kernel_optimize_test/mm/sparse.c
Yasunori Goto f2d0aa5bf8 [PATCH] memory hotplug: __GFP_NOWARN is better for __kmalloc_section_memmap()
Add __GFP_NOWARN flag to calling of __alloc_pages() in
__kmalloc_section_memmap().  It can reduce noisy failure message.

In ia64, section size is 1 GB, this means that order 8 pages are necessary
for each section's memmap.  It is often very hard requirement under heavy
memory pressure as you know.  So, __alloc_pages() gives up allocation and
shows many noisy stack traces which means no page for each sections.
(Current my environment shows 32 times of stack trace....)

But, __kmalloc_section_memmap() calls vmalloc() after failure of it, and it
can succeed allocation of memmap.  So, its stack trace warning becomes just
noisy.  I suppose it shouldn't be shown.

Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-28 11:30:52 -07:00

307 lines
7.2 KiB
C

/*
* sparse memory mappings.
*/
#include <linux/mm.h>
#include <linux/mmzone.h>
#include <linux/bootmem.h>
#include <linux/highmem.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/vmalloc.h>
#include <asm/dma.h>
/*
* Permanent SPARSEMEM data:
*
* 1) mem_section - memory sections, mem_map's for valid memory
*/
#ifdef CONFIG_SPARSEMEM_EXTREME
struct mem_section *mem_section[NR_SECTION_ROOTS]
____cacheline_internodealigned_in_smp;
#else
struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
____cacheline_internodealigned_in_smp;
#endif
EXPORT_SYMBOL(mem_section);
#ifdef CONFIG_SPARSEMEM_EXTREME
static struct mem_section *sparse_index_alloc(int nid)
{
struct mem_section *section = NULL;
unsigned long array_size = SECTIONS_PER_ROOT *
sizeof(struct mem_section);
if (slab_is_available())
section = kmalloc_node(array_size, GFP_KERNEL, nid);
else
section = alloc_bootmem_node(NODE_DATA(nid), array_size);
if (section)
memset(section, 0, array_size);
return section;
}
static int sparse_index_init(unsigned long section_nr, int nid)
{
static DEFINE_SPINLOCK(index_init_lock);
unsigned long root = SECTION_NR_TO_ROOT(section_nr);
struct mem_section *section;
int ret = 0;
if (mem_section[root])
return -EEXIST;
section = sparse_index_alloc(nid);
/*
* This lock keeps two different sections from
* reallocating for the same index
*/
spin_lock(&index_init_lock);
if (mem_section[root]) {
ret = -EEXIST;
goto out;
}
mem_section[root] = section;
out:
spin_unlock(&index_init_lock);
return ret;
}
#else /* !SPARSEMEM_EXTREME */
static inline int sparse_index_init(unsigned long section_nr, int nid)
{
return 0;
}
#endif
/*
* Although written for the SPARSEMEM_EXTREME case, this happens
* to also work for the flat array case becase
* NR_SECTION_ROOTS==NR_MEM_SECTIONS.
*/
int __section_nr(struct mem_section* ms)
{
unsigned long root_nr;
struct mem_section* root;
for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
if (!root)
continue;
if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
break;
}
return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
}
/*
* During early boot, before section_mem_map is used for an actual
* mem_map, we use section_mem_map to store the section's NUMA
* node. This keeps us from having to use another data structure. The
* node information is cleared just before we store the real mem_map.
*/
static inline unsigned long sparse_encode_early_nid(int nid)
{
return (nid << SECTION_NID_SHIFT);
}
static inline int sparse_early_nid(struct mem_section *section)
{
return (section->section_mem_map >> SECTION_NID_SHIFT);
}
/* Record a memory area against a node. */
void memory_present(int nid, unsigned long start, unsigned long end)
{
unsigned long pfn;
start &= PAGE_SECTION_MASK;
for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
unsigned long section = pfn_to_section_nr(pfn);
struct mem_section *ms;
sparse_index_init(section, nid);
ms = __nr_to_section(section);
if (!ms->section_mem_map)
ms->section_mem_map = sparse_encode_early_nid(nid) |
SECTION_MARKED_PRESENT;
}
}
/*
* Only used by the i386 NUMA architecures, but relatively
* generic code.
*/
unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
unsigned long end_pfn)
{
unsigned long pfn;
unsigned long nr_pages = 0;
for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
if (nid != early_pfn_to_nid(pfn))
continue;
if (pfn_valid(pfn))
nr_pages += PAGES_PER_SECTION;
}
return nr_pages * sizeof(struct page);
}
/*
* Subtle, we encode the real pfn into the mem_map such that
* the identity pfn - section_mem_map will return the actual
* physical page frame number.
*/
static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
{
return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
}
/*
* We need this if we ever free the mem_maps. While not implemented yet,
* this function is included for parity with its sibling.
*/
static __attribute((unused))
struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
{
return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
}
static int sparse_init_one_section(struct mem_section *ms,
unsigned long pnum, struct page *mem_map)
{
if (!valid_section(ms))
return -EINVAL;
ms->section_mem_map &= ~SECTION_MAP_MASK;
ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum);
return 1;
}
static struct page *sparse_early_mem_map_alloc(unsigned long pnum)
{
struct page *map;
struct mem_section *ms = __nr_to_section(pnum);
int nid = sparse_early_nid(ms);
map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
if (map)
return map;
map = alloc_bootmem_node(NODE_DATA(nid),
sizeof(struct page) * PAGES_PER_SECTION);
if (map)
return map;
printk(KERN_WARNING "%s: allocation failed\n", __FUNCTION__);
ms->section_mem_map = 0;
return NULL;
}
static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
{
struct page *page, *ret;
unsigned long memmap_size = sizeof(struct page) * nr_pages;
page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
if (page)
goto got_map_page;
ret = vmalloc(memmap_size);
if (ret)
goto got_map_ptr;
return NULL;
got_map_page:
ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
got_map_ptr:
memset(ret, 0, memmap_size);
return ret;
}
static int vaddr_in_vmalloc_area(void *addr)
{
if (addr >= (void *)VMALLOC_START &&
addr < (void *)VMALLOC_END)
return 1;
return 0;
}
static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
{
if (vaddr_in_vmalloc_area(memmap))
vfree(memmap);
else
free_pages((unsigned long)memmap,
get_order(sizeof(struct page) * nr_pages));
}
/*
* Allocate the accumulated non-linear sections, allocate a mem_map
* for each and record the physical to section mapping.
*/
void sparse_init(void)
{
unsigned long pnum;
struct page *map;
for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
if (!valid_section_nr(pnum))
continue;
map = sparse_early_mem_map_alloc(pnum);
if (!map)
continue;
sparse_init_one_section(__nr_to_section(pnum), pnum, map);
}
}
/*
* returns the number of sections whose mem_maps were properly
* set. If this is <=0, then that means that the passed-in
* map was not consumed and must be freed.
*/
int sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
int nr_pages)
{
unsigned long section_nr = pfn_to_section_nr(start_pfn);
struct pglist_data *pgdat = zone->zone_pgdat;
struct mem_section *ms;
struct page *memmap;
unsigned long flags;
int ret;
/*
* no locking for this, because it does its own
* plus, it does a kmalloc
*/
sparse_index_init(section_nr, pgdat->node_id);
memmap = __kmalloc_section_memmap(nr_pages);
pgdat_resize_lock(pgdat, &flags);
ms = __pfn_to_section(start_pfn);
if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
ret = -EEXIST;
goto out;
}
ms->section_mem_map |= SECTION_MARKED_PRESENT;
ret = sparse_init_one_section(ms, section_nr, memmap);
out:
pgdat_resize_unlock(pgdat, &flags);
if (ret <= 0)
__kfree_section_memmap(memmap, nr_pages);
return ret;
}