forked from luck/tmp_suning_uos_patched
778e1cdd81
The kvzalloc() function has a 2-factor argument form, kvcalloc(). This patch replaces cases of: kvzalloc(a * b, gfp) with: kvcalloc(a * b, gfp) as well as handling cases of: kvzalloc(a * b * c, gfp) with: kvzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kvcalloc(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kvzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kvzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kvzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kvzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kvzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kvzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kvzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kvzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kvzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kvzalloc( - sizeof(char) * COUNT + COUNT , ...) | kvzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kvzalloc + kvcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kvzalloc + kvcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kvzalloc + kvcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kvzalloc + kvcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kvzalloc + kvcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kvzalloc + kvcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kvzalloc + kvcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kvzalloc + kvcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kvzalloc + kvcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kvzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kvzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kvzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kvzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kvzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kvzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kvzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kvzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kvzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kvzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kvzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kvzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kvzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kvzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kvzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kvzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kvzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kvzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kvzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kvzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kvzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kvzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kvzalloc(C1 * C2 * C3, ...) | kvzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kvzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kvzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kvzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kvzalloc(sizeof(THING) * C2, ...) | kvzalloc(sizeof(TYPE) * C2, ...) | kvzalloc(C1 * C2 * C3, ...) | kvzalloc(C1 * C2, ...) | - kvzalloc + kvcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kvzalloc + kvcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kvzalloc + kvcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kvzalloc + kvcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kvzalloc + kvcalloc ( - (E1) * E2 + E1, E2 , ...) | - kvzalloc + kvcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kvzalloc + kvcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
361 lines
9.4 KiB
C
361 lines
9.4 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Manage cache of swap slots to be used for and returned from
|
|
* swap.
|
|
*
|
|
* Copyright(c) 2016 Intel Corporation.
|
|
*
|
|
* Author: Tim Chen <tim.c.chen@linux.intel.com>
|
|
*
|
|
* We allocate the swap slots from the global pool and put
|
|
* it into local per cpu caches. This has the advantage
|
|
* of no needing to acquire the swap_info lock every time
|
|
* we need a new slot.
|
|
*
|
|
* There is also opportunity to simply return the slot
|
|
* to local caches without needing to acquire swap_info
|
|
* lock. We do not reuse the returned slots directly but
|
|
* move them back to the global pool in a batch. This
|
|
* allows the slots to coaellesce and reduce fragmentation.
|
|
*
|
|
* The swap entry allocated is marked with SWAP_HAS_CACHE
|
|
* flag in map_count that prevents it from being allocated
|
|
* again from the global pool.
|
|
*
|
|
* The swap slots cache is protected by a mutex instead of
|
|
* a spin lock as when we search for slots with scan_swap_map,
|
|
* we can possibly sleep.
|
|
*/
|
|
|
|
#include <linux/swap_slots.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/mm.h>
|
|
|
|
static DEFINE_PER_CPU(struct swap_slots_cache, swp_slots);
|
|
static bool swap_slot_cache_active;
|
|
bool swap_slot_cache_enabled;
|
|
static bool swap_slot_cache_initialized;
|
|
DEFINE_MUTEX(swap_slots_cache_mutex);
|
|
/* Serialize swap slots cache enable/disable operations */
|
|
DEFINE_MUTEX(swap_slots_cache_enable_mutex);
|
|
|
|
static void __drain_swap_slots_cache(unsigned int type);
|
|
static void deactivate_swap_slots_cache(void);
|
|
static void reactivate_swap_slots_cache(void);
|
|
|
|
#define use_swap_slot_cache (swap_slot_cache_active && \
|
|
swap_slot_cache_enabled && swap_slot_cache_initialized)
|
|
#define SLOTS_CACHE 0x1
|
|
#define SLOTS_CACHE_RET 0x2
|
|
|
|
static void deactivate_swap_slots_cache(void)
|
|
{
|
|
mutex_lock(&swap_slots_cache_mutex);
|
|
swap_slot_cache_active = false;
|
|
__drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET);
|
|
mutex_unlock(&swap_slots_cache_mutex);
|
|
}
|
|
|
|
static void reactivate_swap_slots_cache(void)
|
|
{
|
|
mutex_lock(&swap_slots_cache_mutex);
|
|
swap_slot_cache_active = true;
|
|
mutex_unlock(&swap_slots_cache_mutex);
|
|
}
|
|
|
|
/* Must not be called with cpu hot plug lock */
|
|
void disable_swap_slots_cache_lock(void)
|
|
{
|
|
mutex_lock(&swap_slots_cache_enable_mutex);
|
|
swap_slot_cache_enabled = false;
|
|
if (swap_slot_cache_initialized) {
|
|
/* serialize with cpu hotplug operations */
|
|
get_online_cpus();
|
|
__drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET);
|
|
put_online_cpus();
|
|
}
|
|
}
|
|
|
|
static void __reenable_swap_slots_cache(void)
|
|
{
|
|
swap_slot_cache_enabled = has_usable_swap();
|
|
}
|
|
|
|
void reenable_swap_slots_cache_unlock(void)
|
|
{
|
|
__reenable_swap_slots_cache();
|
|
mutex_unlock(&swap_slots_cache_enable_mutex);
|
|
}
|
|
|
|
static bool check_cache_active(void)
|
|
{
|
|
long pages;
|
|
|
|
if (!swap_slot_cache_enabled || !swap_slot_cache_initialized)
|
|
return false;
|
|
|
|
pages = get_nr_swap_pages();
|
|
if (!swap_slot_cache_active) {
|
|
if (pages > num_online_cpus() *
|
|
THRESHOLD_ACTIVATE_SWAP_SLOTS_CACHE)
|
|
reactivate_swap_slots_cache();
|
|
goto out;
|
|
}
|
|
|
|
/* if global pool of slot caches too low, deactivate cache */
|
|
if (pages < num_online_cpus() * THRESHOLD_DEACTIVATE_SWAP_SLOTS_CACHE)
|
|
deactivate_swap_slots_cache();
|
|
out:
|
|
return swap_slot_cache_active;
|
|
}
|
|
|
|
static int alloc_swap_slot_cache(unsigned int cpu)
|
|
{
|
|
struct swap_slots_cache *cache;
|
|
swp_entry_t *slots, *slots_ret;
|
|
|
|
/*
|
|
* Do allocation outside swap_slots_cache_mutex
|
|
* as kvzalloc could trigger reclaim and get_swap_page,
|
|
* which can lock swap_slots_cache_mutex.
|
|
*/
|
|
slots = kvcalloc(SWAP_SLOTS_CACHE_SIZE, sizeof(swp_entry_t),
|
|
GFP_KERNEL);
|
|
if (!slots)
|
|
return -ENOMEM;
|
|
|
|
slots_ret = kvcalloc(SWAP_SLOTS_CACHE_SIZE, sizeof(swp_entry_t),
|
|
GFP_KERNEL);
|
|
if (!slots_ret) {
|
|
kvfree(slots);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
mutex_lock(&swap_slots_cache_mutex);
|
|
cache = &per_cpu(swp_slots, cpu);
|
|
if (cache->slots || cache->slots_ret)
|
|
/* cache already allocated */
|
|
goto out;
|
|
if (!cache->lock_initialized) {
|
|
mutex_init(&cache->alloc_lock);
|
|
spin_lock_init(&cache->free_lock);
|
|
cache->lock_initialized = true;
|
|
}
|
|
cache->nr = 0;
|
|
cache->cur = 0;
|
|
cache->n_ret = 0;
|
|
/*
|
|
* We initialized alloc_lock and free_lock earlier. We use
|
|
* !cache->slots or !cache->slots_ret to know if it is safe to acquire
|
|
* the corresponding lock and use the cache. Memory barrier below
|
|
* ensures the assumption.
|
|
*/
|
|
mb();
|
|
cache->slots = slots;
|
|
slots = NULL;
|
|
cache->slots_ret = slots_ret;
|
|
slots_ret = NULL;
|
|
out:
|
|
mutex_unlock(&swap_slots_cache_mutex);
|
|
if (slots)
|
|
kvfree(slots);
|
|
if (slots_ret)
|
|
kvfree(slots_ret);
|
|
return 0;
|
|
}
|
|
|
|
static void drain_slots_cache_cpu(unsigned int cpu, unsigned int type,
|
|
bool free_slots)
|
|
{
|
|
struct swap_slots_cache *cache;
|
|
swp_entry_t *slots = NULL;
|
|
|
|
cache = &per_cpu(swp_slots, cpu);
|
|
if ((type & SLOTS_CACHE) && cache->slots) {
|
|
mutex_lock(&cache->alloc_lock);
|
|
swapcache_free_entries(cache->slots + cache->cur, cache->nr);
|
|
cache->cur = 0;
|
|
cache->nr = 0;
|
|
if (free_slots && cache->slots) {
|
|
kvfree(cache->slots);
|
|
cache->slots = NULL;
|
|
}
|
|
mutex_unlock(&cache->alloc_lock);
|
|
}
|
|
if ((type & SLOTS_CACHE_RET) && cache->slots_ret) {
|
|
spin_lock_irq(&cache->free_lock);
|
|
swapcache_free_entries(cache->slots_ret, cache->n_ret);
|
|
cache->n_ret = 0;
|
|
if (free_slots && cache->slots_ret) {
|
|
slots = cache->slots_ret;
|
|
cache->slots_ret = NULL;
|
|
}
|
|
spin_unlock_irq(&cache->free_lock);
|
|
if (slots)
|
|
kvfree(slots);
|
|
}
|
|
}
|
|
|
|
static void __drain_swap_slots_cache(unsigned int type)
|
|
{
|
|
unsigned int cpu;
|
|
|
|
/*
|
|
* This function is called during
|
|
* 1) swapoff, when we have to make sure no
|
|
* left over slots are in cache when we remove
|
|
* a swap device;
|
|
* 2) disabling of swap slot cache, when we run low
|
|
* on swap slots when allocating memory and need
|
|
* to return swap slots to global pool.
|
|
*
|
|
* We cannot acquire cpu hot plug lock here as
|
|
* this function can be invoked in the cpu
|
|
* hot plug path:
|
|
* cpu_up -> lock cpu_hotplug -> cpu hotplug state callback
|
|
* -> memory allocation -> direct reclaim -> get_swap_page
|
|
* -> drain_swap_slots_cache
|
|
*
|
|
* Hence the loop over current online cpu below could miss cpu that
|
|
* is being brought online but not yet marked as online.
|
|
* That is okay as we do not schedule and run anything on a
|
|
* cpu before it has been marked online. Hence, we will not
|
|
* fill any swap slots in slots cache of such cpu.
|
|
* There are no slots on such cpu that need to be drained.
|
|
*/
|
|
for_each_online_cpu(cpu)
|
|
drain_slots_cache_cpu(cpu, type, false);
|
|
}
|
|
|
|
static int free_slot_cache(unsigned int cpu)
|
|
{
|
|
mutex_lock(&swap_slots_cache_mutex);
|
|
drain_slots_cache_cpu(cpu, SLOTS_CACHE | SLOTS_CACHE_RET, true);
|
|
mutex_unlock(&swap_slots_cache_mutex);
|
|
return 0;
|
|
}
|
|
|
|
int enable_swap_slots_cache(void)
|
|
{
|
|
int ret = 0;
|
|
|
|
mutex_lock(&swap_slots_cache_enable_mutex);
|
|
if (swap_slot_cache_initialized) {
|
|
__reenable_swap_slots_cache();
|
|
goto out_unlock;
|
|
}
|
|
|
|
ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "swap_slots_cache",
|
|
alloc_swap_slot_cache, free_slot_cache);
|
|
if (WARN_ONCE(ret < 0, "Cache allocation failed (%s), operating "
|
|
"without swap slots cache.\n", __func__))
|
|
goto out_unlock;
|
|
|
|
swap_slot_cache_initialized = true;
|
|
__reenable_swap_slots_cache();
|
|
out_unlock:
|
|
mutex_unlock(&swap_slots_cache_enable_mutex);
|
|
return 0;
|
|
}
|
|
|
|
/* called with swap slot cache's alloc lock held */
|
|
static int refill_swap_slots_cache(struct swap_slots_cache *cache)
|
|
{
|
|
if (!use_swap_slot_cache || cache->nr)
|
|
return 0;
|
|
|
|
cache->cur = 0;
|
|
if (swap_slot_cache_active)
|
|
cache->nr = get_swap_pages(SWAP_SLOTS_CACHE_SIZE, false,
|
|
cache->slots);
|
|
|
|
return cache->nr;
|
|
}
|
|
|
|
int free_swap_slot(swp_entry_t entry)
|
|
{
|
|
struct swap_slots_cache *cache;
|
|
|
|
cache = raw_cpu_ptr(&swp_slots);
|
|
if (likely(use_swap_slot_cache && cache->slots_ret)) {
|
|
spin_lock_irq(&cache->free_lock);
|
|
/* Swap slots cache may be deactivated before acquiring lock */
|
|
if (!use_swap_slot_cache || !cache->slots_ret) {
|
|
spin_unlock_irq(&cache->free_lock);
|
|
goto direct_free;
|
|
}
|
|
if (cache->n_ret >= SWAP_SLOTS_CACHE_SIZE) {
|
|
/*
|
|
* Return slots to global pool.
|
|
* The current swap_map value is SWAP_HAS_CACHE.
|
|
* Set it to 0 to indicate it is available for
|
|
* allocation in global pool
|
|
*/
|
|
swapcache_free_entries(cache->slots_ret, cache->n_ret);
|
|
cache->n_ret = 0;
|
|
}
|
|
cache->slots_ret[cache->n_ret++] = entry;
|
|
spin_unlock_irq(&cache->free_lock);
|
|
} else {
|
|
direct_free:
|
|
swapcache_free_entries(&entry, 1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
swp_entry_t get_swap_page(struct page *page)
|
|
{
|
|
swp_entry_t entry, *pentry;
|
|
struct swap_slots_cache *cache;
|
|
|
|
entry.val = 0;
|
|
|
|
if (PageTransHuge(page)) {
|
|
if (IS_ENABLED(CONFIG_THP_SWAP))
|
|
get_swap_pages(1, true, &entry);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Preemption is allowed here, because we may sleep
|
|
* in refill_swap_slots_cache(). But it is safe, because
|
|
* accesses to the per-CPU data structure are protected by the
|
|
* mutex cache->alloc_lock.
|
|
*
|
|
* The alloc path here does not touch cache->slots_ret
|
|
* so cache->free_lock is not taken.
|
|
*/
|
|
cache = raw_cpu_ptr(&swp_slots);
|
|
|
|
if (likely(check_cache_active() && cache->slots)) {
|
|
mutex_lock(&cache->alloc_lock);
|
|
if (cache->slots) {
|
|
repeat:
|
|
if (cache->nr) {
|
|
pentry = &cache->slots[cache->cur++];
|
|
entry = *pentry;
|
|
pentry->val = 0;
|
|
cache->nr--;
|
|
} else {
|
|
if (refill_swap_slots_cache(cache))
|
|
goto repeat;
|
|
}
|
|
}
|
|
mutex_unlock(&cache->alloc_lock);
|
|
if (entry.val)
|
|
goto out;
|
|
}
|
|
|
|
get_swap_pages(1, false, &entry);
|
|
out:
|
|
if (mem_cgroup_try_charge_swap(page, entry)) {
|
|
put_swap_page(page, entry);
|
|
entry.val = 0;
|
|
}
|
|
return entry;
|
|
}
|