checks are in order of increasing expense: checks that can be
|
|
* carried out against CPU-local state are performed first. However,
|
|
* we must check for CPU stalls first, else we might not get a chance.
|
|
*/
|
|
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
|
|
{
|
|
rdp->n_rcu_pending++;
|
|
|
|
/* Check for CPU stalls, if enabled. */
|
|
check_cpu_stall(rsp, rdp);
|
|
|
|
/* Is the RCU core waiting for a quiescent state from this CPU? */
|
|
if (rdp->qs_pending) {
|
|
rdp->n_rp_qs_pending++;
|
|
return 1;
|
|
}
|
|
|
|
/* Does this CPU have callbacks ready to invoke? */
|
|
if (cpu_has_callbacks_ready_to_invoke(rdp)) {
|
|
rdp->n_rp_cb_ready++;
|
|
return 1;
|
|
}
|
|
|
|
/* Has RCU gone idle with this CPU needing another grace period? */
|
|
if (cpu_needs_another_gp(rsp, rdp)) {
|
|
rdp->n_rp_cpu_needs_gp++;
|
|
return 1;
|
|
}
|
|
|
|
/* Has another RCU grace period completed? */
|
|
if (ACCESS_ONCE(rsp->completed) != rdp->completed) { /* outside lock */
|
|
rdp->n_rp_gp_completed++;
|
|
return 1;
|
|
}
|
|
|
|
/* Has a new RCU grace period started? */
|
|
if (ACCESS_ONCE(rsp->gpnum) != rdp->gpnum) { /* outside lock */
|
|
rdp->n_rp_gp_started++;
|
|
return 1;
|
|
}
|
|
|
|
/* Has an RCU GP gone long enough to send resched IPIs &c? */
|
|
if (rcu_gp_in_progress(rsp) &&
|
|
((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)) {
|
|
rdp->n_rp_need_fqs++;
|
|
return 1;
|
|
}
|
|
|
|
/* nothing to do */
|
|
rdp->n_rp_need_nothing++;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check to see if there is any immediate RCU-related work to be done
|
|
* by the current CPU, returning 1 if so. This function is part of the
|
|
* RCU implementation; it is -not- an exported member of the RCU API.
|
|
*/
|
|
static int rcu_pending(int cpu)
|
|
{
|
|
return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
|
|
__rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
|
|
rcu_preempt_pending(cpu);
|
|
}
|
|
|
|
/*
|
|
* Check to see if any future RCU-related work will need to be done
|
|
* by the current CPU, even if none need be done immediately, returning
|
|
* 1 if so. This function is part of the RCU implementation; it is -not-
|
|
* an exported member of the RCU API.
|
|
*/
|
|
int rcu_needs_cpu(int cpu)
|
|
{
|
|
/* RCU callbacks either ready or pending? */
|
|
return per_cpu(rcu_sched_data, cpu).nxtlist ||
|
|
per_cpu(rcu_bh_data, cpu).nxtlist ||
|
|
rcu_preempt_needs_cpu(cpu);
|
|
}
|
|
|
|
static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
|
|
static atomic_t rcu_barrier_cpu_count;
|
|
static DEFINE_MUTEX(rcu_barrier_mutex);
|
|
static struct completion rcu_barrier_completion;
|
|
|
|
static void rcu_barrier_callback(struct rcu_head *notused)
|
|
{
|
|
if (atomic_dec_and_test(&rcu_barrier_cpu_count))
|
|
complete(&rcu_barrier_completion);
|
|
}
|
|
|
|
/*
|
|
* Called with preemption disabled, and from cross-cpu IRQ context.
|
|
*/
|
|
static void rcu_barrier_func(void *type)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
|
|
void (*call_rcu_func)(struct rcu_head *head,
|
|
void (*func)(struct rcu_head *head));
|
|
|
|
atomic_inc(&rcu_barrier_cpu_count);
|
|
call_rcu_func = type;
|
|
call_rcu_func(head, rcu_barrier_callback);
|
|
}
|
|
|
|
/*
|
|
* Orchestrate the specified type of RCU barrier, waiting for all
|
|
* RCU callbacks of the specified type to complete.
|
|
*/
|
|
static void _rcu_barrier(struct rcu_state *rsp,
|
|
void (*call_rcu_func)(struct rcu_head *head,
|
|
void (*func)(struct rcu_head *head)))
|
|
{
|
|
BUG_ON(in_interrupt());
|
|
/* Take mutex to serialize concurrent rcu_barrier() requests. */
|
|
mutex_lock(&rcu_barrier_mutex);
|
|
init_completion(&rcu_barrier_completion);
|
|
/*
|
|
* Initialize rcu_barrier_cpu_count to 1, then invoke
|
|
* rcu_barrier_func() on each CPU, so that each CPU also has
|
|
* incremented rcu_barrier_cpu_count. Only then is it safe to
|
|
* decrement rcu_barrier_cpu_count -- otherwise the first CPU
|
|
* might complete its grace period before all of the other CPUs
|
|
* did their increment, causing this function to return too
|
|
* early.
|
|
*/
|
|
atomic_set(&rcu_barrier_cpu_count, 1);
|
|
preempt_disable(); /* stop CPU_DYING from filling orphan_cbs_list */
|
|
rcu_adopt_orphan_cbs(rsp);
|
|
on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
|
|
preempt_enable(); /* CPU_DYING can again fill orphan_cbs_list */
|
|
if (atomic_dec_and_test(&rcu_barrier_cpu_count))
|
|
complete(&rcu_barrier_completion);
|
|
wait_for_completion(&rcu_barrier_completion);
|
|
mutex_unlock(&rcu_barrier_mutex);
|
|
}
|
|
|
|
/**
|
|
* rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
|
|
*/
|
|
void rcu_barrier_bh(void)
|
|
{
|
|
_rcu_barrier(&rcu_bh_state, call_rcu_bh);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rcu_barrier_bh);
|
|
|
|
/**
|
|
* rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
|
|
*/
|
|
void rcu_barrier_sched(void)
|
|
{
|
|
_rcu_barrier(&rcu_sched_state, call_rcu_sched);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rcu_barrier_sched);
|
|
|
|
/*
|
|
* Do boot-time initialization of a CPU's per-CPU RCU data.
|
|
*/
|
|
static void __init
|
|
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
|
|
{
|
|
unsigned long flags;
|
|
int i;
|
|
struct rcu_data *rdp = rsp->rda[cpu];
|
|
struct rcu_node *rnp = rcu_get_root(rsp);
|
|
|
|
/* Set up local state, ensuring consistent view of global state. */
|
|
spin_lock_irqsave(&rnp->lock, flags);
|
|
rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
|
|
rdp->nxtlist = NULL;
|
|
for (i = 0; i < RCU_NEXT_SIZE; i++)
|
|
rdp->nxttail[i] = &rdp->nxtlist;
|
|
rdp->qlen = 0;
|
|
#ifdef CONFIG_NO_HZ
|
|
rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
|
|
#endif /* #ifdef CONFIG_NO_HZ */
|
|
rdp->cpu = cpu;
|
|
spin_unlock_irqrestore(&rnp->lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Initialize a CPU's per-CPU RCU data. Note that only one online or
|
|
* offline event can be happening at a given time. Note also that we
|
|
* can accept some slop in the rsp->completed access due to the fact
|
|
* that this CPU cannot possibly have any RCU callbacks in flight yet.
|
|
*/
|
|
static void __cpuinit
|
|
rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
|
|
{
|
|
unsigned long flags;
|
|
long lastcomp;
|
|
unsigned long mask;
|
|
struct rcu_data *rdp = rsp->rda[cpu];
|
|
struct rcu_node *rnp = rcu_get_root(rsp);
|
|
|
|
/* Set up local state, ensuring consistent view of global state. */
|
|
spin_lock_irqsave(&rnp->lock, flags);
|
|
lastcomp = rsp->completed;
|
|
rdp->completed = lastcomp;
|
|
rdp->gpnum = lastcomp;
|
|
rdp->passed_quiesc = 0; /* We could be racing with new GP, */
|
|
rdp->qs_pending = 1; /* so set up to respond to current GP. */
|
|
rdp->beenonline = 1; /* We have now been online. */
|
|
rdp->preemptable = preemptable;
|
|
rdp->passed_quiesc_completed = lastcomp - 1;
|
|
rdp->blimit = blimit;
|
|
spin_unlock(&rnp->lock); /* irqs remain disabled. */
|
|
|
|
/*
|
|
* A new grace period might start here. If so, we won't be part
|
|
* of it, but that is OK, as we are currently in a quiescent state.
|
|
*/
|
|
|
|
/* Exclude any attempts to start a new GP on large systems. */
|
|
spin_lock(&rsp->onofflock); /* irqs already disabled. */
|
|
|
|
/* Add CPU to rcu_node bitmasks. */
|
|
rnp = rdp->mynode;
|
|
mask = rdp->grpmask;
|
|
do {
|
|
/* Exclude any attempts to start a new GP on small systems. */
|
|
spin_lock(&rnp->lock); /* irqs already disabled. */
|
|
rnp->qsmaskinit |= mask;
|
|
mask = rnp->grpmask;
|
|
spin_unlock(&rnp->lock); /* irqs already disabled. */
|
|
rnp = rnp->parent;
|
|
} while (rnp != NULL && !(rnp->qsmaskinit & mask));
|
|
|
|
spin_unlock_irqrestore(&rsp->onofflock, flags);
|
|
}
|
|
|
|
static void __cpuinit rcu_online_cpu(int cpu)
|
|
{
|
|
rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
|
|
rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
|
|
rcu_preempt_init_percpu_data(cpu);
|
|
}
|
|
|
|
/*
|
|
* Handle CPU online/offline notification events.
|
|
*/
|
|
int __cpuinit rcu_cpu_notify(struct notifier_block *self,
|
|
unsigned long action, void *hcpu)
|
|
{
|
|
long cpu = (long)hcpu;
|
|
|
|
switch (action) {
|
|
case CPU_UP_PREPARE:
|
|
case CPU_UP_PREPARE_FROZEN:
|
|
rcu_online_cpu(cpu);
|
|
break;
|
|
case CPU_DYING:
|
|
case CPU_DYING_FROZEN:
|
|
/*
|
|
* preempt_disable() in _rcu_barrier() prevents stop_machine(),
|
|
* so when "on_each_cpu(rcu_barrier_func, (void *)type, 1);"
|
|
* returns, all online cpus have queued rcu_barrier_func().
|
|
* The dying CPU clears its cpu_online_mask bit and
|
|
* moves all of its RCU callbacks to ->orphan_cbs_list
|
|
* in the context of stop_machine(), so subsequent calls
|
|
* to _rcu_barrier() will adopt these callbacks and only
|
|
* then queue rcu_barrier_func() on all remaining CPUs.
|
|
*/
|
|
rcu_send_cbs_to_orphanage(&rcu_bh_state);
|
|
rcu_send_cbs_to_orphanage(&rcu_sched_state);
|
|
rcu_preempt_send_cbs_to_orphanage();
|
|
break;
|
|
case CPU_DEAD:
|
|
case CPU_DEAD_FROZEN:
|
|
case CPU_UP_CANCELED:
|
|
case CPU_UP_CANCELED_FROZEN:
|
|
rcu_offline_cpu(cpu);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
/*
|
|
* Compute the per-level fanout, either using the exact fanout specified
|
|
* or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
|
|
*/
|
|
#ifdef CONFIG_RCU_FANOUT_EXACT
|
|
static void __init rcu_init_levelspread(struct rcu_state *rsp)
|
|
{
|
|
int i;
|
|
|
|
for (i = NUM_RCU_LVLS - 1; i >= 0; i--)
|
|
rsp->levelspread[i] = CONFIG_RCU_FANOUT;
|
|
}
|
|
#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
|
|
static void __init rcu_init_levelspread(struct rcu_state *rsp)
|
|
{
|
|
int ccur;
|
|
int cprv;
|
|
int i;
|
|
|
|
cprv = NR_CPUS;
|
|
for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
|
|
ccur = rsp->levelcnt[i];
|
|
rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
|
|
cprv = ccur;
|
|
}
|
|
}
|
|
#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
|
|
|
|
/*
|
|
* Helper function for rcu_init() that initializes one rcu_state structure.
|
|
*/
|
|
static void __init rcu_init_one(struct rcu_state *rsp)
|
|
{
|
|
int cpustride = 1;
|
|
int i;
|
|
int j;
|
|
struct rcu_node *rnp;
|
|
|
|
/* Initialize the level-tracking arrays. */
|
|
|
|
for (i = 1; i < NUM_RCU_LVLS; i++)
|
|
rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
|
|
rcu_init_levelspread(rsp);
|
|
|
|
/* Initialize the elements themselves, starting from the leaves. */
|
|
|
|
for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
|
|
cpustride *= rsp->levelspread[i];
|
|
rnp = rsp->level[i];
|
|
for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
|
|
if (rnp != rcu_get_root(rsp))
|
|
spin_lock_init(&rnp->lock);
|
|
rnp->gpnum = 0;
|
|
rnp->qsmask = 0;
|
|
rnp->qsmaskinit = 0;
|
|
rnp->grplo = j * cpustride;
|
|
rnp->grphi = (j + 1) * cpustride - 1;
|
|
if (rnp->grphi >= NR_CPUS)
|
|
rnp->grphi = NR_CPUS - 1;
|
|
if (i == 0) {
|
|
rnp->grpnum = 0;
|
|
rnp->grpmask = 0;
|
|
rnp->parent = NULL;
|
|
} else {
|
|
rnp->grpnum = j % rsp->levelspread[i - 1];
|
|
rnp->grpmask = 1UL << rnp->grpnum;
|
|
rnp->parent = rsp->level[i - 1] +
|
|
j / rsp->levelspread[i - 1];
|
|
}
|
|
rnp->level = i;
|
|
INIT_LIST_HEAD(&rnp->blocked_tasks[0]);
|
|
INIT_LIST_HEAD(&rnp->blocked_tasks[1]);
|
|
}
|
|
}
|
|
spin_lock_init(&rcu_get_root(rsp)->lock);
|
|
}
|
|
|
|
/*
|
|
* Helper macro for __rcu_init() and __rcu_init_preempt(). To be used
|
|
* nowhere else! Assigns leaf node pointers into each CPU's rcu_data
|
|
* structure.
|
|
*/
|
|
#define RCU_INIT_FLAVOR(rsp, rcu_data) \
|
|
do { \
|
|
int i; \
|
|
int j; \
|
|
struct rcu_node *rnp; \
|
|
\
|
|
rcu_init_one(rsp); \
|
|
rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \
|
|
j = 0; \
|
|
for_each_possible_cpu(i) { \
|
|
if (i > rnp[j].grphi) \
|
|
j++; \
|
|
per_cpu(rcu_data, i).mynode = &rnp[j]; \
|
|
(rsp)->rda[i] = &per_cpu(rcu_data, i); \
|
|
rcu_boot_init_percpu_data(i, rsp); \
|
|
} \
|
|
} while (0)
|
|
|
|
void __init __rcu_init(void)
|
|
{
|
|
rcu_bootup_announce();
|
|
#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
|
|
printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n");
|
|
#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
|
|
RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data);
|
|
RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data);
|
|
__rcu_init_preempt();
|
|
open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
|
|
}
|
|
|
|
#include "rcutree_plugin.h"
|