forked from luck/tmp_suning_uos_patched
1da177e4c3
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
457 lines
13 KiB
C
457 lines
13 KiB
C
/*
|
|
* Some of the code in this file has been gleaned from the 64 bit
|
|
* discontigmem support code base.
|
|
*
|
|
* Copyright (C) 2002, IBM Corp.
|
|
*
|
|
* All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
|
|
* NON INFRINGEMENT. See the GNU General Public License for more
|
|
* details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*
|
|
* Send feedback to Pat Gaughen <gone@us.ibm.com>
|
|
*/
|
|
#include <linux/config.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/mmzone.h>
|
|
#include <linux/acpi.h>
|
|
#include <linux/nodemask.h>
|
|
#include <asm/srat.h>
|
|
#include <asm/topology.h>
|
|
|
|
/*
|
|
* proximity macros and definitions
|
|
*/
|
|
#define NODE_ARRAY_INDEX(x) ((x) / 8) /* 8 bits/char */
|
|
#define NODE_ARRAY_OFFSET(x) ((x) % 8) /* 8 bits/char */
|
|
#define BMAP_SET(bmap, bit) ((bmap)[NODE_ARRAY_INDEX(bit)] |= 1 << NODE_ARRAY_OFFSET(bit))
|
|
#define BMAP_TEST(bmap, bit) ((bmap)[NODE_ARRAY_INDEX(bit)] & (1 << NODE_ARRAY_OFFSET(bit)))
|
|
#define MAX_PXM_DOMAINS 256 /* 1 byte and no promises about values */
|
|
/* bitmap length; _PXM is at most 255 */
|
|
#define PXM_BITMAP_LEN (MAX_PXM_DOMAINS / 8)
|
|
static u8 pxm_bitmap[PXM_BITMAP_LEN]; /* bitmap of proximity domains */
|
|
|
|
#define MAX_CHUNKS_PER_NODE 4
|
|
#define MAXCHUNKS (MAX_CHUNKS_PER_NODE * MAX_NUMNODES)
|
|
struct node_memory_chunk_s {
|
|
unsigned long start_pfn;
|
|
unsigned long end_pfn;
|
|
u8 pxm; // proximity domain of node
|
|
u8 nid; // which cnode contains this chunk?
|
|
u8 bank; // which mem bank on this node
|
|
};
|
|
static struct node_memory_chunk_s node_memory_chunk[MAXCHUNKS];
|
|
|
|
static int num_memory_chunks; /* total number of memory chunks */
|
|
static int zholes_size_init;
|
|
static unsigned long zholes_size[MAX_NUMNODES * MAX_NR_ZONES];
|
|
|
|
extern void * boot_ioremap(unsigned long, unsigned long);
|
|
|
|
/* Identify CPU proximity domains */
|
|
static void __init parse_cpu_affinity_structure(char *p)
|
|
{
|
|
struct acpi_table_processor_affinity *cpu_affinity =
|
|
(struct acpi_table_processor_affinity *) p;
|
|
|
|
if (!cpu_affinity->flags.enabled)
|
|
return; /* empty entry */
|
|
|
|
/* mark this node as "seen" in node bitmap */
|
|
BMAP_SET(pxm_bitmap, cpu_affinity->proximity_domain);
|
|
|
|
printk("CPU 0x%02X in proximity domain 0x%02X\n",
|
|
cpu_affinity->apic_id, cpu_affinity->proximity_domain);
|
|
}
|
|
|
|
/*
|
|
* Identify memory proximity domains and hot-remove capabilities.
|
|
* Fill node memory chunk list structure.
|
|
*/
|
|
static void __init parse_memory_affinity_structure (char *sratp)
|
|
{
|
|
unsigned long long paddr, size;
|
|
unsigned long start_pfn, end_pfn;
|
|
u8 pxm;
|
|
struct node_memory_chunk_s *p, *q, *pend;
|
|
struct acpi_table_memory_affinity *memory_affinity =
|
|
(struct acpi_table_memory_affinity *) sratp;
|
|
|
|
if (!memory_affinity->flags.enabled)
|
|
return; /* empty entry */
|
|
|
|
/* mark this node as "seen" in node bitmap */
|
|
BMAP_SET(pxm_bitmap, memory_affinity->proximity_domain);
|
|
|
|
/* calculate info for memory chunk structure */
|
|
paddr = memory_affinity->base_addr_hi;
|
|
paddr = (paddr << 32) | memory_affinity->base_addr_lo;
|
|
size = memory_affinity->length_hi;
|
|
size = (size << 32) | memory_affinity->length_lo;
|
|
|
|
start_pfn = paddr >> PAGE_SHIFT;
|
|
end_pfn = (paddr + size) >> PAGE_SHIFT;
|
|
|
|
pxm = memory_affinity->proximity_domain;
|
|
|
|
if (num_memory_chunks >= MAXCHUNKS) {
|
|
printk("Too many mem chunks in SRAT. Ignoring %lld MBytes at %llx\n",
|
|
size/(1024*1024), paddr);
|
|
return;
|
|
}
|
|
|
|
/* Insertion sort based on base address */
|
|
pend = &node_memory_chunk[num_memory_chunks];
|
|
for (p = &node_memory_chunk[0]; p < pend; p++) {
|
|
if (start_pfn < p->start_pfn)
|
|
break;
|
|
}
|
|
if (p < pend) {
|
|
for (q = pend; q >= p; q--)
|
|
*(q + 1) = *q;
|
|
}
|
|
p->start_pfn = start_pfn;
|
|
p->end_pfn = end_pfn;
|
|
p->pxm = pxm;
|
|
|
|
num_memory_chunks++;
|
|
|
|
printk("Memory range 0x%lX to 0x%lX (type 0x%X) in proximity domain 0x%02X %s\n",
|
|
start_pfn, end_pfn,
|
|
memory_affinity->memory_type,
|
|
memory_affinity->proximity_domain,
|
|
(memory_affinity->flags.hot_pluggable ?
|
|
"enabled and removable" : "enabled" ) );
|
|
}
|
|
|
|
#if MAX_NR_ZONES != 3
|
|
#error "MAX_NR_ZONES != 3, chunk_to_zone requires review"
|
|
#endif
|
|
/* Take a chunk of pages from page frame cstart to cend and count the number
|
|
* of pages in each zone, returned via zones[].
|
|
*/
|
|
static __init void chunk_to_zones(unsigned long cstart, unsigned long cend,
|
|
unsigned long *zones)
|
|
{
|
|
unsigned long max_dma;
|
|
extern unsigned long max_low_pfn;
|
|
|
|
int z;
|
|
unsigned long rend;
|
|
|
|
/* FIXME: MAX_DMA_ADDRESS and max_low_pfn are trying to provide
|
|
* similarly scoped information and should be handled in a consistant
|
|
* manner.
|
|
*/
|
|
max_dma = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;
|
|
|
|
/* Split the hole into the zones in which it falls. Repeatedly
|
|
* take the segment in which the remaining hole starts, round it
|
|
* to the end of that zone.
|
|
*/
|
|
memset(zones, 0, MAX_NR_ZONES * sizeof(long));
|
|
while (cstart < cend) {
|
|
if (cstart < max_dma) {
|
|
z = ZONE_DMA;
|
|
rend = (cend < max_dma)? cend : max_dma;
|
|
|
|
} else if (cstart < max_low_pfn) {
|
|
z = ZONE_NORMAL;
|
|
rend = (cend < max_low_pfn)? cend : max_low_pfn;
|
|
|
|
} else {
|
|
z = ZONE_HIGHMEM;
|
|
rend = cend;
|
|
}
|
|
zones[z] += rend - cstart;
|
|
cstart = rend;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The SRAT table always lists ascending addresses, so can always
|
|
* assume that the first "start" address that you see is the real
|
|
* start of the node, and that the current "end" address is after
|
|
* the previous one.
|
|
*/
|
|
static __init void node_read_chunk(int nid, struct node_memory_chunk_s *memory_chunk)
|
|
{
|
|
/*
|
|
* Only add present memory as told by the e820.
|
|
* There is no guarantee from the SRAT that the memory it
|
|
* enumerates is present at boot time because it represents
|
|
* *possible* memory hotplug areas the same as normal RAM.
|
|
*/
|
|
if (memory_chunk->start_pfn >= max_pfn) {
|
|
printk (KERN_INFO "Ignoring SRAT pfns: 0x%08lx -> %08lx\n",
|
|
memory_chunk->start_pfn, memory_chunk->end_pfn);
|
|
return;
|
|
}
|
|
if (memory_chunk->nid != nid)
|
|
return;
|
|
|
|
if (!node_has_online_mem(nid))
|
|
node_start_pfn[nid] = memory_chunk->start_pfn;
|
|
|
|
if (node_start_pfn[nid] > memory_chunk->start_pfn)
|
|
node_start_pfn[nid] = memory_chunk->start_pfn;
|
|
|
|
if (node_end_pfn[nid] < memory_chunk->end_pfn)
|
|
node_end_pfn[nid] = memory_chunk->end_pfn;
|
|
}
|
|
|
|
/* Parse the ACPI Static Resource Affinity Table */
|
|
static int __init acpi20_parse_srat(struct acpi_table_srat *sratp)
|
|
{
|
|
u8 *start, *end, *p;
|
|
int i, j, nid;
|
|
u8 pxm_to_nid_map[MAX_PXM_DOMAINS];/* _PXM to logical node ID map */
|
|
u8 nid_to_pxm_map[MAX_NUMNODES];/* logical node ID to _PXM map */
|
|
|
|
start = (u8 *)(&(sratp->reserved) + 1); /* skip header */
|
|
p = start;
|
|
end = (u8 *)sratp + sratp->header.length;
|
|
|
|
memset(pxm_bitmap, 0, sizeof(pxm_bitmap)); /* init proximity domain bitmap */
|
|
memset(node_memory_chunk, 0, sizeof(node_memory_chunk));
|
|
memset(zholes_size, 0, sizeof(zholes_size));
|
|
|
|
/* -1 in these maps means not available */
|
|
memset(pxm_to_nid_map, -1, sizeof(pxm_to_nid_map));
|
|
memset(nid_to_pxm_map, -1, sizeof(nid_to_pxm_map));
|
|
|
|
num_memory_chunks = 0;
|
|
while (p < end) {
|
|
switch (*p) {
|
|
case ACPI_SRAT_PROCESSOR_AFFINITY:
|
|
parse_cpu_affinity_structure(p);
|
|
break;
|
|
case ACPI_SRAT_MEMORY_AFFINITY:
|
|
parse_memory_affinity_structure(p);
|
|
break;
|
|
default:
|
|
printk("ACPI 2.0 SRAT: unknown entry skipped: type=0x%02X, len=%d\n", p[0], p[1]);
|
|
break;
|
|
}
|
|
p += p[1];
|
|
if (p[1] == 0) {
|
|
printk("acpi20_parse_srat: Entry length value is zero;"
|
|
" can't parse any further!\n");
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (num_memory_chunks == 0) {
|
|
printk("could not finy any ACPI SRAT memory areas.\n");
|
|
goto out_fail;
|
|
}
|
|
|
|
/* Calculate total number of nodes in system from PXM bitmap and create
|
|
* a set of sequential node IDs starting at zero. (ACPI doesn't seem
|
|
* to specify the range of _PXM values.)
|
|
*/
|
|
/*
|
|
* MCD - we no longer HAVE to number nodes sequentially. PXM domain
|
|
* numbers could go as high as 256, and MAX_NUMNODES for i386 is typically
|
|
* 32, so we will continue numbering them in this manner until MAX_NUMNODES
|
|
* approaches MAX_PXM_DOMAINS for i386.
|
|
*/
|
|
nodes_clear(node_online_map);
|
|
for (i = 0; i < MAX_PXM_DOMAINS; i++) {
|
|
if (BMAP_TEST(pxm_bitmap, i)) {
|
|
nid = num_online_nodes();
|
|
pxm_to_nid_map[i] = nid;
|
|
nid_to_pxm_map[nid] = i;
|
|
node_set_online(nid);
|
|
}
|
|
}
|
|
BUG_ON(num_online_nodes() == 0);
|
|
|
|
/* set cnode id in memory chunk structure */
|
|
for (i = 0; i < num_memory_chunks; i++)
|
|
node_memory_chunk[i].nid = pxm_to_nid_map[node_memory_chunk[i].pxm];
|
|
|
|
printk("pxm bitmap: ");
|
|
for (i = 0; i < sizeof(pxm_bitmap); i++) {
|
|
printk("%02X ", pxm_bitmap[i]);
|
|
}
|
|
printk("\n");
|
|
printk("Number of logical nodes in system = %d\n", num_online_nodes());
|
|
printk("Number of memory chunks in system = %d\n", num_memory_chunks);
|
|
|
|
for (j = 0; j < num_memory_chunks; j++){
|
|
struct node_memory_chunk_s * chunk = &node_memory_chunk[j];
|
|
printk("chunk %d nid %d start_pfn %08lx end_pfn %08lx\n",
|
|
j, chunk->nid, chunk->start_pfn, chunk->end_pfn);
|
|
node_read_chunk(chunk->nid, chunk);
|
|
}
|
|
|
|
for_each_online_node(nid) {
|
|
unsigned long start = node_start_pfn[nid];
|
|
unsigned long end = node_end_pfn[nid];
|
|
|
|
memory_present(nid, start, end);
|
|
node_remap_size[nid] = node_memmap_size_bytes(nid, start, end);
|
|
}
|
|
return 1;
|
|
out_fail:
|
|
return 0;
|
|
}
|
|
|
|
int __init get_memcfg_from_srat(void)
|
|
{
|
|
struct acpi_table_header *header = NULL;
|
|
struct acpi_table_rsdp *rsdp = NULL;
|
|
struct acpi_table_rsdt *rsdt = NULL;
|
|
struct acpi_pointer *rsdp_address = NULL;
|
|
struct acpi_table_rsdt saved_rsdt;
|
|
int tables = 0;
|
|
int i = 0;
|
|
|
|
acpi_find_root_pointer(ACPI_PHYSICAL_ADDRESSING, rsdp_address);
|
|
|
|
if (rsdp_address->pointer_type == ACPI_PHYSICAL_POINTER) {
|
|
printk("%s: assigning address to rsdp\n", __FUNCTION__);
|
|
rsdp = (struct acpi_table_rsdp *)
|
|
(u32)rsdp_address->pointer.physical;
|
|
} else {
|
|
printk("%s: rsdp_address is not a physical pointer\n", __FUNCTION__);
|
|
goto out_err;
|
|
}
|
|
if (!rsdp) {
|
|
printk("%s: Didn't find ACPI root!\n", __FUNCTION__);
|
|
goto out_err;
|
|
}
|
|
|
|
printk(KERN_INFO "%.8s v%d [%.6s]\n", rsdp->signature, rsdp->revision,
|
|
rsdp->oem_id);
|
|
|
|
if (strncmp(rsdp->signature, RSDP_SIG,strlen(RSDP_SIG))) {
|
|
printk(KERN_WARNING "%s: RSDP table signature incorrect\n", __FUNCTION__);
|
|
goto out_err;
|
|
}
|
|
|
|
rsdt = (struct acpi_table_rsdt *)
|
|
boot_ioremap(rsdp->rsdt_address, sizeof(struct acpi_table_rsdt));
|
|
|
|
if (!rsdt) {
|
|
printk(KERN_WARNING
|
|
"%s: ACPI: Invalid root system description tables (RSDT)\n",
|
|
__FUNCTION__);
|
|
goto out_err;
|
|
}
|
|
|
|
header = & rsdt->header;
|
|
|
|
if (strncmp(header->signature, RSDT_SIG, strlen(RSDT_SIG))) {
|
|
printk(KERN_WARNING "ACPI: RSDT signature incorrect\n");
|
|
goto out_err;
|
|
}
|
|
|
|
/*
|
|
* The number of tables is computed by taking the
|
|
* size of all entries (header size minus total
|
|
* size of RSDT) divided by the size of each entry
|
|
* (4-byte table pointers).
|
|
*/
|
|
tables = (header->length - sizeof(struct acpi_table_header)) / 4;
|
|
|
|
if (!tables)
|
|
goto out_err;
|
|
|
|
memcpy(&saved_rsdt, rsdt, sizeof(saved_rsdt));
|
|
|
|
if (saved_rsdt.header.length > sizeof(saved_rsdt)) {
|
|
printk(KERN_WARNING "ACPI: Too big length in RSDT: %d\n",
|
|
saved_rsdt.header.length);
|
|
goto out_err;
|
|
}
|
|
|
|
printk("Begin SRAT table scan....\n");
|
|
|
|
for (i = 0; i < tables; i++) {
|
|
/* Map in header, then map in full table length. */
|
|
header = (struct acpi_table_header *)
|
|
boot_ioremap(saved_rsdt.entry[i], sizeof(struct acpi_table_header));
|
|
if (!header)
|
|
break;
|
|
header = (struct acpi_table_header *)
|
|
boot_ioremap(saved_rsdt.entry[i], header->length);
|
|
if (!header)
|
|
break;
|
|
|
|
if (strncmp((char *) &header->signature, "SRAT", 4))
|
|
continue;
|
|
|
|
/* we've found the srat table. don't need to look at any more tables */
|
|
return acpi20_parse_srat((struct acpi_table_srat *)header);
|
|
}
|
|
out_err:
|
|
printk("failed to get NUMA memory information from SRAT table\n");
|
|
return 0;
|
|
}
|
|
|
|
/* For each node run the memory list to determine whether there are
|
|
* any memory holes. For each hole determine which ZONE they fall
|
|
* into.
|
|
*
|
|
* NOTE#1: this requires knowledge of the zone boundries and so
|
|
* _cannot_ be performed before those are calculated in setup_memory.
|
|
*
|
|
* NOTE#2: we rely on the fact that the memory chunks are ordered by
|
|
* start pfn number during setup.
|
|
*/
|
|
static void __init get_zholes_init(void)
|
|
{
|
|
int nid;
|
|
int c;
|
|
int first;
|
|
unsigned long end = 0;
|
|
|
|
for_each_online_node(nid) {
|
|
first = 1;
|
|
for (c = 0; c < num_memory_chunks; c++){
|
|
if (node_memory_chunk[c].nid == nid) {
|
|
if (first) {
|
|
end = node_memory_chunk[c].end_pfn;
|
|
first = 0;
|
|
|
|
} else {
|
|
/* Record any gap between this chunk
|
|
* and the previous chunk on this node
|
|
* against the zones it spans.
|
|
*/
|
|
chunk_to_zones(end,
|
|
node_memory_chunk[c].start_pfn,
|
|
&zholes_size[nid * MAX_NR_ZONES]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned long * __init get_zholes_size(int nid)
|
|
{
|
|
if (!zholes_size_init) {
|
|
zholes_size_init++;
|
|
get_zholes_init();
|
|
}
|
|
if (nid >= MAX_NUMNODES || !node_online(nid))
|
|
printk("%s: nid = %d is invalid/offline. num_online_nodes = %d",
|
|
__FUNCTION__, nid, num_online_nodes());
|
|
return &zholes_size[nid * MAX_NR_ZONES];
|
|
}
|