kernel_optimize_test/arch/mips/cavium-octeon/dma-octeon.c
Christoph Hellwig b6e05477c1 dma/direct: Handle the memory encryption bit in common code
Give the basic phys_to_dma() and dma_to_phys() helpers a __-prefix and add
the memory encryption mask to the non-prefixed versions.  Use the
__-prefixed versions directly instead of clearing the mask again in
various places.

Tested-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Jon Mason <jdmason@kudzu.us>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Muli Ben-Yehuda <mulix@mulix.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: iommu@lists.linux-foundation.org
Link: http://lkml.kernel.org/r/20180319103826.12853-13-hch@lst.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-03-20 10:01:59 +01:00

335 lines
9.1 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2000 Ani Joshi <ajoshi@unixbox.com>
* Copyright (C) 2000, 2001 Ralf Baechle <ralf@gnu.org>
* Copyright (C) 2005 Ilya A. Volynets-Evenbakh <ilya@total-knowledge.com>
* swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
* IP32 changes by Ilya.
* Copyright (C) 2010 Cavium Networks, Inc.
*/
#include <linux/dma-direct.h>
#include <linux/scatterlist.h>
#include <linux/bootmem.h>
#include <linux/export.h>
#include <linux/swiotlb.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <asm/bootinfo.h>
#include <asm/octeon/octeon.h>
#ifdef CONFIG_PCI
#include <asm/octeon/pci-octeon.h>
#include <asm/octeon/cvmx-npi-defs.h>
#include <asm/octeon/cvmx-pci-defs.h>
static dma_addr_t octeon_hole_phys_to_dma(phys_addr_t paddr)
{
if (paddr >= CVMX_PCIE_BAR1_PHYS_BASE && paddr < (CVMX_PCIE_BAR1_PHYS_BASE + CVMX_PCIE_BAR1_PHYS_SIZE))
return paddr - CVMX_PCIE_BAR1_PHYS_BASE + CVMX_PCIE_BAR1_RC_BASE;
else
return paddr;
}
static phys_addr_t octeon_hole_dma_to_phys(dma_addr_t daddr)
{
if (daddr >= CVMX_PCIE_BAR1_RC_BASE)
return daddr + CVMX_PCIE_BAR1_PHYS_BASE - CVMX_PCIE_BAR1_RC_BASE;
else
return daddr;
}
static dma_addr_t octeon_gen1_phys_to_dma(struct device *dev, phys_addr_t paddr)
{
if (paddr >= 0x410000000ull && paddr < 0x420000000ull)
paddr -= 0x400000000ull;
return octeon_hole_phys_to_dma(paddr);
}
static phys_addr_t octeon_gen1_dma_to_phys(struct device *dev, dma_addr_t daddr)
{
daddr = octeon_hole_dma_to_phys(daddr);
if (daddr >= 0x10000000ull && daddr < 0x20000000ull)
daddr += 0x400000000ull;
return daddr;
}
static dma_addr_t octeon_gen2_phys_to_dma(struct device *dev, phys_addr_t paddr)
{
return octeon_hole_phys_to_dma(paddr);
}
static phys_addr_t octeon_gen2_dma_to_phys(struct device *dev, dma_addr_t daddr)
{
return octeon_hole_dma_to_phys(daddr);
}
static dma_addr_t octeon_big_phys_to_dma(struct device *dev, phys_addr_t paddr)
{
if (paddr >= 0x410000000ull && paddr < 0x420000000ull)
paddr -= 0x400000000ull;
/* Anything in the BAR1 hole or above goes via BAR2 */
if (paddr >= 0xf0000000ull)
paddr = OCTEON_BAR2_PCI_ADDRESS + paddr;
return paddr;
}
static phys_addr_t octeon_big_dma_to_phys(struct device *dev, dma_addr_t daddr)
{
if (daddr >= OCTEON_BAR2_PCI_ADDRESS)
daddr -= OCTEON_BAR2_PCI_ADDRESS;
if (daddr >= 0x10000000ull && daddr < 0x20000000ull)
daddr += 0x400000000ull;
return daddr;
}
static dma_addr_t octeon_small_phys_to_dma(struct device *dev,
phys_addr_t paddr)
{
if (paddr >= 0x410000000ull && paddr < 0x420000000ull)
paddr -= 0x400000000ull;
/* Anything not in the BAR1 range goes via BAR2 */
if (paddr >= octeon_bar1_pci_phys && paddr < octeon_bar1_pci_phys + 0x8000000ull)
paddr = paddr - octeon_bar1_pci_phys;
else
paddr = OCTEON_BAR2_PCI_ADDRESS + paddr;
return paddr;
}
static phys_addr_t octeon_small_dma_to_phys(struct device *dev,
dma_addr_t daddr)
{
if (daddr >= OCTEON_BAR2_PCI_ADDRESS)
daddr -= OCTEON_BAR2_PCI_ADDRESS;
else
daddr += octeon_bar1_pci_phys;
if (daddr >= 0x10000000ull && daddr < 0x20000000ull)
daddr += 0x400000000ull;
return daddr;
}
#endif /* CONFIG_PCI */
static dma_addr_t octeon_dma_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size, enum dma_data_direction direction,
unsigned long attrs)
{
dma_addr_t daddr = swiotlb_map_page(dev, page, offset, size,
direction, attrs);
mb();
return daddr;
}
static int octeon_dma_map_sg(struct device *dev, struct scatterlist *sg,
int nents, enum dma_data_direction direction, unsigned long attrs)
{
int r = swiotlb_map_sg_attrs(dev, sg, nents, direction, attrs);
mb();
return r;
}
static void octeon_dma_sync_single_for_device(struct device *dev,
dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
{
swiotlb_sync_single_for_device(dev, dma_handle, size, direction);
mb();
}
static void octeon_dma_sync_sg_for_device(struct device *dev,
struct scatterlist *sg, int nelems, enum dma_data_direction direction)
{
swiotlb_sync_sg_for_device(dev, sg, nelems, direction);
mb();
}
static void *octeon_dma_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
{
void *ret = swiotlb_alloc(dev, size, dma_handle, gfp, attrs);
mb();
return ret;
}
static dma_addr_t octeon_unity_phys_to_dma(struct device *dev, phys_addr_t paddr)
{
return paddr;
}
static phys_addr_t octeon_unity_dma_to_phys(struct device *dev, dma_addr_t daddr)
{
return daddr;
}
struct octeon_dma_map_ops {
const struct dma_map_ops dma_map_ops;
dma_addr_t (*phys_to_dma)(struct device *dev, phys_addr_t paddr);
phys_addr_t (*dma_to_phys)(struct device *dev, dma_addr_t daddr);
};
dma_addr_t __phys_to_dma(struct device *dev, phys_addr_t paddr)
{
struct octeon_dma_map_ops *ops = container_of(get_dma_ops(dev),
struct octeon_dma_map_ops,
dma_map_ops);
return ops->phys_to_dma(dev, paddr);
}
EXPORT_SYMBOL(__phys_to_dma);
phys_addr_t __dma_to_phys(struct device *dev, dma_addr_t daddr)
{
struct octeon_dma_map_ops *ops = container_of(get_dma_ops(dev),
struct octeon_dma_map_ops,
dma_map_ops);
return ops->dma_to_phys(dev, daddr);
}
EXPORT_SYMBOL(__dma_to_phys);
static struct octeon_dma_map_ops octeon_linear_dma_map_ops = {
.dma_map_ops = {
.alloc = octeon_dma_alloc_coherent,
.free = swiotlb_free,
.map_page = octeon_dma_map_page,
.unmap_page = swiotlb_unmap_page,
.map_sg = octeon_dma_map_sg,
.unmap_sg = swiotlb_unmap_sg_attrs,
.sync_single_for_cpu = swiotlb_sync_single_for_cpu,
.sync_single_for_device = octeon_dma_sync_single_for_device,
.sync_sg_for_cpu = swiotlb_sync_sg_for_cpu,
.sync_sg_for_device = octeon_dma_sync_sg_for_device,
.mapping_error = swiotlb_dma_mapping_error,
.dma_supported = swiotlb_dma_supported
},
.phys_to_dma = octeon_unity_phys_to_dma,
.dma_to_phys = octeon_unity_dma_to_phys
};
char *octeon_swiotlb;
void __init plat_swiotlb_setup(void)
{
int i;
phys_addr_t max_addr;
phys_addr_t addr_size;
size_t swiotlbsize;
unsigned long swiotlb_nslabs;
max_addr = 0;
addr_size = 0;
for (i = 0 ; i < boot_mem_map.nr_map; i++) {
struct boot_mem_map_entry *e = &boot_mem_map.map[i];
if (e->type != BOOT_MEM_RAM && e->type != BOOT_MEM_INIT_RAM)
continue;
/* These addresses map low for PCI. */
if (e->addr > 0x410000000ull && !OCTEON_IS_OCTEON2())
continue;
addr_size += e->size;
if (max_addr < e->addr + e->size)
max_addr = e->addr + e->size;
}
swiotlbsize = PAGE_SIZE;
#ifdef CONFIG_PCI
/*
* For OCTEON_DMA_BAR_TYPE_SMALL, size the iotlb at 1/4 memory
* size to a maximum of 64MB
*/
if (OCTEON_IS_MODEL(OCTEON_CN31XX)
|| OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2)) {
swiotlbsize = addr_size / 4;
if (swiotlbsize > 64 * (1<<20))
swiotlbsize = 64 * (1<<20);
} else if (max_addr > 0xf0000000ul) {
/*
* Otherwise only allocate a big iotlb if there is
* memory past the BAR1 hole.
*/
swiotlbsize = 64 * (1<<20);
}
#endif
#ifdef CONFIG_USB_OHCI_HCD_PLATFORM
/* OCTEON II ohci is only 32-bit. */
if (OCTEON_IS_OCTEON2() && max_addr >= 0x100000000ul)
swiotlbsize = 64 * (1<<20);
#endif
swiotlb_nslabs = swiotlbsize >> IO_TLB_SHIFT;
swiotlb_nslabs = ALIGN(swiotlb_nslabs, IO_TLB_SEGSIZE);
swiotlbsize = swiotlb_nslabs << IO_TLB_SHIFT;
octeon_swiotlb = alloc_bootmem_low_pages(swiotlbsize);
if (swiotlb_init_with_tbl(octeon_swiotlb, swiotlb_nslabs, 1) == -ENOMEM)
panic("Cannot allocate SWIOTLB buffer");
mips_dma_map_ops = &octeon_linear_dma_map_ops.dma_map_ops;
}
#ifdef CONFIG_PCI
static struct octeon_dma_map_ops _octeon_pci_dma_map_ops = {
.dma_map_ops = {
.alloc = octeon_dma_alloc_coherent,
.free = swiotlb_free,
.map_page = octeon_dma_map_page,
.unmap_page = swiotlb_unmap_page,
.map_sg = octeon_dma_map_sg,
.unmap_sg = swiotlb_unmap_sg_attrs,
.sync_single_for_cpu = swiotlb_sync_single_for_cpu,
.sync_single_for_device = octeon_dma_sync_single_for_device,
.sync_sg_for_cpu = swiotlb_sync_sg_for_cpu,
.sync_sg_for_device = octeon_dma_sync_sg_for_device,
.mapping_error = swiotlb_dma_mapping_error,
.dma_supported = swiotlb_dma_supported
},
};
const struct dma_map_ops *octeon_pci_dma_map_ops;
void __init octeon_pci_dma_init(void)
{
switch (octeon_dma_bar_type) {
case OCTEON_DMA_BAR_TYPE_PCIE2:
_octeon_pci_dma_map_ops.phys_to_dma = octeon_gen2_phys_to_dma;
_octeon_pci_dma_map_ops.dma_to_phys = octeon_gen2_dma_to_phys;
break;
case OCTEON_DMA_BAR_TYPE_PCIE:
_octeon_pci_dma_map_ops.phys_to_dma = octeon_gen1_phys_to_dma;
_octeon_pci_dma_map_ops.dma_to_phys = octeon_gen1_dma_to_phys;
break;
case OCTEON_DMA_BAR_TYPE_BIG:
_octeon_pci_dma_map_ops.phys_to_dma = octeon_big_phys_to_dma;
_octeon_pci_dma_map_ops.dma_to_phys = octeon_big_dma_to_phys;
break;
case OCTEON_DMA_BAR_TYPE_SMALL:
_octeon_pci_dma_map_ops.phys_to_dma = octeon_small_phys_to_dma;
_octeon_pci_dma_map_ops.dma_to_phys = octeon_small_dma_to_phys;
break;
default:
BUG();
}
octeon_pci_dma_map_ops = &_octeon_pci_dma_map_ops.dma_map_ops;
}
#endif /* CONFIG_PCI */