kernel_optimize_test/drivers/hwmon/lm78.c
Dan Carpenter 3806b45ba4 hwmon: Prevent some divide by zeros in FAN_TO_REG()
The "rpm * div" operations can overflow here, so this patch adds an
upper limit to rpm to prevent that.  Jean Delvare helped me with this
patch.

Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: Roger Lucas <vt8231@hiddenengine.co.uk>
Cc: stable@vger.kernel.org
Signed-off-by: Jean Delvare <khali@linux-fr.org>
2013-12-12 08:05:33 +01:00

1117 lines
29 KiB
C

/*
* lm78.c - Part of lm_sensors, Linux kernel modules for hardware
* monitoring
* Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
* Copyright (c) 2007, 2011 Jean Delvare <khali@linux-fr.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-vid.h>
#include <linux/hwmon-sysfs.h>
#include <linux/err.h>
#include <linux/mutex.h>
#ifdef CONFIG_ISA
#include <linux/platform_device.h>
#include <linux/ioport.h>
#include <linux/io.h>
#endif
/* Addresses to scan */
static const unsigned short normal_i2c[] = { 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d,
0x2e, 0x2f, I2C_CLIENT_END };
enum chips { lm78, lm79 };
/* Many LM78 constants specified below */
/* Length of ISA address segment */
#define LM78_EXTENT 8
/* Where are the ISA address/data registers relative to the base address */
#define LM78_ADDR_REG_OFFSET 5
#define LM78_DATA_REG_OFFSET 6
/* The LM78 registers */
#define LM78_REG_IN_MAX(nr) (0x2b + (nr) * 2)
#define LM78_REG_IN_MIN(nr) (0x2c + (nr) * 2)
#define LM78_REG_IN(nr) (0x20 + (nr))
#define LM78_REG_FAN_MIN(nr) (0x3b + (nr))
#define LM78_REG_FAN(nr) (0x28 + (nr))
#define LM78_REG_TEMP 0x27
#define LM78_REG_TEMP_OVER 0x39
#define LM78_REG_TEMP_HYST 0x3a
#define LM78_REG_ALARM1 0x41
#define LM78_REG_ALARM2 0x42
#define LM78_REG_VID_FANDIV 0x47
#define LM78_REG_CONFIG 0x40
#define LM78_REG_CHIPID 0x49
#define LM78_REG_I2C_ADDR 0x48
/*
* Conversions. Rounding and limit checking is only done on the TO_REG
* variants.
*/
/*
* IN: mV (0V to 4.08V)
* REG: 16mV/bit
*/
static inline u8 IN_TO_REG(unsigned long val)
{
unsigned long nval = clamp_val(val, 0, 4080);
return (nval + 8) / 16;
}
#define IN_FROM_REG(val) ((val) * 16)
static inline u8 FAN_TO_REG(long rpm, int div)
{
if (rpm <= 0)
return 255;
if (rpm > 1350000)
return 1;
return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
}
static inline int FAN_FROM_REG(u8 val, int div)
{
return val == 0 ? -1 : val == 255 ? 0 : 1350000 / (val * div);
}
/*
* TEMP: mC (-128C to +127C)
* REG: 1C/bit, two's complement
*/
static inline s8 TEMP_TO_REG(int val)
{
int nval = clamp_val(val, -128000, 127000) ;
return nval < 0 ? (nval - 500) / 1000 : (nval + 500) / 1000;
}
static inline int TEMP_FROM_REG(s8 val)
{
return val * 1000;
}
#define DIV_FROM_REG(val) (1 << (val))
struct lm78_data {
struct i2c_client *client;
struct device *hwmon_dev;
struct mutex lock;
enum chips type;
/* For ISA device only */
const char *name;
int isa_addr;
struct mutex update_lock;
char valid; /* !=0 if following fields are valid */
unsigned long last_updated; /* In jiffies */
u8 in[7]; /* Register value */
u8 in_max[7]; /* Register value */
u8 in_min[7]; /* Register value */
u8 fan[3]; /* Register value */
u8 fan_min[3]; /* Register value */
s8 temp; /* Register value */
s8 temp_over; /* Register value */
s8 temp_hyst; /* Register value */
u8 fan_div[3]; /* Register encoding, shifted right */
u8 vid; /* Register encoding, combined */
u16 alarms; /* Register encoding, combined */
};
static int lm78_read_value(struct lm78_data *data, u8 reg);
static int lm78_write_value(struct lm78_data *data, u8 reg, u8 value);
static struct lm78_data *lm78_update_device(struct device *dev);
static void lm78_init_device(struct lm78_data *data);
/* 7 Voltages */
static ssize_t show_in(struct device *dev, struct device_attribute *da,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
struct lm78_data *data = lm78_update_device(dev);
return sprintf(buf, "%d\n", IN_FROM_REG(data->in[attr->index]));
}
static ssize_t show_in_min(struct device *dev, struct device_attribute *da,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
struct lm78_data *data = lm78_update_device(dev);
return sprintf(buf, "%d\n", IN_FROM_REG(data->in_min[attr->index]));
}
static ssize_t show_in_max(struct device *dev, struct device_attribute *da,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
struct lm78_data *data = lm78_update_device(dev);
return sprintf(buf, "%d\n", IN_FROM_REG(data->in_max[attr->index]));
}
static ssize_t set_in_min(struct device *dev, struct device_attribute *da,
const char *buf, size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
struct lm78_data *data = dev_get_drvdata(dev);
int nr = attr->index;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->in_min[nr] = IN_TO_REG(val);
lm78_write_value(data, LM78_REG_IN_MIN(nr), data->in_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t set_in_max(struct device *dev, struct device_attribute *da,
const char *buf, size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
struct lm78_data *data = dev_get_drvdata(dev);
int nr = attr->index;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->in_max[nr] = IN_TO_REG(val);
lm78_write_value(data, LM78_REG_IN_MAX(nr), data->in_max[nr]);
mutex_unlock(&data->update_lock);
return count;
}
#define show_in_offset(offset) \
static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
show_in, NULL, offset); \
static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
show_in_min, set_in_min, offset); \
static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
show_in_max, set_in_max, offset);
show_in_offset(0);
show_in_offset(1);
show_in_offset(2);
show_in_offset(3);
show_in_offset(4);
show_in_offset(5);
show_in_offset(6);
/* Temperature */
static ssize_t show_temp(struct device *dev, struct device_attribute *da,
char *buf)
{
struct lm78_data *data = lm78_update_device(dev);
return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp));
}
static ssize_t show_temp_over(struct device *dev, struct device_attribute *da,
char *buf)
{
struct lm78_data *data = lm78_update_device(dev);
return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_over));
}
static ssize_t set_temp_over(struct device *dev, struct device_attribute *da,
const char *buf, size_t count)
{
struct lm78_data *data = dev_get_drvdata(dev);
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->temp_over = TEMP_TO_REG(val);
lm78_write_value(data, LM78_REG_TEMP_OVER, data->temp_over);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_temp_hyst(struct device *dev, struct device_attribute *da,
char *buf)
{
struct lm78_data *data = lm78_update_device(dev);
return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_hyst));
}
static ssize_t set_temp_hyst(struct device *dev, struct device_attribute *da,
const char *buf, size_t count)
{
struct lm78_data *data = dev_get_drvdata(dev);
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->temp_hyst = TEMP_TO_REG(val);
lm78_write_value(data, LM78_REG_TEMP_HYST, data->temp_hyst);
mutex_unlock(&data->update_lock);
return count;
}
static DEVICE_ATTR(temp1_input, S_IRUGO, show_temp, NULL);
static DEVICE_ATTR(temp1_max, S_IRUGO | S_IWUSR,
show_temp_over, set_temp_over);
static DEVICE_ATTR(temp1_max_hyst, S_IRUGO | S_IWUSR,
show_temp_hyst, set_temp_hyst);
/* 3 Fans */
static ssize_t show_fan(struct device *dev, struct device_attribute *da,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
struct lm78_data *data = lm78_update_device(dev);
int nr = attr->index;
return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr],
DIV_FROM_REG(data->fan_div[nr])));
}
static ssize_t show_fan_min(struct device *dev, struct device_attribute *da,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
struct lm78_data *data = lm78_update_device(dev);
int nr = attr->index;
return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr],
DIV_FROM_REG(data->fan_div[nr])));
}
static ssize_t set_fan_min(struct device *dev, struct device_attribute *da,
const char *buf, size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
struct lm78_data *data = dev_get_drvdata(dev);
int nr = attr->index;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
lm78_write_value(data, LM78_REG_FAN_MIN(nr), data->fan_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_fan_div(struct device *dev, struct device_attribute *da,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
struct lm78_data *data = lm78_update_device(dev);
return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[attr->index]));
}
/*
* Note: we save and restore the fan minimum here, because its value is
* determined in part by the fan divisor. This follows the principle of
* least surprise; the user doesn't expect the fan minimum to change just
* because the divisor changed.
*/
static ssize_t set_fan_div(struct device *dev, struct device_attribute *da,
const char *buf, size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
struct lm78_data *data = dev_get_drvdata(dev);
int nr = attr->index;
unsigned long min;
u8 reg;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
min = FAN_FROM_REG(data->fan_min[nr],
DIV_FROM_REG(data->fan_div[nr]));
switch (val) {
case 1:
data->fan_div[nr] = 0;
break;
case 2:
data->fan_div[nr] = 1;
break;
case 4:
data->fan_div[nr] = 2;
break;
case 8:
data->fan_div[nr] = 3;
break;
default:
dev_err(dev,
"fan_div value %ld not supported. Choose one of 1, 2, 4 or 8!\n",
val);
mutex_unlock(&data->update_lock);
return -EINVAL;
}
reg = lm78_read_value(data, LM78_REG_VID_FANDIV);
switch (nr) {
case 0:
reg = (reg & 0xcf) | (data->fan_div[nr] << 4);
break;
case 1:
reg = (reg & 0x3f) | (data->fan_div[nr] << 6);
break;
}
lm78_write_value(data, LM78_REG_VID_FANDIV, reg);
data->fan_min[nr] =
FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
lm78_write_value(data, LM78_REG_FAN_MIN(nr), data->fan_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
#define show_fan_offset(offset) \
static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
show_fan, NULL, offset - 1); \
static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
show_fan_min, set_fan_min, offset - 1);
show_fan_offset(1);
show_fan_offset(2);
show_fan_offset(3);
/* Fan 3 divisor is locked in H/W */
static SENSOR_DEVICE_ATTR(fan1_div, S_IRUGO | S_IWUSR,
show_fan_div, set_fan_div, 0);
static SENSOR_DEVICE_ATTR(fan2_div, S_IRUGO | S_IWUSR,
show_fan_div, set_fan_div, 1);
static SENSOR_DEVICE_ATTR(fan3_div, S_IRUGO, show_fan_div, NULL, 2);
/* VID */
static ssize_t show_vid(struct device *dev, struct device_attribute *da,
char *buf)
{
struct lm78_data *data = lm78_update_device(dev);
return sprintf(buf, "%d\n", vid_from_reg(data->vid, 82));
}
static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid, NULL);
/* Alarms */
static ssize_t show_alarms(struct device *dev, struct device_attribute *da,
char *buf)
{
struct lm78_data *data = lm78_update_device(dev);
return sprintf(buf, "%u\n", data->alarms);
}
static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
static ssize_t show_alarm(struct device *dev, struct device_attribute *da,
char *buf)
{
struct lm78_data *data = lm78_update_device(dev);
int nr = to_sensor_dev_attr(da)->index;
return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
}
static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 9);
static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 10);
static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6);
static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7);
static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11);
static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
static struct attribute *lm78_attributes[] = {
&sensor_dev_attr_in0_input.dev_attr.attr,
&sensor_dev_attr_in0_min.dev_attr.attr,
&sensor_dev_attr_in0_max.dev_attr.attr,
&sensor_dev_attr_in0_alarm.dev_attr.attr,
&sensor_dev_attr_in1_input.dev_attr.attr,
&sensor_dev_attr_in1_min.dev_attr.attr,
&sensor_dev_attr_in1_max.dev_attr.attr,
&sensor_dev_attr_in1_alarm.dev_attr.attr,
&sensor_dev_attr_in2_input.dev_attr.attr,
&sensor_dev_attr_in2_min.dev_attr.attr,
&sensor_dev_attr_in2_max.dev_attr.attr,
&sensor_dev_attr_in2_alarm.dev_attr.attr,
&sensor_dev_attr_in3_input.dev_attr.attr,
&sensor_dev_attr_in3_min.dev_attr.attr,
&sensor_dev_attr_in3_max.dev_attr.attr,
&sensor_dev_attr_in3_alarm.dev_attr.attr,
&sensor_dev_attr_in4_input.dev_attr.attr,
&sensor_dev_attr_in4_min.dev_attr.attr,
&sensor_dev_attr_in4_max.dev_attr.attr,
&sensor_dev_attr_in4_alarm.dev_attr.attr,
&sensor_dev_attr_in5_input.dev_attr.attr,
&sensor_dev_attr_in5_min.dev_attr.attr,
&sensor_dev_attr_in5_max.dev_attr.attr,
&sensor_dev_attr_in5_alarm.dev_attr.attr,
&sensor_dev_attr_in6_input.dev_attr.attr,
&sensor_dev_attr_in6_min.dev_attr.attr,
&sensor_dev_attr_in6_max.dev_attr.attr,
&sensor_dev_attr_in6_alarm.dev_attr.attr,
&dev_attr_temp1_input.attr,
&dev_attr_temp1_max.attr,
&dev_attr_temp1_max_hyst.attr,
&sensor_dev_attr_temp1_alarm.dev_attr.attr,
&sensor_dev_attr_fan1_input.dev_attr.attr,
&sensor_dev_attr_fan1_min.dev_attr.attr,
&sensor_dev_attr_fan1_div.dev_attr.attr,
&sensor_dev_attr_fan1_alarm.dev_attr.attr,
&sensor_dev_attr_fan2_input.dev_attr.attr,
&sensor_dev_attr_fan2_min.dev_attr.attr,
&sensor_dev_attr_fan2_div.dev_attr.attr,
&sensor_dev_attr_fan2_alarm.dev_attr.attr,
&sensor_dev_attr_fan3_input.dev_attr.attr,
&sensor_dev_attr_fan3_min.dev_attr.attr,
&sensor_dev_attr_fan3_div.dev_attr.attr,
&sensor_dev_attr_fan3_alarm.dev_attr.attr,
&dev_attr_alarms.attr,
&dev_attr_cpu0_vid.attr,
NULL
};
static const struct attribute_group lm78_group = {
.attrs = lm78_attributes,
};
/*
* ISA related code
*/
#ifdef CONFIG_ISA
/* ISA device, if found */
static struct platform_device *pdev;
static unsigned short isa_address = 0x290;
/*
* I2C devices get this name attribute automatically, but for ISA devices
* we must create it by ourselves.
*/
static ssize_t show_name(struct device *dev, struct device_attribute
*devattr, char *buf)
{
struct lm78_data *data = dev_get_drvdata(dev);
return sprintf(buf, "%s\n", data->name);
}
static DEVICE_ATTR(name, S_IRUGO, show_name, NULL);
static struct lm78_data *lm78_data_if_isa(void)
{
return pdev ? platform_get_drvdata(pdev) : NULL;
}
/* Returns 1 if the I2C chip appears to be an alias of the ISA chip */
static int lm78_alias_detect(struct i2c_client *client, u8 chipid)
{
struct lm78_data *isa;
int i;
if (!pdev) /* No ISA chip */
return 0;
isa = platform_get_drvdata(pdev);
if (lm78_read_value(isa, LM78_REG_I2C_ADDR) != client->addr)
return 0; /* Address doesn't match */
if ((lm78_read_value(isa, LM78_REG_CHIPID) & 0xfe) != (chipid & 0xfe))
return 0; /* Chip type doesn't match */
/*
* We compare all the limit registers, the config register and the
* interrupt mask registers
*/
for (i = 0x2b; i <= 0x3d; i++) {
if (lm78_read_value(isa, i) !=
i2c_smbus_read_byte_data(client, i))
return 0;
}
if (lm78_read_value(isa, LM78_REG_CONFIG) !=
i2c_smbus_read_byte_data(client, LM78_REG_CONFIG))
return 0;
for (i = 0x43; i <= 0x46; i++) {
if (lm78_read_value(isa, i) !=
i2c_smbus_read_byte_data(client, i))
return 0;
}
return 1;
}
#else /* !CONFIG_ISA */
static int lm78_alias_detect(struct i2c_client *client, u8 chipid)
{
return 0;
}
static struct lm78_data *lm78_data_if_isa(void)
{
return NULL;
}
#endif /* CONFIG_ISA */
static int lm78_i2c_detect(struct i2c_client *client,
struct i2c_board_info *info)
{
int i;
struct lm78_data *isa = lm78_data_if_isa();
const char *client_name;
struct i2c_adapter *adapter = client->adapter;
int address = client->addr;
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
return -ENODEV;
/*
* We block updates of the ISA device to minimize the risk of
* concurrent access to the same LM78 chip through different
* interfaces.
*/
if (isa)
mutex_lock(&isa->update_lock);
if ((i2c_smbus_read_byte_data(client, LM78_REG_CONFIG) & 0x80)
|| i2c_smbus_read_byte_data(client, LM78_REG_I2C_ADDR) != address)
goto err_nodev;
/* Explicitly prevent the misdetection of Winbond chips */
i = i2c_smbus_read_byte_data(client, 0x4f);
if (i == 0xa3 || i == 0x5c)
goto err_nodev;
/* Determine the chip type. */
i = i2c_smbus_read_byte_data(client, LM78_REG_CHIPID);
if (i == 0x00 || i == 0x20 /* LM78 */
|| i == 0x40) /* LM78-J */
client_name = "lm78";
else if ((i & 0xfe) == 0xc0)
client_name = "lm79";
else
goto err_nodev;
if (lm78_alias_detect(client, i)) {
dev_dbg(&adapter->dev,
"Device at 0x%02x appears to be the same as ISA device\n",
address);
goto err_nodev;
}
if (isa)
mutex_unlock(&isa->update_lock);
strlcpy(info->type, client_name, I2C_NAME_SIZE);
return 0;
err_nodev:
if (isa)
mutex_unlock(&isa->update_lock);
return -ENODEV;
}
static int lm78_i2c_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct lm78_data *data;
int err;
data = devm_kzalloc(&client->dev, sizeof(struct lm78_data), GFP_KERNEL);
if (!data)
return -ENOMEM;
i2c_set_clientdata(client, data);
data->client = client;
data->type = id->driver_data;
/* Initialize the LM78 chip */
lm78_init_device(data);
/* Register sysfs hooks */
err = sysfs_create_group(&client->dev.kobj, &lm78_group);
if (err)
return err;
data->hwmon_dev = hwmon_device_register(&client->dev);
if (IS_ERR(data->hwmon_dev)) {
err = PTR_ERR(data->hwmon_dev);
goto error;
}
return 0;
error:
sysfs_remove_group(&client->dev.kobj, &lm78_group);
return err;
}
static int lm78_i2c_remove(struct i2c_client *client)
{
struct lm78_data *data = i2c_get_clientdata(client);
hwmon_device_unregister(data->hwmon_dev);
sysfs_remove_group(&client->dev.kobj, &lm78_group);
return 0;
}
static const struct i2c_device_id lm78_i2c_id[] = {
{ "lm78", lm78 },
{ "lm79", lm79 },
{ }
};
MODULE_DEVICE_TABLE(i2c, lm78_i2c_id);
static struct i2c_driver lm78_driver = {
.class = I2C_CLASS_HWMON,
.driver = {
.name = "lm78",
},
.probe = lm78_i2c_probe,
.remove = lm78_i2c_remove,
.id_table = lm78_i2c_id,
.detect = lm78_i2c_detect,
.address_list = normal_i2c,
};
/*
* The SMBus locks itself, but ISA access must be locked explicitly!
* We don't want to lock the whole ISA bus, so we lock each client
* separately.
* We ignore the LM78 BUSY flag at this moment - it could lead to deadlocks,
* would slow down the LM78 access and should not be necessary.
*/
static int lm78_read_value(struct lm78_data *data, u8 reg)
{
struct i2c_client *client = data->client;
#ifdef CONFIG_ISA
if (!client) { /* ISA device */
int res;
mutex_lock(&data->lock);
outb_p(reg, data->isa_addr + LM78_ADDR_REG_OFFSET);
res = inb_p(data->isa_addr + LM78_DATA_REG_OFFSET);
mutex_unlock(&data->lock);
return res;
} else
#endif
return i2c_smbus_read_byte_data(client, reg);
}
static int lm78_write_value(struct lm78_data *data, u8 reg, u8 value)
{
struct i2c_client *client = data->client;
#ifdef CONFIG_ISA
if (!client) { /* ISA device */
mutex_lock(&data->lock);
outb_p(reg, data->isa_addr + LM78_ADDR_REG_OFFSET);
outb_p(value, data->isa_addr + LM78_DATA_REG_OFFSET);
mutex_unlock(&data->lock);
return 0;
} else
#endif
return i2c_smbus_write_byte_data(client, reg, value);
}
static void lm78_init_device(struct lm78_data *data)
{
u8 config;
int i;
/* Start monitoring */
config = lm78_read_value(data, LM78_REG_CONFIG);
if ((config & 0x09) != 0x01)
lm78_write_value(data, LM78_REG_CONFIG,
(config & 0xf7) | 0x01);
/* A few vars need to be filled upon startup */
for (i = 0; i < 3; i++) {
data->fan_min[i] = lm78_read_value(data,
LM78_REG_FAN_MIN(i));
}
mutex_init(&data->update_lock);
}
static struct lm78_data *lm78_update_device(struct device *dev)
{
struct lm78_data *data = dev_get_drvdata(dev);
int i;
mutex_lock(&data->update_lock);
if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
|| !data->valid) {
dev_dbg(dev, "Starting lm78 update\n");
for (i = 0; i <= 6; i++) {
data->in[i] =
lm78_read_value(data, LM78_REG_IN(i));
data->in_min[i] =
lm78_read_value(data, LM78_REG_IN_MIN(i));
data->in_max[i] =
lm78_read_value(data, LM78_REG_IN_MAX(i));
}
for (i = 0; i < 3; i++) {
data->fan[i] =
lm78_read_value(data, LM78_REG_FAN(i));
data->fan_min[i] =
lm78_read_value(data, LM78_REG_FAN_MIN(i));
}
data->temp = lm78_read_value(data, LM78_REG_TEMP);
data->temp_over =
lm78_read_value(data, LM78_REG_TEMP_OVER);
data->temp_hyst =
lm78_read_value(data, LM78_REG_TEMP_HYST);
i = lm78_read_value(data, LM78_REG_VID_FANDIV);
data->vid = i & 0x0f;
if (data->type == lm79)
data->vid |=
(lm78_read_value(data, LM78_REG_CHIPID) &
0x01) << 4;
else
data->vid |= 0x10;
data->fan_div[0] = (i >> 4) & 0x03;
data->fan_div[1] = i >> 6;
data->alarms = lm78_read_value(data, LM78_REG_ALARM1) +
(lm78_read_value(data, LM78_REG_ALARM2) << 8);
data->last_updated = jiffies;
data->valid = 1;
data->fan_div[2] = 1;
}
mutex_unlock(&data->update_lock);
return data;
}
#ifdef CONFIG_ISA
static int lm78_isa_probe(struct platform_device *pdev)
{
int err;
struct lm78_data *data;
struct resource *res;
/* Reserve the ISA region */
res = platform_get_resource(pdev, IORESOURCE_IO, 0);
if (!devm_request_region(&pdev->dev, res->start + LM78_ADDR_REG_OFFSET,
2, "lm78"))
return -EBUSY;
data = devm_kzalloc(&pdev->dev, sizeof(struct lm78_data), GFP_KERNEL);
if (!data)
return -ENOMEM;
mutex_init(&data->lock);
data->isa_addr = res->start;
platform_set_drvdata(pdev, data);
if (lm78_read_value(data, LM78_REG_CHIPID) & 0x80) {
data->type = lm79;
data->name = "lm79";
} else {
data->type = lm78;
data->name = "lm78";
}
/* Initialize the LM78 chip */
lm78_init_device(data);
/* Register sysfs hooks */
err = sysfs_create_group(&pdev->dev.kobj, &lm78_group);
if (err)
goto exit_remove_files;
err = device_create_file(&pdev->dev, &dev_attr_name);
if (err)
goto exit_remove_files;
data->hwmon_dev = hwmon_device_register(&pdev->dev);
if (IS_ERR(data->hwmon_dev)) {
err = PTR_ERR(data->hwmon_dev);
goto exit_remove_files;
}
return 0;
exit_remove_files:
sysfs_remove_group(&pdev->dev.kobj, &lm78_group);
device_remove_file(&pdev->dev, &dev_attr_name);
return err;
}
static int lm78_isa_remove(struct platform_device *pdev)
{
struct lm78_data *data = platform_get_drvdata(pdev);
hwmon_device_unregister(data->hwmon_dev);
sysfs_remove_group(&pdev->dev.kobj, &lm78_group);
device_remove_file(&pdev->dev, &dev_attr_name);
return 0;
}
static struct platform_driver lm78_isa_driver = {
.driver = {
.owner = THIS_MODULE,
.name = "lm78",
},
.probe = lm78_isa_probe,
.remove = lm78_isa_remove,
};
/* return 1 if a supported chip is found, 0 otherwise */
static int __init lm78_isa_found(unsigned short address)
{
int val, save, found = 0;
int port;
/*
* Some boards declare base+0 to base+7 as a PNP device, some base+4
* to base+7 and some base+5 to base+6. So we better request each port
* individually for the probing phase.
*/
for (port = address; port < address + LM78_EXTENT; port++) {
if (!request_region(port, 1, "lm78")) {
pr_debug("Failed to request port 0x%x\n", port);
goto release;
}
}
#define REALLY_SLOW_IO
/*
* We need the timeouts for at least some LM78-like
* chips. But only if we read 'undefined' registers.
*/
val = inb_p(address + 1);
if (inb_p(address + 2) != val
|| inb_p(address + 3) != val
|| inb_p(address + 7) != val)
goto release;
#undef REALLY_SLOW_IO
/*
* We should be able to change the 7 LSB of the address port. The
* MSB (busy flag) should be clear initially, set after the write.
*/
save = inb_p(address + LM78_ADDR_REG_OFFSET);
if (save & 0x80)
goto release;
val = ~save & 0x7f;
outb_p(val, address + LM78_ADDR_REG_OFFSET);
if (inb_p(address + LM78_ADDR_REG_OFFSET) != (val | 0x80)) {
outb_p(save, address + LM78_ADDR_REG_OFFSET);
goto release;
}
/* We found a device, now see if it could be an LM78 */
outb_p(LM78_REG_CONFIG, address + LM78_ADDR_REG_OFFSET);
val = inb_p(address + LM78_DATA_REG_OFFSET);
if (val & 0x80)
goto release;
outb_p(LM78_REG_I2C_ADDR, address + LM78_ADDR_REG_OFFSET);
val = inb_p(address + LM78_DATA_REG_OFFSET);
if (val < 0x03 || val > 0x77) /* Not a valid I2C address */
goto release;
/* The busy flag should be clear again */
if (inb_p(address + LM78_ADDR_REG_OFFSET) & 0x80)
goto release;
/* Explicitly prevent the misdetection of Winbond chips */
outb_p(0x4f, address + LM78_ADDR_REG_OFFSET);
val = inb_p(address + LM78_DATA_REG_OFFSET);
if (val == 0xa3 || val == 0x5c)
goto release;
/* Explicitly prevent the misdetection of ITE chips */
outb_p(0x58, address + LM78_ADDR_REG_OFFSET);
val = inb_p(address + LM78_DATA_REG_OFFSET);
if (val == 0x90)
goto release;
/* Determine the chip type */
outb_p(LM78_REG_CHIPID, address + LM78_ADDR_REG_OFFSET);
val = inb_p(address + LM78_DATA_REG_OFFSET);
if (val == 0x00 || val == 0x20 /* LM78 */
|| val == 0x40 /* LM78-J */
|| (val & 0xfe) == 0xc0) /* LM79 */
found = 1;
if (found)
pr_info("Found an %s chip at %#x\n",
val & 0x80 ? "LM79" : "LM78", (int)address);
release:
for (port--; port >= address; port--)
release_region(port, 1);
return found;
}
static int __init lm78_isa_device_add(unsigned short address)
{
struct resource res = {
.start = address,
.end = address + LM78_EXTENT - 1,
.name = "lm78",
.flags = IORESOURCE_IO,
};
int err;
pdev = platform_device_alloc("lm78", address);
if (!pdev) {
err = -ENOMEM;
pr_err("Device allocation failed\n");
goto exit;
}
err = platform_device_add_resources(pdev, &res, 1);
if (err) {
pr_err("Device resource addition failed (%d)\n", err);
goto exit_device_put;
}
err = platform_device_add(pdev);
if (err) {
pr_err("Device addition failed (%d)\n", err);
goto exit_device_put;
}
return 0;
exit_device_put:
platform_device_put(pdev);
exit:
pdev = NULL;
return err;
}
static int __init lm78_isa_register(void)
{
int res;
if (lm78_isa_found(isa_address)) {
res = platform_driver_register(&lm78_isa_driver);
if (res)
goto exit;
/* Sets global pdev as a side effect */
res = lm78_isa_device_add(isa_address);
if (res)
goto exit_unreg_isa_driver;
}
return 0;
exit_unreg_isa_driver:
platform_driver_unregister(&lm78_isa_driver);
exit:
return res;
}
static void lm78_isa_unregister(void)
{
if (pdev) {
platform_device_unregister(pdev);
platform_driver_unregister(&lm78_isa_driver);
}
}
#else /* !CONFIG_ISA */
static int __init lm78_isa_register(void)
{
return 0;
}
static void lm78_isa_unregister(void)
{
}
#endif /* CONFIG_ISA */
static int __init sm_lm78_init(void)
{
int res;
/*
* We register the ISA device first, so that we can skip the
* registration of an I2C interface to the same device.
*/
res = lm78_isa_register();
if (res)
goto exit;
res = i2c_add_driver(&lm78_driver);
if (res)
goto exit_unreg_isa_device;
return 0;
exit_unreg_isa_device:
lm78_isa_unregister();
exit:
return res;
}
static void __exit sm_lm78_exit(void)
{
lm78_isa_unregister();
i2c_del_driver(&lm78_driver);
}
MODULE_AUTHOR("Frodo Looijaard, Jean Delvare <khali@linux-fr.org>");
MODULE_DESCRIPTION("LM78/LM79 driver");
MODULE_LICENSE("GPL");
module_init(sm_lm78_init);
module_exit(sm_lm78_exit);