forked from luck/tmp_suning_uos_patched
d02b08f6e8
Signed-off-by: Stuart Menefy <stuart.menefy@st.com> Signed-off-by: Paul Mundt <lethal@linux-sh.org>
355 lines
10 KiB
C
355 lines
10 KiB
C
#ifndef __ASM_SH_IO_H
|
|
#define __ASM_SH_IO_H
|
|
|
|
/*
|
|
* Convention:
|
|
* read{b,w,l}/write{b,w,l} are for PCI,
|
|
* while in{b,w,l}/out{b,w,l} are for ISA
|
|
* These may (will) be platform specific function.
|
|
* In addition we have 'pausing' versions: in{b,w,l}_p/out{b,w,l}_p
|
|
* and 'string' versions: ins{b,w,l}/outs{b,w,l}
|
|
* For read{b,w,l} and write{b,w,l} there are also __raw versions, which
|
|
* do not have a memory barrier after them.
|
|
*
|
|
* In addition, we have
|
|
* ctrl_in{b,w,l}/ctrl_out{b,w,l} for SuperH specific I/O.
|
|
* which are processor specific.
|
|
*/
|
|
|
|
/*
|
|
* We follow the Alpha convention here:
|
|
* __inb expands to an inline function call (which calls via the mv)
|
|
* _inb is a real function call (note ___raw fns are _ version of __raw)
|
|
* inb by default expands to _inb, but the machine specific code may
|
|
* define it to __inb if it chooses.
|
|
*/
|
|
#include <asm/cache.h>
|
|
#include <asm/system.h>
|
|
#include <asm/addrspace.h>
|
|
#include <asm/machvec.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm-generic/iomap.h>
|
|
|
|
#ifdef __KERNEL__
|
|
|
|
/*
|
|
* Depending on which platform we are running on, we need different
|
|
* I/O functions.
|
|
*/
|
|
#define __IO_PREFIX generic
|
|
#include <asm/io_generic.h>
|
|
|
|
#define maybebadio(port) \
|
|
printk(KERN_ERR "bad PC-like io %s:%u for port 0x%lx at 0x%08x\n", \
|
|
__FUNCTION__, __LINE__, (port), (u32)__builtin_return_address(0))
|
|
|
|
/*
|
|
* Since boards are able to define their own set of I/O routines through
|
|
* their respective machine vector, we always wrap through the mv.
|
|
*
|
|
* Also, in the event that a board hasn't provided its own definition for
|
|
* a given routine, it will be wrapped to generic code at run-time.
|
|
*/
|
|
|
|
#define __inb(p) sh_mv.mv_inb((p))
|
|
#define __inw(p) sh_mv.mv_inw((p))
|
|
#define __inl(p) sh_mv.mv_inl((p))
|
|
#define __outb(x,p) sh_mv.mv_outb((x),(p))
|
|
#define __outw(x,p) sh_mv.mv_outw((x),(p))
|
|
#define __outl(x,p) sh_mv.mv_outl((x),(p))
|
|
|
|
#define __inb_p(p) sh_mv.mv_inb_p((p))
|
|
#define __inw_p(p) sh_mv.mv_inw_p((p))
|
|
#define __inl_p(p) sh_mv.mv_inl_p((p))
|
|
#define __outb_p(x,p) sh_mv.mv_outb_p((x),(p))
|
|
#define __outw_p(x,p) sh_mv.mv_outw_p((x),(p))
|
|
#define __outl_p(x,p) sh_mv.mv_outl_p((x),(p))
|
|
|
|
#define __insb(p,b,c) sh_mv.mv_insb((p), (b), (c))
|
|
#define __insw(p,b,c) sh_mv.mv_insw((p), (b), (c))
|
|
#define __insl(p,b,c) sh_mv.mv_insl((p), (b), (c))
|
|
#define __outsb(p,b,c) sh_mv.mv_outsb((p), (b), (c))
|
|
#define __outsw(p,b,c) sh_mv.mv_outsw((p), (b), (c))
|
|
#define __outsl(p,b,c) sh_mv.mv_outsl((p), (b), (c))
|
|
|
|
#define __readb(a) sh_mv.mv_readb((a))
|
|
#define __readw(a) sh_mv.mv_readw((a))
|
|
#define __readl(a) sh_mv.mv_readl((a))
|
|
#define __writeb(v,a) sh_mv.mv_writeb((v),(a))
|
|
#define __writew(v,a) sh_mv.mv_writew((v),(a))
|
|
#define __writel(v,a) sh_mv.mv_writel((v),(a))
|
|
|
|
#define inb __inb
|
|
#define inw __inw
|
|
#define inl __inl
|
|
#define outb __outb
|
|
#define outw __outw
|
|
#define outl __outl
|
|
|
|
#define inb_p __inb_p
|
|
#define inw_p __inw_p
|
|
#define inl_p __inl_p
|
|
#define outb_p __outb_p
|
|
#define outw_p __outw_p
|
|
#define outl_p __outl_p
|
|
|
|
#define insb __insb
|
|
#define insw __insw
|
|
#define insl __insl
|
|
#define outsb __outsb
|
|
#define outsw __outsw
|
|
#define outsl __outsl
|
|
|
|
#define __raw_readb(a) __readb((void __iomem *)(a))
|
|
#define __raw_readw(a) __readw((void __iomem *)(a))
|
|
#define __raw_readl(a) __readl((void __iomem *)(a))
|
|
#define __raw_writeb(v, a) __writeb(v, (void __iomem *)(a))
|
|
#define __raw_writew(v, a) __writew(v, (void __iomem *)(a))
|
|
#define __raw_writel(v, a) __writel(v, (void __iomem *)(a))
|
|
|
|
void __raw_writesl(unsigned long addr, const void *data, int longlen);
|
|
void __raw_readsl(unsigned long addr, void *data, int longlen);
|
|
|
|
/*
|
|
* The platform header files may define some of these macros to use
|
|
* the inlined versions where appropriate. These macros may also be
|
|
* redefined by userlevel programs.
|
|
*/
|
|
#ifdef __readb
|
|
# define readb(a) ({ unsigned int r_ = __raw_readb(a); mb(); r_; })
|
|
#endif
|
|
#ifdef __raw_readw
|
|
# define readw(a) ({ unsigned int r_ = __raw_readw(a); mb(); r_; })
|
|
#endif
|
|
#ifdef __raw_readl
|
|
# define readl(a) ({ unsigned int r_ = __raw_readl(a); mb(); r_; })
|
|
#endif
|
|
|
|
#ifdef __raw_writeb
|
|
# define writeb(v,a) ({ __raw_writeb((v),(a)); mb(); })
|
|
#endif
|
|
#ifdef __raw_writew
|
|
# define writew(v,a) ({ __raw_writew((v),(a)); mb(); })
|
|
#endif
|
|
#ifdef __raw_writel
|
|
# define writel(v,a) ({ __raw_writel((v),(a)); mb(); })
|
|
#endif
|
|
|
|
#define __BUILD_MEMORY_STRING(bwlq, type) \
|
|
\
|
|
static inline void writes##bwlq(volatile void __iomem *mem, \
|
|
const void *addr, unsigned int count) \
|
|
{ \
|
|
const volatile type *__addr = addr; \
|
|
\
|
|
while (count--) { \
|
|
__raw_write##bwlq(*__addr, mem); \
|
|
__addr++; \
|
|
} \
|
|
} \
|
|
\
|
|
static inline void reads##bwlq(volatile void __iomem *mem, void *addr, \
|
|
unsigned int count) \
|
|
{ \
|
|
volatile type *__addr = addr; \
|
|
\
|
|
while (count--) { \
|
|
*__addr = __raw_read##bwlq(mem); \
|
|
__addr++; \
|
|
} \
|
|
}
|
|
|
|
__BUILD_MEMORY_STRING(b, u8)
|
|
__BUILD_MEMORY_STRING(w, u16)
|
|
#define writesl __raw_writesl
|
|
#define readsl __raw_readsl
|
|
|
|
#define readb_relaxed(a) readb(a)
|
|
#define readw_relaxed(a) readw(a)
|
|
#define readl_relaxed(a) readl(a)
|
|
|
|
/* Simple MMIO */
|
|
#define ioread8(a) readb(a)
|
|
#define ioread16(a) readw(a)
|
|
#define ioread16be(a) be16_to_cpu(__raw_readw((a)))
|
|
#define ioread32(a) readl(a)
|
|
#define ioread32be(a) be32_to_cpu(__raw_readl((a)))
|
|
|
|
#define iowrite8(v,a) writeb((v),(a))
|
|
#define iowrite16(v,a) writew((v),(a))
|
|
#define iowrite16be(v,a) __raw_writew(cpu_to_be16((v)),(a))
|
|
#define iowrite32(v,a) writel((v),(a))
|
|
#define iowrite32be(v,a) __raw_writel(cpu_to_be32((v)),(a))
|
|
|
|
#define ioread8_rep(a,d,c) insb((a),(d),(c))
|
|
#define ioread16_rep(a,d,c) insw((a),(d),(c))
|
|
#define ioread32_rep(a,d,c) insl((a),(d),(c))
|
|
|
|
#define iowrite8_rep(a,s,c) outsb((a),(s),(c))
|
|
#define iowrite16_rep(a,s,c) outsw((a),(s),(c))
|
|
#define iowrite32_rep(a,s,c) outsl((a),(s),(c))
|
|
|
|
#define mmiowb() wmb() /* synco on SH-4A, otherwise a nop */
|
|
|
|
#define IO_SPACE_LIMIT 0xffffffff
|
|
|
|
/*
|
|
* This function provides a method for the generic case where a board-specific
|
|
* ioport_map simply needs to return the port + some arbitrary port base.
|
|
*
|
|
* We use this at board setup time to implicitly set the port base, and
|
|
* as a result, we can use the generic ioport_map.
|
|
*/
|
|
static inline void __set_io_port_base(unsigned long pbase)
|
|
{
|
|
extern unsigned long generic_io_base;
|
|
|
|
generic_io_base = pbase;
|
|
}
|
|
|
|
/* We really want to try and get these to memcpy etc */
|
|
extern void memcpy_fromio(void *, volatile void __iomem *, unsigned long);
|
|
extern void memcpy_toio(volatile void __iomem *, const void *, unsigned long);
|
|
extern void memset_io(volatile void __iomem *, int, unsigned long);
|
|
|
|
/* SuperH on-chip I/O functions */
|
|
static inline unsigned char ctrl_inb(unsigned long addr)
|
|
{
|
|
return *(volatile unsigned char*)addr;
|
|
}
|
|
|
|
static inline unsigned short ctrl_inw(unsigned long addr)
|
|
{
|
|
return *(volatile unsigned short*)addr;
|
|
}
|
|
|
|
static inline unsigned int ctrl_inl(unsigned long addr)
|
|
{
|
|
return *(volatile unsigned long*)addr;
|
|
}
|
|
|
|
static inline unsigned long long ctrl_inq(unsigned long addr)
|
|
{
|
|
return *(volatile unsigned long long*)addr;
|
|
}
|
|
|
|
static inline void ctrl_outb(unsigned char b, unsigned long addr)
|
|
{
|
|
*(volatile unsigned char*)addr = b;
|
|
}
|
|
|
|
static inline void ctrl_outw(unsigned short b, unsigned long addr)
|
|
{
|
|
*(volatile unsigned short*)addr = b;
|
|
}
|
|
|
|
static inline void ctrl_outl(unsigned int b, unsigned long addr)
|
|
{
|
|
*(volatile unsigned long*)addr = b;
|
|
}
|
|
|
|
static inline void ctrl_outq(unsigned long long b, unsigned long addr)
|
|
{
|
|
*(volatile unsigned long long*)addr = b;
|
|
}
|
|
|
|
static inline void ctrl_delay(void)
|
|
{
|
|
#ifdef P2SEG
|
|
ctrl_inw(P2SEG);
|
|
#endif
|
|
}
|
|
|
|
/* Quad-word real-mode I/O, don't ask.. */
|
|
unsigned long long peek_real_address_q(unsigned long long addr);
|
|
unsigned long long poke_real_address_q(unsigned long long addr,
|
|
unsigned long long val);
|
|
|
|
/* arch/sh/mm/ioremap_64.c */
|
|
unsigned long onchip_remap(unsigned long addr, unsigned long size,
|
|
const char *name);
|
|
extern void onchip_unmap(unsigned long vaddr);
|
|
|
|
#if !defined(CONFIG_MMU)
|
|
#define virt_to_phys(address) ((unsigned long)(address))
|
|
#define phys_to_virt(address) ((void *)(address))
|
|
#else
|
|
#define virt_to_phys(address) (__pa(address))
|
|
#define phys_to_virt(address) (__va(address))
|
|
#endif
|
|
|
|
/*
|
|
* On 32-bit SH, we traditionally have the whole physical address space
|
|
* mapped at all times (as MIPS does), so "ioremap()" and "iounmap()" do
|
|
* not need to do anything but place the address in the proper segment.
|
|
* This is true for P1 and P2 addresses, as well as some P3 ones.
|
|
* However, most of the P3 addresses and newer cores using extended
|
|
* addressing need to map through page tables, so the ioremap()
|
|
* implementation becomes a bit more complicated.
|
|
*
|
|
* See arch/sh/mm/ioremap.c for additional notes on this.
|
|
*
|
|
* We cheat a bit and always return uncachable areas until we've fixed
|
|
* the drivers to handle caching properly.
|
|
*
|
|
* On the SH-5 the concept of segmentation in the 1:1 PXSEG sense simply
|
|
* doesn't exist, so everything must go through page tables.
|
|
*/
|
|
#ifdef CONFIG_MMU
|
|
void __iomem *__ioremap(unsigned long offset, unsigned long size,
|
|
unsigned long flags);
|
|
void __iounmap(void __iomem *addr);
|
|
#else
|
|
#define __ioremap(offset, size, flags) ((void __iomem *)(offset))
|
|
#define __iounmap(addr) do { } while (0)
|
|
#endif /* CONFIG_MMU */
|
|
|
|
static inline void __iomem *
|
|
__ioremap_mode(unsigned long offset, unsigned long size, unsigned long flags)
|
|
{
|
|
#ifdef CONFIG_SUPERH32
|
|
unsigned long last_addr = offset + size - 1;
|
|
|
|
/*
|
|
* For P1 and P2 space this is trivial, as everything is already
|
|
* mapped. Uncached access for P1 addresses are done through P2.
|
|
* In the P3 case or for addresses outside of the 29-bit space,
|
|
* mapping must be done by the PMB or by using page tables.
|
|
*/
|
|
if (likely(PXSEG(offset) < P3SEG && PXSEG(last_addr) < P3SEG)) {
|
|
if (unlikely(flags & _PAGE_CACHABLE))
|
|
return (void __iomem *)P1SEGADDR(offset);
|
|
|
|
return (void __iomem *)P2SEGADDR(offset);
|
|
}
|
|
#endif
|
|
|
|
return __ioremap(offset, size, flags);
|
|
}
|
|
|
|
#define ioremap(offset, size) \
|
|
__ioremap_mode((offset), (size), 0)
|
|
#define ioremap_nocache(offset, size) \
|
|
__ioremap_mode((offset), (size), 0)
|
|
#define ioremap_cache(offset, size) \
|
|
__ioremap_mode((offset), (size), _PAGE_CACHABLE)
|
|
#define p3_ioremap(offset, size, flags) \
|
|
__ioremap((offset), (size), (flags))
|
|
#define iounmap(addr) \
|
|
__iounmap((addr))
|
|
|
|
/*
|
|
* Convert a physical pointer to a virtual kernel pointer for /dev/mem
|
|
* access
|
|
*/
|
|
#define xlate_dev_mem_ptr(p) __va(p)
|
|
|
|
/*
|
|
* Convert a virtual cached pointer to an uncached pointer
|
|
*/
|
|
#define xlate_dev_kmem_ptr(p) p
|
|
|
|
#endif /* __KERNEL__ */
|
|
|
|
#endif /* __ASM_SH_IO_H */
|