kernel_optimize_test/include/asm-s390/bitops.h
Linus Torvalds 1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00

1189 lines
36 KiB
C

#ifndef _S390_BITOPS_H
#define _S390_BITOPS_H
/*
* include/asm-s390/bitops.h
*
* S390 version
* Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation
* Author(s): Martin Schwidefsky (schwidefsky@de.ibm.com)
*
* Derived from "include/asm-i386/bitops.h"
* Copyright (C) 1992, Linus Torvalds
*
*/
#include <linux/config.h>
#include <linux/compiler.h>
/*
* 32 bit bitops format:
* bit 0 is the LSB of *addr; bit 31 is the MSB of *addr;
* bit 32 is the LSB of *(addr+4). That combined with the
* big endian byte order on S390 give the following bit
* order in memory:
* 1f 1e 1d 1c 1b 1a 19 18 17 16 15 14 13 12 11 10 \
* 0f 0e 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00
* after that follows the next long with bit numbers
* 3f 3e 3d 3c 3b 3a 39 38 37 36 35 34 33 32 31 30
* 2f 2e 2d 2c 2b 2a 29 28 27 26 25 24 23 22 21 20
* The reason for this bit ordering is the fact that
* in the architecture independent code bits operations
* of the form "flags |= (1 << bitnr)" are used INTERMIXED
* with operation of the form "set_bit(bitnr, flags)".
*
* 64 bit bitops format:
* bit 0 is the LSB of *addr; bit 63 is the MSB of *addr;
* bit 64 is the LSB of *(addr+8). That combined with the
* big endian byte order on S390 give the following bit
* order in memory:
* 3f 3e 3d 3c 3b 3a 39 38 37 36 35 34 33 32 31 30
* 2f 2e 2d 2c 2b 2a 29 28 27 26 25 24 23 22 21 20
* 1f 1e 1d 1c 1b 1a 19 18 17 16 15 14 13 12 11 10
* 0f 0e 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00
* after that follows the next long with bit numbers
* 7f 7e 7d 7c 7b 7a 79 78 77 76 75 74 73 72 71 70
* 6f 6e 6d 6c 6b 6a 69 68 67 66 65 64 63 62 61 60
* 5f 5e 5d 5c 5b 5a 59 58 57 56 55 54 53 52 51 50
* 4f 4e 4d 4c 4b 4a 49 48 47 46 45 44 43 42 41 40
* The reason for this bit ordering is the fact that
* in the architecture independent code bits operations
* of the form "flags |= (1 << bitnr)" are used INTERMIXED
* with operation of the form "set_bit(bitnr, flags)".
*/
/* set ALIGN_CS to 1 if the SMP safe bit operations should
* align the address to 4 byte boundary. It seems to work
* without the alignment.
*/
#ifdef __KERNEL__
#define ALIGN_CS 0
#else
#define ALIGN_CS 1
#ifndef CONFIG_SMP
#error "bitops won't work without CONFIG_SMP"
#endif
#endif
/* bitmap tables from arch/S390/kernel/bitmap.S */
extern const char _oi_bitmap[];
extern const char _ni_bitmap[];
extern const char _zb_findmap[];
extern const char _sb_findmap[];
#ifndef __s390x__
#define __BITOPS_ALIGN 3
#define __BITOPS_WORDSIZE 32
#define __BITOPS_OR "or"
#define __BITOPS_AND "nr"
#define __BITOPS_XOR "xr"
#define __BITOPS_LOOP(__old, __new, __addr, __val, __op_string) \
__asm__ __volatile__(" l %0,0(%4)\n" \
"0: lr %1,%0\n" \
__op_string " %1,%3\n" \
" cs %0,%1,0(%4)\n" \
" jl 0b" \
: "=&d" (__old), "=&d" (__new), \
"=m" (*(unsigned long *) __addr) \
: "d" (__val), "a" (__addr), \
"m" (*(unsigned long *) __addr) : "cc" );
#else /* __s390x__ */
#define __BITOPS_ALIGN 7
#define __BITOPS_WORDSIZE 64
#define __BITOPS_OR "ogr"
#define __BITOPS_AND "ngr"
#define __BITOPS_XOR "xgr"
#define __BITOPS_LOOP(__old, __new, __addr, __val, __op_string) \
__asm__ __volatile__(" lg %0,0(%4)\n" \
"0: lgr %1,%0\n" \
__op_string " %1,%3\n" \
" csg %0,%1,0(%4)\n" \
" jl 0b" \
: "=&d" (__old), "=&d" (__new), \
"=m" (*(unsigned long *) __addr) \
: "d" (__val), "a" (__addr), \
"m" (*(unsigned long *) __addr) : "cc" );
#endif /* __s390x__ */
#define __BITOPS_WORDS(bits) (((bits)+__BITOPS_WORDSIZE-1)/__BITOPS_WORDSIZE)
#define __BITOPS_BARRIER() __asm__ __volatile__ ( "" : : : "memory" )
#ifdef CONFIG_SMP
/*
* SMP safe set_bit routine based on compare and swap (CS)
*/
static inline void set_bit_cs(unsigned long nr, volatile unsigned long *ptr)
{
unsigned long addr, old, new, mask;
addr = (unsigned long) ptr;
#if ALIGN_CS == 1
nr += (addr & __BITOPS_ALIGN) << 3; /* add alignment to bit number */
addr ^= addr & __BITOPS_ALIGN; /* align address to 8 */
#endif
/* calculate address for CS */
addr += (nr ^ (nr & (__BITOPS_WORDSIZE - 1))) >> 3;
/* make OR mask */
mask = 1UL << (nr & (__BITOPS_WORDSIZE - 1));
/* Do the atomic update. */
__BITOPS_LOOP(old, new, addr, mask, __BITOPS_OR);
}
/*
* SMP safe clear_bit routine based on compare and swap (CS)
*/
static inline void clear_bit_cs(unsigned long nr, volatile unsigned long *ptr)
{
unsigned long addr, old, new, mask;
addr = (unsigned long) ptr;
#if ALIGN_CS == 1
nr += (addr & __BITOPS_ALIGN) << 3; /* add alignment to bit number */
addr ^= addr & __BITOPS_ALIGN; /* align address to 8 */
#endif
/* calculate address for CS */
addr += (nr ^ (nr & (__BITOPS_WORDSIZE - 1))) >> 3;
/* make AND mask */
mask = ~(1UL << (nr & (__BITOPS_WORDSIZE - 1)));
/* Do the atomic update. */
__BITOPS_LOOP(old, new, addr, mask, __BITOPS_AND);
}
/*
* SMP safe change_bit routine based on compare and swap (CS)
*/
static inline void change_bit_cs(unsigned long nr, volatile unsigned long *ptr)
{
unsigned long addr, old, new, mask;
addr = (unsigned long) ptr;
#if ALIGN_CS == 1
nr += (addr & __BITOPS_ALIGN) << 3; /* add alignment to bit number */
addr ^= addr & __BITOPS_ALIGN; /* align address to 8 */
#endif
/* calculate address for CS */
addr += (nr ^ (nr & (__BITOPS_WORDSIZE - 1))) >> 3;
/* make XOR mask */
mask = 1UL << (nr & (__BITOPS_WORDSIZE - 1));
/* Do the atomic update. */
__BITOPS_LOOP(old, new, addr, mask, __BITOPS_XOR);
}
/*
* SMP safe test_and_set_bit routine based on compare and swap (CS)
*/
static inline int
test_and_set_bit_cs(unsigned long nr, volatile unsigned long *ptr)
{
unsigned long addr, old, new, mask;
addr = (unsigned long) ptr;
#if ALIGN_CS == 1
nr += (addr & __BITOPS_ALIGN) << 3; /* add alignment to bit number */
addr ^= addr & __BITOPS_ALIGN; /* align address to 8 */
#endif
/* calculate address for CS */
addr += (nr ^ (nr & (__BITOPS_WORDSIZE - 1))) >> 3;
/* make OR/test mask */
mask = 1UL << (nr & (__BITOPS_WORDSIZE - 1));
/* Do the atomic update. */
__BITOPS_LOOP(old, new, addr, mask, __BITOPS_OR);
__BITOPS_BARRIER();
return (old & mask) != 0;
}
/*
* SMP safe test_and_clear_bit routine based on compare and swap (CS)
*/
static inline int
test_and_clear_bit_cs(unsigned long nr, volatile unsigned long *ptr)
{
unsigned long addr, old, new, mask;
addr = (unsigned long) ptr;
#if ALIGN_CS == 1
nr += (addr & __BITOPS_ALIGN) << 3; /* add alignment to bit number */
addr ^= addr & __BITOPS_ALIGN; /* align address to 8 */
#endif
/* calculate address for CS */
addr += (nr ^ (nr & (__BITOPS_WORDSIZE - 1))) >> 3;
/* make AND/test mask */
mask = ~(1UL << (nr & (__BITOPS_WORDSIZE - 1)));
/* Do the atomic update. */
__BITOPS_LOOP(old, new, addr, mask, __BITOPS_AND);
__BITOPS_BARRIER();
return (old ^ new) != 0;
}
/*
* SMP safe test_and_change_bit routine based on compare and swap (CS)
*/
static inline int
test_and_change_bit_cs(unsigned long nr, volatile unsigned long *ptr)
{
unsigned long addr, old, new, mask;
addr = (unsigned long) ptr;
#if ALIGN_CS == 1
nr += (addr & __BITOPS_ALIGN) << 3; /* add alignment to bit number */
addr ^= addr & __BITOPS_ALIGN; /* align address to 8 */
#endif
/* calculate address for CS */
addr += (nr ^ (nr & (__BITOPS_WORDSIZE - 1))) >> 3;
/* make XOR/test mask */
mask = 1UL << (nr & (__BITOPS_WORDSIZE - 1));
/* Do the atomic update. */
__BITOPS_LOOP(old, new, addr, mask, __BITOPS_XOR);
__BITOPS_BARRIER();
return (old & mask) != 0;
}
#endif /* CONFIG_SMP */
/*
* fast, non-SMP set_bit routine
*/
static inline void __set_bit(unsigned long nr, volatile unsigned long *ptr)
{
unsigned long addr;
addr = (unsigned long) ptr + ((nr ^ (__BITOPS_WORDSIZE - 8)) >> 3);
asm volatile("oc 0(1,%1),0(%2)"
: "=m" (*(char *) addr)
: "a" (addr), "a" (_oi_bitmap + (nr & 7)),
"m" (*(char *) addr) : "cc" );
}
static inline void
__constant_set_bit(const unsigned long nr, volatile unsigned long *ptr)
{
unsigned long addr;
addr = ((unsigned long) ptr) + ((nr ^ (__BITOPS_WORDSIZE - 8)) >> 3);
switch (nr&7) {
case 0:
asm volatile ("oi 0(%1),0x01" : "=m" (*(char *) addr)
: "a" (addr), "m" (*(char *) addr) : "cc" );
break;
case 1:
asm volatile ("oi 0(%1),0x02" : "=m" (*(char *) addr)
: "a" (addr), "m" (*(char *) addr) : "cc" );
break;
case 2:
asm volatile ("oi 0(%1),0x04" : "=m" (*(char *) addr)
: "a" (addr), "m" (*(char *) addr) : "cc" );
break;
case 3:
asm volatile ("oi 0(%1),0x08" : "=m" (*(char *) addr)
: "a" (addr), "m" (*(char *) addr) : "cc" );
break;
case 4:
asm volatile ("oi 0(%1),0x10" : "=m" (*(char *) addr)
: "a" (addr), "m" (*(char *) addr) : "cc" );
break;
case 5:
asm volatile ("oi 0(%1),0x20" : "=m" (*(char *) addr)
: "a" (addr), "m" (*(char *) addr) : "cc" );
break;
case 6:
asm volatile ("oi 0(%1),0x40" : "=m" (*(char *) addr)
: "a" (addr), "m" (*(char *) addr) : "cc" );
break;
case 7:
asm volatile ("oi 0(%1),0x80" : "=m" (*(char *) addr)
: "a" (addr), "m" (*(char *) addr) : "cc" );
break;
}
}
#define set_bit_simple(nr,addr) \
(__builtin_constant_p((nr)) ? \
__constant_set_bit((nr),(addr)) : \
__set_bit((nr),(addr)) )
/*
* fast, non-SMP clear_bit routine
*/
static inline void
__clear_bit(unsigned long nr, volatile unsigned long *ptr)
{
unsigned long addr;
addr = (unsigned long) ptr + ((nr ^ (__BITOPS_WORDSIZE - 8)) >> 3);
asm volatile("nc 0(1,%1),0(%2)"
: "=m" (*(char *) addr)
: "a" (addr), "a" (_ni_bitmap + (nr & 7)),
"m" (*(char *) addr) : "cc" );
}
static inline void
__constant_clear_bit(const unsigned long nr, volatile unsigned long *ptr)
{
unsigned long addr;
addr = ((unsigned long) ptr) + ((nr ^ (__BITOPS_WORDSIZE - 8)) >> 3);
switch (nr&7) {
case 0:
asm volatile ("ni 0(%1),0xFE" : "=m" (*(char *) addr)
: "a" (addr), "m" (*(char *) addr) : "cc" );
break;
case 1:
asm volatile ("ni 0(%1),0xFD": "=m" (*(char *) addr)
: "a" (addr), "m" (*(char *) addr) : "cc" );
break;
case 2:
asm volatile ("ni 0(%1),0xFB" : "=m" (*(char *) addr)
: "a" (addr), "m" (*(char *) addr) : "cc" );
break;
case 3:
asm volatile ("ni 0(%1),0xF7" : "=m" (*(char *) addr)
: "a" (addr), "m" (*(char *) addr) : "cc" );
break;
case 4:
asm volatile ("ni 0(%1),0xEF" : "=m" (*(char *) addr)
: "a" (addr), "m" (*(char *) addr) : "cc" );
break;
case 5:
asm volatile ("ni 0(%1),0xDF" : "=m" (*(char *) addr)
: "a" (addr), "m" (*(char *) addr) : "cc" );
break;
case 6:
asm volatile ("ni 0(%1),0xBF" : "=m" (*(char *) addr)
: "a" (addr), "m" (*(char *) addr) : "cc" );
break;
case 7:
asm volatile ("ni 0(%1),0x7F" : "=m" (*(char *) addr)
: "a" (addr), "m" (*(char *) addr) : "cc" );
break;
}
}
#define clear_bit_simple(nr,addr) \
(__builtin_constant_p((nr)) ? \
__constant_clear_bit((nr),(addr)) : \
__clear_bit((nr),(addr)) )
/*
* fast, non-SMP change_bit routine
*/
static inline void __change_bit(unsigned long nr, volatile unsigned long *ptr)
{
unsigned long addr;
addr = (unsigned long) ptr + ((nr ^ (__BITOPS_WORDSIZE - 8)) >> 3);
asm volatile("xc 0(1,%1),0(%2)"
: "=m" (*(char *) addr)
: "a" (addr), "a" (_oi_bitmap + (nr & 7)),
"m" (*(char *) addr) : "cc" );
}
static inline void
__constant_change_bit(const unsigned long nr, volatile unsigned long *ptr)
{
unsigned long addr;
addr = ((unsigned long) ptr) + ((nr ^ (__BITOPS_WORDSIZE - 8)) >> 3);
switch (nr&7) {
case 0:
asm volatile ("xi 0(%1),0x01" : "=m" (*(char *) addr)
: "a" (addr), "m" (*(char *) addr) : "cc" );
break;
case 1:
asm volatile ("xi 0(%1),0x02" : "=m" (*(char *) addr)
: "a" (addr), "m" (*(char *) addr) : "cc" );
break;
case 2:
asm volatile ("xi 0(%1),0x04" : "=m" (*(char *) addr)
: "a" (addr), "m" (*(char *) addr) : "cc" );
break;
case 3:
asm volatile ("xi 0(%1),0x08" : "=m" (*(char *) addr)
: "a" (addr), "m" (*(char *) addr) : "cc" );
break;
case 4:
asm volatile ("xi 0(%1),0x10" : "=m" (*(char *) addr)
: "a" (addr), "m" (*(char *) addr) : "cc" );
break;
case 5:
asm volatile ("xi 0(%1),0x20" : "=m" (*(char *) addr)
: "a" (addr), "m" (*(char *) addr) : "cc" );
break;
case 6:
asm volatile ("xi 0(%1),0x40" : "=m" (*(char *) addr)
: "a" (addr), "m" (*(char *) addr) : "cc" );
break;
case 7:
asm volatile ("xi 0(%1),0x80" : "=m" (*(char *) addr)
: "a" (addr), "m" (*(char *) addr) : "cc" );
break;
}
}
#define change_bit_simple(nr,addr) \
(__builtin_constant_p((nr)) ? \
__constant_change_bit((nr),(addr)) : \
__change_bit((nr),(addr)) )
/*
* fast, non-SMP test_and_set_bit routine
*/
static inline int
test_and_set_bit_simple(unsigned long nr, volatile unsigned long *ptr)
{
unsigned long addr;
unsigned char ch;
addr = (unsigned long) ptr + ((nr ^ (__BITOPS_WORDSIZE - 8)) >> 3);
ch = *(unsigned char *) addr;
asm volatile("oc 0(1,%1),0(%2)"
: "=m" (*(char *) addr)
: "a" (addr), "a" (_oi_bitmap + (nr & 7)),
"m" (*(char *) addr) : "cc", "memory" );
return (ch >> (nr & 7)) & 1;
}
#define __test_and_set_bit(X,Y) test_and_set_bit_simple(X,Y)
/*
* fast, non-SMP test_and_clear_bit routine
*/
static inline int
test_and_clear_bit_simple(unsigned long nr, volatile unsigned long *ptr)
{
unsigned long addr;
unsigned char ch;
addr = (unsigned long) ptr + ((nr ^ (__BITOPS_WORDSIZE - 8)) >> 3);
ch = *(unsigned char *) addr;
asm volatile("nc 0(1,%1),0(%2)"
: "=m" (*(char *) addr)
: "a" (addr), "a" (_ni_bitmap + (nr & 7)),
"m" (*(char *) addr) : "cc", "memory" );
return (ch >> (nr & 7)) & 1;
}
#define __test_and_clear_bit(X,Y) test_and_clear_bit_simple(X,Y)
/*
* fast, non-SMP test_and_change_bit routine
*/
static inline int
test_and_change_bit_simple(unsigned long nr, volatile unsigned long *ptr)
{
unsigned long addr;
unsigned char ch;
addr = (unsigned long) ptr + ((nr ^ (__BITOPS_WORDSIZE - 8)) >> 3);
ch = *(unsigned char *) addr;
asm volatile("xc 0(1,%1),0(%2)"
: "=m" (*(char *) addr)
: "a" (addr), "a" (_oi_bitmap + (nr & 7)),
"m" (*(char *) addr) : "cc", "memory" );
return (ch >> (nr & 7)) & 1;
}
#define __test_and_change_bit(X,Y) test_and_change_bit_simple(X,Y)
#ifdef CONFIG_SMP
#define set_bit set_bit_cs
#define clear_bit clear_bit_cs
#define change_bit change_bit_cs
#define test_and_set_bit test_and_set_bit_cs
#define test_and_clear_bit test_and_clear_bit_cs
#define test_and_change_bit test_and_change_bit_cs
#else
#define set_bit set_bit_simple
#define clear_bit clear_bit_simple
#define change_bit change_bit_simple
#define test_and_set_bit test_and_set_bit_simple
#define test_and_clear_bit test_and_clear_bit_simple
#define test_and_change_bit test_and_change_bit_simple
#endif
/*
* This routine doesn't need to be atomic.
*/
static inline int __test_bit(unsigned long nr, const volatile unsigned long *ptr)
{
unsigned long addr;
unsigned char ch;
addr = (unsigned long) ptr + ((nr ^ (__BITOPS_WORDSIZE - 8)) >> 3);
ch = *(volatile unsigned char *) addr;
return (ch >> (nr & 7)) & 1;
}
static inline int
__constant_test_bit(unsigned long nr, const volatile unsigned long *addr) {
return (((volatile char *) addr)
[(nr^(__BITOPS_WORDSIZE-8))>>3] & (1<<(nr&7)));
}
#define test_bit(nr,addr) \
(__builtin_constant_p((nr)) ? \
__constant_test_bit((nr),(addr)) : \
__test_bit((nr),(addr)) )
#ifndef __s390x__
/*
* Find-bit routines..
*/
static inline int
find_first_zero_bit(const unsigned long * addr, unsigned int size)
{
typedef struct { long _[__BITOPS_WORDS(size)]; } addrtype;
unsigned long cmp, count;
unsigned int res;
if (!size)
return 0;
__asm__(" lhi %1,-1\n"
" lr %2,%3\n"
" slr %0,%0\n"
" ahi %2,31\n"
" srl %2,5\n"
"0: c %1,0(%0,%4)\n"
" jne 1f\n"
" ahi %0,4\n"
" brct %2,0b\n"
" lr %0,%3\n"
" j 4f\n"
"1: l %2,0(%0,%4)\n"
" sll %0,3\n"
" lhi %1,0xff\n"
" tml %2,0xffff\n"
" jno 2f\n"
" ahi %0,16\n"
" srl %2,16\n"
"2: tml %2,0x00ff\n"
" jno 3f\n"
" ahi %0,8\n"
" srl %2,8\n"
"3: nr %2,%1\n"
" ic %2,0(%2,%5)\n"
" alr %0,%2\n"
"4:"
: "=&a" (res), "=&d" (cmp), "=&a" (count)
: "a" (size), "a" (addr), "a" (&_zb_findmap),
"m" (*(addrtype *) addr) : "cc" );
return (res < size) ? res : size;
}
static inline int
find_first_bit(const unsigned long * addr, unsigned int size)
{
typedef struct { long _[__BITOPS_WORDS(size)]; } addrtype;
unsigned long cmp, count;
unsigned int res;
if (!size)
return 0;
__asm__(" slr %1,%1\n"
" lr %2,%3\n"
" slr %0,%0\n"
" ahi %2,31\n"
" srl %2,5\n"
"0: c %1,0(%0,%4)\n"
" jne 1f\n"
" ahi %0,4\n"
" brct %2,0b\n"
" lr %0,%3\n"
" j 4f\n"
"1: l %2,0(%0,%4)\n"
" sll %0,3\n"
" lhi %1,0xff\n"
" tml %2,0xffff\n"
" jnz 2f\n"
" ahi %0,16\n"
" srl %2,16\n"
"2: tml %2,0x00ff\n"
" jnz 3f\n"
" ahi %0,8\n"
" srl %2,8\n"
"3: nr %2,%1\n"
" ic %2,0(%2,%5)\n"
" alr %0,%2\n"
"4:"
: "=&a" (res), "=&d" (cmp), "=&a" (count)
: "a" (size), "a" (addr), "a" (&_sb_findmap),
"m" (*(addrtype *) addr) : "cc" );
return (res < size) ? res : size;
}
static inline int
find_next_zero_bit (const unsigned long * addr, int size, int offset)
{
unsigned long * p = ((unsigned long *) addr) + (offset >> 5);
unsigned long bitvec, reg;
int set, bit = offset & 31, res;
if (bit) {
/*
* Look for zero in first word
*/
bitvec = (*p) >> bit;
__asm__(" slr %0,%0\n"
" lhi %2,0xff\n"
" tml %1,0xffff\n"
" jno 0f\n"
" ahi %0,16\n"
" srl %1,16\n"
"0: tml %1,0x00ff\n"
" jno 1f\n"
" ahi %0,8\n"
" srl %1,8\n"
"1: nr %1,%2\n"
" ic %1,0(%1,%3)\n"
" alr %0,%1"
: "=&d" (set), "+a" (bitvec), "=&d" (reg)
: "a" (&_zb_findmap) : "cc" );
if (set < (32 - bit))
return set + offset;
offset += 32 - bit;
p++;
}
/*
* No zero yet, search remaining full words for a zero
*/
res = find_first_zero_bit (p, size - 32 * (p - (unsigned long *) addr));
return (offset + res);
}
static inline int
find_next_bit (const unsigned long * addr, int size, int offset)
{
unsigned long * p = ((unsigned long *) addr) + (offset >> 5);
unsigned long bitvec, reg;
int set, bit = offset & 31, res;
if (bit) {
/*
* Look for set bit in first word
*/
bitvec = (*p) >> bit;
__asm__(" slr %0,%0\n"
" lhi %2,0xff\n"
" tml %1,0xffff\n"
" jnz 0f\n"
" ahi %0,16\n"
" srl %1,16\n"
"0: tml %1,0x00ff\n"
" jnz 1f\n"
" ahi %0,8\n"
" srl %1,8\n"
"1: nr %1,%2\n"
" ic %1,0(%1,%3)\n"
" alr %0,%1"
: "=&d" (set), "+a" (bitvec), "=&d" (reg)
: "a" (&_sb_findmap) : "cc" );
if (set < (32 - bit))
return set + offset;
offset += 32 - bit;
p++;
}
/*
* No set bit yet, search remaining full words for a bit
*/
res = find_first_bit (p, size - 32 * (p - (unsigned long *) addr));
return (offset + res);
}
#else /* __s390x__ */
/*
* Find-bit routines..
*/
static inline unsigned long
find_first_zero_bit(const unsigned long * addr, unsigned long size)
{
typedef struct { long _[__BITOPS_WORDS(size)]; } addrtype;
unsigned long res, cmp, count;
if (!size)
return 0;
__asm__(" lghi %1,-1\n"
" lgr %2,%3\n"
" slgr %0,%0\n"
" aghi %2,63\n"
" srlg %2,%2,6\n"
"0: cg %1,0(%0,%4)\n"
" jne 1f\n"
" aghi %0,8\n"
" brct %2,0b\n"
" lgr %0,%3\n"
" j 5f\n"
"1: lg %2,0(%0,%4)\n"
" sllg %0,%0,3\n"
" clr %2,%1\n"
" jne 2f\n"
" aghi %0,32\n"
" srlg %2,%2,32\n"
"2: lghi %1,0xff\n"
" tmll %2,0xffff\n"
" jno 3f\n"
" aghi %0,16\n"
" srl %2,16\n"
"3: tmll %2,0x00ff\n"
" jno 4f\n"
" aghi %0,8\n"
" srl %2,8\n"
"4: ngr %2,%1\n"
" ic %2,0(%2,%5)\n"
" algr %0,%2\n"
"5:"
: "=&a" (res), "=&d" (cmp), "=&a" (count)
: "a" (size), "a" (addr), "a" (&_zb_findmap),
"m" (*(addrtype *) addr) : "cc" );
return (res < size) ? res : size;
}
static inline unsigned long
find_first_bit(const unsigned long * addr, unsigned long size)
{
typedef struct { long _[__BITOPS_WORDS(size)]; } addrtype;
unsigned long res, cmp, count;
if (!size)
return 0;
__asm__(" slgr %1,%1\n"
" lgr %2,%3\n"
" slgr %0,%0\n"
" aghi %2,63\n"
" srlg %2,%2,6\n"
"0: cg %1,0(%0,%4)\n"
" jne 1f\n"
" aghi %0,8\n"
" brct %2,0b\n"
" lgr %0,%3\n"
" j 5f\n"
"1: lg %2,0(%0,%4)\n"
" sllg %0,%0,3\n"
" clr %2,%1\n"
" jne 2f\n"
" aghi %0,32\n"
" srlg %2,%2,32\n"
"2: lghi %1,0xff\n"
" tmll %2,0xffff\n"
" jnz 3f\n"
" aghi %0,16\n"
" srl %2,16\n"
"3: tmll %2,0x00ff\n"
" jnz 4f\n"
" aghi %0,8\n"
" srl %2,8\n"
"4: ngr %2,%1\n"
" ic %2,0(%2,%5)\n"
" algr %0,%2\n"
"5:"
: "=&a" (res), "=&d" (cmp), "=&a" (count)
: "a" (size), "a" (addr), "a" (&_sb_findmap),
"m" (*(addrtype *) addr) : "cc" );
return (res < size) ? res : size;
}
static inline unsigned long
find_next_zero_bit (const unsigned long * addr, unsigned long size, unsigned long offset)
{
unsigned long * p = ((unsigned long *) addr) + (offset >> 6);
unsigned long bitvec, reg;
unsigned long set, bit = offset & 63, res;
if (bit) {
/*
* Look for zero in first word
*/
bitvec = (*p) >> bit;
__asm__(" lhi %2,-1\n"
" slgr %0,%0\n"
" clr %1,%2\n"
" jne 0f\n"
" aghi %0,32\n"
" srlg %1,%1,32\n"
"0: lghi %2,0xff\n"
" tmll %1,0xffff\n"
" jno 1f\n"
" aghi %0,16\n"
" srlg %1,%1,16\n"
"1: tmll %1,0x00ff\n"
" jno 2f\n"
" aghi %0,8\n"
" srlg %1,%1,8\n"
"2: ngr %1,%2\n"
" ic %1,0(%1,%3)\n"
" algr %0,%1"
: "=&d" (set), "+a" (bitvec), "=&d" (reg)
: "a" (&_zb_findmap) : "cc" );
if (set < (64 - bit))
return set + offset;
offset += 64 - bit;
p++;
}
/*
* No zero yet, search remaining full words for a zero
*/
res = find_first_zero_bit (p, size - 64 * (p - (unsigned long *) addr));
return (offset + res);
}
static inline unsigned long
find_next_bit (const unsigned long * addr, unsigned long size, unsigned long offset)
{
unsigned long * p = ((unsigned long *) addr) + (offset >> 6);
unsigned long bitvec, reg;
unsigned long set, bit = offset & 63, res;
if (bit) {
/*
* Look for zero in first word
*/
bitvec = (*p) >> bit;
__asm__(" slgr %0,%0\n"
" ltr %1,%1\n"
" jnz 0f\n"
" aghi %0,32\n"
" srlg %1,%1,32\n"
"0: lghi %2,0xff\n"
" tmll %1,0xffff\n"
" jnz 1f\n"
" aghi %0,16\n"
" srlg %1,%1,16\n"
"1: tmll %1,0x00ff\n"
" jnz 2f\n"
" aghi %0,8\n"
" srlg %1,%1,8\n"
"2: ngr %1,%2\n"
" ic %1,0(%1,%3)\n"
" algr %0,%1"
: "=&d" (set), "+a" (bitvec), "=&d" (reg)
: "a" (&_sb_findmap) : "cc" );
if (set < (64 - bit))
return set + offset;
offset += 64 - bit;
p++;
}
/*
* No set bit yet, search remaining full words for a bit
*/
res = find_first_bit (p, size - 64 * (p - (unsigned long *) addr));
return (offset + res);
}
#endif /* __s390x__ */
/*
* ffz = Find First Zero in word. Undefined if no zero exists,
* so code should check against ~0UL first..
*/
static inline unsigned long ffz(unsigned long word)
{
unsigned long bit = 0;
#ifdef __s390x__
if (likely((word & 0xffffffff) == 0xffffffff)) {
word >>= 32;
bit += 32;
}
#endif
if (likely((word & 0xffff) == 0xffff)) {
word >>= 16;
bit += 16;
}
if (likely((word & 0xff) == 0xff)) {
word >>= 8;
bit += 8;
}
return bit + _zb_findmap[word & 0xff];
}
/*
* __ffs = find first bit in word. Undefined if no bit exists,
* so code should check against 0UL first..
*/
static inline unsigned long __ffs (unsigned long word)
{
unsigned long bit = 0;
#ifdef __s390x__
if (likely((word & 0xffffffff) == 0)) {
word >>= 32;
bit += 32;
}
#endif
if (likely((word & 0xffff) == 0)) {
word >>= 16;
bit += 16;
}
if (likely((word & 0xff) == 0)) {
word >>= 8;
bit += 8;
}
return bit + _sb_findmap[word & 0xff];
}
/*
* Every architecture must define this function. It's the fastest
* way of searching a 140-bit bitmap where the first 100 bits are
* unlikely to be set. It's guaranteed that at least one of the 140
* bits is cleared.
*/
static inline int sched_find_first_bit(unsigned long *b)
{
return find_first_bit(b, 140);
}
/*
* ffs: find first bit set. This is defined the same way as
* the libc and compiler builtin ffs routines, therefore
* differs in spirit from the above ffz (man ffs).
*/
#define ffs(x) generic_ffs(x)
/*
* fls: find last bit set.
*/
#define fls(x) generic_fls(x)
/*
* hweightN: returns the hamming weight (i.e. the number
* of bits set) of a N-bit word
*/
#define hweight64(x) \
({ \
unsigned long __x = (x); \
unsigned int __w; \
__w = generic_hweight32((unsigned int) __x); \
__w += generic_hweight32((unsigned int) (__x>>32)); \
__w; \
})
#define hweight32(x) generic_hweight32(x)
#define hweight16(x) generic_hweight16(x)
#define hweight8(x) generic_hweight8(x)
#ifdef __KERNEL__
/*
* ATTENTION: intel byte ordering convention for ext2 and minix !!
* bit 0 is the LSB of addr; bit 31 is the MSB of addr;
* bit 32 is the LSB of (addr+4).
* That combined with the little endian byte order of Intel gives the
* following bit order in memory:
* 07 06 05 04 03 02 01 00 15 14 13 12 11 10 09 08 \
* 23 22 21 20 19 18 17 16 31 30 29 28 27 26 25 24
*/
#define ext2_set_bit(nr, addr) \
test_and_set_bit((nr)^(__BITOPS_WORDSIZE - 8), (unsigned long *)addr)
#define ext2_set_bit_atomic(lock, nr, addr) \
test_and_set_bit((nr)^(__BITOPS_WORDSIZE - 8), (unsigned long *)addr)
#define ext2_clear_bit(nr, addr) \
test_and_clear_bit((nr)^(__BITOPS_WORDSIZE - 8), (unsigned long *)addr)
#define ext2_clear_bit_atomic(lock, nr, addr) \
test_and_clear_bit((nr)^(__BITOPS_WORDSIZE - 8), (unsigned long *)addr)
#define ext2_test_bit(nr, addr) \
test_bit((nr)^(__BITOPS_WORDSIZE - 8), (unsigned long *)addr)
#ifndef __s390x__
static inline int
ext2_find_first_zero_bit(void *vaddr, unsigned int size)
{
typedef struct { long _[__BITOPS_WORDS(size)]; } addrtype;
unsigned long cmp, count;
unsigned int res;
if (!size)
return 0;
__asm__(" lhi %1,-1\n"
" lr %2,%3\n"
" ahi %2,31\n"
" srl %2,5\n"
" slr %0,%0\n"
"0: cl %1,0(%0,%4)\n"
" jne 1f\n"
" ahi %0,4\n"
" brct %2,0b\n"
" lr %0,%3\n"
" j 4f\n"
"1: l %2,0(%0,%4)\n"
" sll %0,3\n"
" ahi %0,24\n"
" lhi %1,0xff\n"
" tmh %2,0xffff\n"
" jo 2f\n"
" ahi %0,-16\n"
" srl %2,16\n"
"2: tml %2,0xff00\n"
" jo 3f\n"
" ahi %0,-8\n"
" srl %2,8\n"
"3: nr %2,%1\n"
" ic %2,0(%2,%5)\n"
" alr %0,%2\n"
"4:"
: "=&a" (res), "=&d" (cmp), "=&a" (count)
: "a" (size), "a" (vaddr), "a" (&_zb_findmap),
"m" (*(addrtype *) vaddr) : "cc" );
return (res < size) ? res : size;
}
static inline int
ext2_find_next_zero_bit(void *vaddr, unsigned int size, unsigned offset)
{
unsigned long *addr = vaddr;
unsigned long *p = addr + (offset >> 5);
unsigned long word, reg;
unsigned int bit = offset & 31UL, res;
if (offset >= size)
return size;
if (bit) {
__asm__(" ic %0,0(%1)\n"
" icm %0,2,1(%1)\n"
" icm %0,4,2(%1)\n"
" icm %0,8,3(%1)"
: "=&a" (word) : "a" (p) : "cc" );
word >>= bit;
res = bit;
/* Look for zero in first longword */
__asm__(" lhi %2,0xff\n"
" tml %1,0xffff\n"
" jno 0f\n"
" ahi %0,16\n"
" srl %1,16\n"
"0: tml %1,0x00ff\n"
" jno 1f\n"
" ahi %0,8\n"
" srl %1,8\n"
"1: nr %1,%2\n"
" ic %1,0(%1,%3)\n"
" alr %0,%1"
: "+&d" (res), "+&a" (word), "=&d" (reg)
: "a" (&_zb_findmap) : "cc" );
if (res < 32)
return (p - addr)*32 + res;
p++;
}
/* No zero yet, search remaining full bytes for a zero */
res = ext2_find_first_zero_bit (p, size - 32 * (p - addr));
return (p - addr) * 32 + res;
}
#else /* __s390x__ */
static inline unsigned long
ext2_find_first_zero_bit(void *vaddr, unsigned long size)
{
typedef struct { long _[__BITOPS_WORDS(size)]; } addrtype;
unsigned long res, cmp, count;
if (!size)
return 0;
__asm__(" lghi %1,-1\n"
" lgr %2,%3\n"
" aghi %2,63\n"
" srlg %2,%2,6\n"
" slgr %0,%0\n"
"0: clg %1,0(%0,%4)\n"
" jne 1f\n"
" aghi %0,8\n"
" brct %2,0b\n"
" lgr %0,%3\n"
" j 5f\n"
"1: cl %1,0(%0,%4)\n"
" jne 2f\n"
" aghi %0,4\n"
"2: l %2,0(%0,%4)\n"
" sllg %0,%0,3\n"
" aghi %0,24\n"
" lghi %1,0xff\n"
" tmlh %2,0xffff\n"
" jo 3f\n"
" aghi %0,-16\n"
" srl %2,16\n"
"3: tmll %2,0xff00\n"
" jo 4f\n"
" aghi %0,-8\n"
" srl %2,8\n"
"4: ngr %2,%1\n"
" ic %2,0(%2,%5)\n"
" algr %0,%2\n"
"5:"
: "=&a" (res), "=&d" (cmp), "=&a" (count)
: "a" (size), "a" (vaddr), "a" (&_zb_findmap),
"m" (*(addrtype *) vaddr) : "cc" );
return (res < size) ? res : size;
}
static inline unsigned long
ext2_find_next_zero_bit(void *vaddr, unsigned long size, unsigned long offset)
{
unsigned long *addr = vaddr;
unsigned long *p = addr + (offset >> 6);
unsigned long word, reg;
unsigned long bit = offset & 63UL, res;
if (offset >= size)
return size;
if (bit) {
__asm__(" lrvg %0,%1" /* load reversed, neat instruction */
: "=a" (word) : "m" (*p) );
word >>= bit;
res = bit;
/* Look for zero in first 8 byte word */
__asm__(" lghi %2,0xff\n"
" tmll %1,0xffff\n"
" jno 2f\n"
" ahi %0,16\n"
" srlg %1,%1,16\n"
"0: tmll %1,0xffff\n"
" jno 2f\n"
" ahi %0,16\n"
" srlg %1,%1,16\n"
"1: tmll %1,0xffff\n"
" jno 2f\n"
" ahi %0,16\n"
" srl %1,16\n"
"2: tmll %1,0x00ff\n"
" jno 3f\n"
" ahi %0,8\n"
" srl %1,8\n"
"3: ngr %1,%2\n"
" ic %1,0(%1,%3)\n"
" alr %0,%1"
: "+&d" (res), "+a" (word), "=&d" (reg)
: "a" (&_zb_findmap) : "cc" );
if (res < 64)
return (p - addr)*64 + res;
p++;
}
/* No zero yet, search remaining full bytes for a zero */
res = ext2_find_first_zero_bit (p, size - 64 * (p - addr));
return (p - addr) * 64 + res;
}
#endif /* __s390x__ */
/* Bitmap functions for the minix filesystem. */
/* FIXME !!! */
#define minix_test_and_set_bit(nr,addr) \
test_and_set_bit(nr,(unsigned long *)addr)
#define minix_set_bit(nr,addr) \
set_bit(nr,(unsigned long *)addr)
#define minix_test_and_clear_bit(nr,addr) \
test_and_clear_bit(nr,(unsigned long *)addr)
#define minix_test_bit(nr,addr) \
test_bit(nr,(unsigned long *)addr)
#define minix_find_first_zero_bit(addr,size) \
find_first_zero_bit(addr,size)
#endif /* __KERNEL__ */
#endif /* _S390_BITOPS_H */