kernel_optimize_test/crypto/asymmetric_keys/x509_cert_parser.c
Thomas Gleixner b4d0d230cc treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 36
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public licence as published by
  the free software foundation either version 2 of the licence or at
  your option any later version

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 114 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190520170857.552531963@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-24 17:27:11 +02:00

691 lines
17 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/* X.509 certificate parser
*
* Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*/
#define pr_fmt(fmt) "X.509: "fmt
#include <linux/kernel.h>
#include <linux/export.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/oid_registry.h>
#include <crypto/public_key.h>
#include "x509_parser.h"
#include "x509.asn1.h"
#include "x509_akid.asn1.h"
struct x509_parse_context {
struct x509_certificate *cert; /* Certificate being constructed */
unsigned long data; /* Start of data */
const void *cert_start; /* Start of cert content */
const void *key; /* Key data */
size_t key_size; /* Size of key data */
const void *params; /* Key parameters */
size_t params_size; /* Size of key parameters */
enum OID key_algo; /* Public key algorithm */
enum OID last_oid; /* Last OID encountered */
enum OID algo_oid; /* Algorithm OID */
unsigned char nr_mpi; /* Number of MPIs stored */
u8 o_size; /* Size of organizationName (O) */
u8 cn_size; /* Size of commonName (CN) */
u8 email_size; /* Size of emailAddress */
u16 o_offset; /* Offset of organizationName (O) */
u16 cn_offset; /* Offset of commonName (CN) */
u16 email_offset; /* Offset of emailAddress */
unsigned raw_akid_size;
const void *raw_akid; /* Raw authorityKeyId in ASN.1 */
const void *akid_raw_issuer; /* Raw directoryName in authorityKeyId */
unsigned akid_raw_issuer_size;
};
/*
* Free an X.509 certificate
*/
void x509_free_certificate(struct x509_certificate *cert)
{
if (cert) {
public_key_free(cert->pub);
public_key_signature_free(cert->sig);
kfree(cert->issuer);
kfree(cert->subject);
kfree(cert->id);
kfree(cert->skid);
kfree(cert);
}
}
EXPORT_SYMBOL_GPL(x509_free_certificate);
/*
* Parse an X.509 certificate
*/
struct x509_certificate *x509_cert_parse(const void *data, size_t datalen)
{
struct x509_certificate *cert;
struct x509_parse_context *ctx;
struct asymmetric_key_id *kid;
long ret;
ret = -ENOMEM;
cert = kzalloc(sizeof(struct x509_certificate), GFP_KERNEL);
if (!cert)
goto error_no_cert;
cert->pub = kzalloc(sizeof(struct public_key), GFP_KERNEL);
if (!cert->pub)
goto error_no_ctx;
cert->sig = kzalloc(sizeof(struct public_key_signature), GFP_KERNEL);
if (!cert->sig)
goto error_no_ctx;
ctx = kzalloc(sizeof(struct x509_parse_context), GFP_KERNEL);
if (!ctx)
goto error_no_ctx;
ctx->cert = cert;
ctx->data = (unsigned long)data;
/* Attempt to decode the certificate */
ret = asn1_ber_decoder(&x509_decoder, ctx, data, datalen);
if (ret < 0)
goto error_decode;
/* Decode the AuthorityKeyIdentifier */
if (ctx->raw_akid) {
pr_devel("AKID: %u %*phN\n",
ctx->raw_akid_size, ctx->raw_akid_size, ctx->raw_akid);
ret = asn1_ber_decoder(&x509_akid_decoder, ctx,
ctx->raw_akid, ctx->raw_akid_size);
if (ret < 0) {
pr_warn("Couldn't decode AuthKeyIdentifier\n");
goto error_decode;
}
}
ret = -ENOMEM;
cert->pub->key = kmemdup(ctx->key, ctx->key_size, GFP_KERNEL);
if (!cert->pub->key)
goto error_decode;
cert->pub->keylen = ctx->key_size;
cert->pub->params = kmemdup(ctx->params, ctx->params_size, GFP_KERNEL);
if (!cert->pub->params)
goto error_decode;
cert->pub->paramlen = ctx->params_size;
cert->pub->algo = ctx->key_algo;
/* Grab the signature bits */
ret = x509_get_sig_params(cert);
if (ret < 0)
goto error_decode;
/* Generate cert issuer + serial number key ID */
kid = asymmetric_key_generate_id(cert->raw_serial,
cert->raw_serial_size,
cert->raw_issuer,
cert->raw_issuer_size);
if (IS_ERR(kid)) {
ret = PTR_ERR(kid);
goto error_decode;
}
cert->id = kid;
/* Detect self-signed certificates */
ret = x509_check_for_self_signed(cert);
if (ret < 0)
goto error_decode;
kfree(ctx);
return cert;
error_decode:
kfree(ctx);
error_no_ctx:
x509_free_certificate(cert);
error_no_cert:
return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(x509_cert_parse);
/*
* Note an OID when we find one for later processing when we know how
* to interpret it.
*/
int x509_note_OID(void *context, size_t hdrlen,
unsigned char tag,
const void *value, size_t vlen)
{
struct x509_parse_context *ctx = context;
ctx->last_oid = look_up_OID(value, vlen);
if (ctx->last_oid == OID__NR) {
char buffer[50];
sprint_oid(value, vlen, buffer, sizeof(buffer));
pr_debug("Unknown OID: [%lu] %s\n",
(unsigned long)value - ctx->data, buffer);
}
return 0;
}
/*
* Save the position of the TBS data so that we can check the signature over it
* later.
*/
int x509_note_tbs_certificate(void *context, size_t hdrlen,
unsigned char tag,
const void *value, size_t vlen)
{
struct x509_parse_context *ctx = context;
pr_debug("x509_note_tbs_certificate(,%zu,%02x,%ld,%zu)!\n",
hdrlen, tag, (unsigned long)value - ctx->data, vlen);
ctx->cert->tbs = value - hdrlen;
ctx->cert->tbs_size = vlen + hdrlen;
return 0;
}
/*
* Record the public key algorithm
*/
int x509_note_pkey_algo(void *context, size_t hdrlen,
unsigned char tag,
const void *value, size_t vlen)
{
struct x509_parse_context *ctx = context;
pr_debug("PubKey Algo: %u\n", ctx->last_oid);
switch (ctx->last_oid) {
case OID_md2WithRSAEncryption:
case OID_md3WithRSAEncryption:
default:
return -ENOPKG; /* Unsupported combination */
case OID_md4WithRSAEncryption:
ctx->cert->sig->hash_algo = "md4";
goto rsa_pkcs1;
case OID_sha1WithRSAEncryption:
ctx->cert->sig->hash_algo = "sha1";
goto rsa_pkcs1;
case OID_sha256WithRSAEncryption:
ctx->cert->sig->hash_algo = "sha256";
goto rsa_pkcs1;
case OID_sha384WithRSAEncryption:
ctx->cert->sig->hash_algo = "sha384";
goto rsa_pkcs1;
case OID_sha512WithRSAEncryption:
ctx->cert->sig->hash_algo = "sha512";
goto rsa_pkcs1;
case OID_sha224WithRSAEncryption:
ctx->cert->sig->hash_algo = "sha224";
goto rsa_pkcs1;
case OID_gost2012Signature256:
ctx->cert->sig->hash_algo = "streebog256";
goto ecrdsa;
case OID_gost2012Signature512:
ctx->cert->sig->hash_algo = "streebog512";
goto ecrdsa;
}
rsa_pkcs1:
ctx->cert->sig->pkey_algo = "rsa";
ctx->cert->sig->encoding = "pkcs1";
ctx->algo_oid = ctx->last_oid;
return 0;
ecrdsa:
ctx->cert->sig->pkey_algo = "ecrdsa";
ctx->cert->sig->encoding = "raw";
ctx->algo_oid = ctx->last_oid;
return 0;
}
/*
* Note the whereabouts and type of the signature.
*/
int x509_note_signature(void *context, size_t hdrlen,
unsigned char tag,
const void *value, size_t vlen)
{
struct x509_parse_context *ctx = context;
pr_debug("Signature type: %u size %zu\n", ctx->last_oid, vlen);
if (ctx->last_oid != ctx->algo_oid) {
pr_warn("Got cert with pkey (%u) and sig (%u) algorithm OIDs\n",
ctx->algo_oid, ctx->last_oid);
return -EINVAL;
}
if (strcmp(ctx->cert->sig->pkey_algo, "rsa") == 0 ||
strcmp(ctx->cert->sig->pkey_algo, "ecrdsa") == 0) {
/* Discard the BIT STRING metadata */
if (vlen < 1 || *(const u8 *)value != 0)
return -EBADMSG;
value++;
vlen--;
}
ctx->cert->raw_sig = value;
ctx->cert->raw_sig_size = vlen;
return 0;
}
/*
* Note the certificate serial number
*/
int x509_note_serial(void *context, size_t hdrlen,
unsigned char tag,
const void *value, size_t vlen)
{
struct x509_parse_context *ctx = context;
ctx->cert->raw_serial = value;
ctx->cert->raw_serial_size = vlen;
return 0;
}
/*
* Note some of the name segments from which we'll fabricate a name.
*/
int x509_extract_name_segment(void *context, size_t hdrlen,
unsigned char tag,
const void *value, size_t vlen)
{
struct x509_parse_context *ctx = context;
switch (ctx->last_oid) {
case OID_commonName:
ctx->cn_size = vlen;
ctx->cn_offset = (unsigned long)value - ctx->data;
break;
case OID_organizationName:
ctx->o_size = vlen;
ctx->o_offset = (unsigned long)value - ctx->data;
break;
case OID_email_address:
ctx->email_size = vlen;
ctx->email_offset = (unsigned long)value - ctx->data;
break;
default:
break;
}
return 0;
}
/*
* Fabricate and save the issuer and subject names
*/
static int x509_fabricate_name(struct x509_parse_context *ctx, size_t hdrlen,
unsigned char tag,
char **_name, size_t vlen)
{
const void *name, *data = (const void *)ctx->data;
size_t namesize;
char *buffer;
if (*_name)
return -EINVAL;
/* Empty name string if no material */
if (!ctx->cn_size && !ctx->o_size && !ctx->email_size) {
buffer = kmalloc(1, GFP_KERNEL);
if (!buffer)
return -ENOMEM;
buffer[0] = 0;
goto done;
}
if (ctx->cn_size && ctx->o_size) {
/* Consider combining O and CN, but use only the CN if it is
* prefixed by the O, or a significant portion thereof.
*/
namesize = ctx->cn_size;
name = data + ctx->cn_offset;
if (ctx->cn_size >= ctx->o_size &&
memcmp(data + ctx->cn_offset, data + ctx->o_offset,
ctx->o_size) == 0)
goto single_component;
if (ctx->cn_size >= 7 &&
ctx->o_size >= 7 &&
memcmp(data + ctx->cn_offset, data + ctx->o_offset, 7) == 0)
goto single_component;
buffer = kmalloc(ctx->o_size + 2 + ctx->cn_size + 1,
GFP_KERNEL);
if (!buffer)
return -ENOMEM;
memcpy(buffer,
data + ctx->o_offset, ctx->o_size);
buffer[ctx->o_size + 0] = ':';
buffer[ctx->o_size + 1] = ' ';
memcpy(buffer + ctx->o_size + 2,
data + ctx->cn_offset, ctx->cn_size);
buffer[ctx->o_size + 2 + ctx->cn_size] = 0;
goto done;
} else if (ctx->cn_size) {
namesize = ctx->cn_size;
name = data + ctx->cn_offset;
} else if (ctx->o_size) {
namesize = ctx->o_size;
name = data + ctx->o_offset;
} else {
namesize = ctx->email_size;
name = data + ctx->email_offset;
}
single_component:
buffer = kmalloc(namesize + 1, GFP_KERNEL);
if (!buffer)
return -ENOMEM;
memcpy(buffer, name, namesize);
buffer[namesize] = 0;
done:
*_name = buffer;
ctx->cn_size = 0;
ctx->o_size = 0;
ctx->email_size = 0;
return 0;
}
int x509_note_issuer(void *context, size_t hdrlen,
unsigned char tag,
const void *value, size_t vlen)
{
struct x509_parse_context *ctx = context;
ctx->cert->raw_issuer = value;
ctx->cert->raw_issuer_size = vlen;
return x509_fabricate_name(ctx, hdrlen, tag, &ctx->cert->issuer, vlen);
}
int x509_note_subject(void *context, size_t hdrlen,
unsigned char tag,
const void *value, size_t vlen)
{
struct x509_parse_context *ctx = context;
ctx->cert->raw_subject = value;
ctx->cert->raw_subject_size = vlen;
return x509_fabricate_name(ctx, hdrlen, tag, &ctx->cert->subject, vlen);
}
/*
* Extract the parameters for the public key
*/
int x509_note_params(void *context, size_t hdrlen,
unsigned char tag,
const void *value, size_t vlen)
{
struct x509_parse_context *ctx = context;
/*
* AlgorithmIdentifier is used three times in the x509, we should skip
* first and ignore third, using second one which is after subject and
* before subjectPublicKey.
*/
if (!ctx->cert->raw_subject || ctx->key)
return 0;
ctx->params = value - hdrlen;
ctx->params_size = vlen + hdrlen;
return 0;
}
/*
* Extract the data for the public key algorithm
*/
int x509_extract_key_data(void *context, size_t hdrlen,
unsigned char tag,
const void *value, size_t vlen)
{
struct x509_parse_context *ctx = context;
ctx->key_algo = ctx->last_oid;
if (ctx->last_oid == OID_rsaEncryption)
ctx->cert->pub->pkey_algo = "rsa";
else if (ctx->last_oid == OID_gost2012PKey256 ||
ctx->last_oid == OID_gost2012PKey512)
ctx->cert->pub->pkey_algo = "ecrdsa";
else
return -ENOPKG;
/* Discard the BIT STRING metadata */
if (vlen < 1 || *(const u8 *)value != 0)
return -EBADMSG;
ctx->key = value + 1;
ctx->key_size = vlen - 1;
return 0;
}
/* The keyIdentifier in AuthorityKeyIdentifier SEQUENCE is tag(CONT,PRIM,0) */
#define SEQ_TAG_KEYID (ASN1_CONT << 6)
/*
* Process certificate extensions that are used to qualify the certificate.
*/
int x509_process_extension(void *context, size_t hdrlen,
unsigned char tag,
const void *value, size_t vlen)
{
struct x509_parse_context *ctx = context;
struct asymmetric_key_id *kid;
const unsigned char *v = value;
pr_debug("Extension: %u\n", ctx->last_oid);
if (ctx->last_oid == OID_subjectKeyIdentifier) {
/* Get hold of the key fingerprint */
if (ctx->cert->skid || vlen < 3)
return -EBADMSG;
if (v[0] != ASN1_OTS || v[1] != vlen - 2)
return -EBADMSG;
v += 2;
vlen -= 2;
ctx->cert->raw_skid_size = vlen;
ctx->cert->raw_skid = v;
kid = asymmetric_key_generate_id(v, vlen, "", 0);
if (IS_ERR(kid))
return PTR_ERR(kid);
ctx->cert->skid = kid;
pr_debug("subjkeyid %*phN\n", kid->len, kid->data);
return 0;
}
if (ctx->last_oid == OID_authorityKeyIdentifier) {
/* Get hold of the CA key fingerprint */
ctx->raw_akid = v;
ctx->raw_akid_size = vlen;
return 0;
}
return 0;
}
/**
* x509_decode_time - Decode an X.509 time ASN.1 object
* @_t: The time to fill in
* @hdrlen: The length of the object header
* @tag: The object tag
* @value: The object value
* @vlen: The size of the object value
*
* Decode an ASN.1 universal time or generalised time field into a struct the
* kernel can handle and check it for validity. The time is decoded thus:
*
* [RFC5280 §4.1.2.5]
* CAs conforming to this profile MUST always encode certificate validity
* dates through the year 2049 as UTCTime; certificate validity dates in
* 2050 or later MUST be encoded as GeneralizedTime. Conforming
* applications MUST be able to process validity dates that are encoded in
* either UTCTime or GeneralizedTime.
*/
int x509_decode_time(time64_t *_t, size_t hdrlen,
unsigned char tag,
const unsigned char *value, size_t vlen)
{
static const unsigned char month_lengths[] = { 31, 28, 31, 30, 31, 30,
31, 31, 30, 31, 30, 31 };
const unsigned char *p = value;
unsigned year, mon, day, hour, min, sec, mon_len;
#define dec2bin(X) ({ unsigned char x = (X) - '0'; if (x > 9) goto invalid_time; x; })
#define DD2bin(P) ({ unsigned x = dec2bin(P[0]) * 10 + dec2bin(P[1]); P += 2; x; })
if (tag == ASN1_UNITIM) {
/* UTCTime: YYMMDDHHMMSSZ */
if (vlen != 13)
goto unsupported_time;
year = DD2bin(p);
if (year >= 50)
year += 1900;
else
year += 2000;
} else if (tag == ASN1_GENTIM) {
/* GenTime: YYYYMMDDHHMMSSZ */
if (vlen != 15)
goto unsupported_time;
year = DD2bin(p) * 100 + DD2bin(p);
if (year >= 1950 && year <= 2049)
goto invalid_time;
} else {
goto unsupported_time;
}
mon = DD2bin(p);
day = DD2bin(p);
hour = DD2bin(p);
min = DD2bin(p);
sec = DD2bin(p);
if (*p != 'Z')
goto unsupported_time;
if (year < 1970 ||
mon < 1 || mon > 12)
goto invalid_time;
mon_len = month_lengths[mon - 1];
if (mon == 2) {
if (year % 4 == 0) {
mon_len = 29;
if (year % 100 == 0) {
mon_len = 28;
if (year % 400 == 0)
mon_len = 29;
}
}
}
if (day < 1 || day > mon_len ||
hour > 24 || /* ISO 8601 permits 24:00:00 as midnight tomorrow */
min > 59 ||
sec > 60) /* ISO 8601 permits leap seconds [X.680 46.3] */
goto invalid_time;
*_t = mktime64(year, mon, day, hour, min, sec);
return 0;
unsupported_time:
pr_debug("Got unsupported time [tag %02x]: '%*phN'\n",
tag, (int)vlen, value);
return -EBADMSG;
invalid_time:
pr_debug("Got invalid time [tag %02x]: '%*phN'\n",
tag, (int)vlen, value);
return -EBADMSG;
}
EXPORT_SYMBOL_GPL(x509_decode_time);
int x509_note_not_before(void *context, size_t hdrlen,
unsigned char tag,
const void *value, size_t vlen)
{
struct x509_parse_context *ctx = context;
return x509_decode_time(&ctx->cert->valid_from, hdrlen, tag, value, vlen);
}
int x509_note_not_after(void *context, size_t hdrlen,
unsigned char tag,
const void *value, size_t vlen)
{
struct x509_parse_context *ctx = context;
return x509_decode_time(&ctx->cert->valid_to, hdrlen, tag, value, vlen);
}
/*
* Note a key identifier-based AuthorityKeyIdentifier
*/
int x509_akid_note_kid(void *context, size_t hdrlen,
unsigned char tag,
const void *value, size_t vlen)
{
struct x509_parse_context *ctx = context;
struct asymmetric_key_id *kid;
pr_debug("AKID: keyid: %*phN\n", (int)vlen, value);
if (ctx->cert->sig->auth_ids[1])
return 0;
kid = asymmetric_key_generate_id(value, vlen, "", 0);
if (IS_ERR(kid))
return PTR_ERR(kid);
pr_debug("authkeyid %*phN\n", kid->len, kid->data);
ctx->cert->sig->auth_ids[1] = kid;
return 0;
}
/*
* Note a directoryName in an AuthorityKeyIdentifier
*/
int x509_akid_note_name(void *context, size_t hdrlen,
unsigned char tag,
const void *value, size_t vlen)
{
struct x509_parse_context *ctx = context;
pr_debug("AKID: name: %*phN\n", (int)vlen, value);
ctx->akid_raw_issuer = value;
ctx->akid_raw_issuer_size = vlen;
return 0;
}
/*
* Note a serial number in an AuthorityKeyIdentifier
*/
int x509_akid_note_serial(void *context, size_t hdrlen,
unsigned char tag,
const void *value, size_t vlen)
{
struct x509_parse_context *ctx = context;
struct asymmetric_key_id *kid;
pr_debug("AKID: serial: %*phN\n", (int)vlen, value);
if (!ctx->akid_raw_issuer || ctx->cert->sig->auth_ids[0])
return 0;
kid = asymmetric_key_generate_id(value,
vlen,
ctx->akid_raw_issuer,
ctx->akid_raw_issuer_size);
if (IS_ERR(kid))
return PTR_ERR(kid);
pr_debug("authkeyid %*phN\n", kid->len, kid->data);
ctx->cert->sig->auth_ids[0] = kid;
return 0;
}