kernel_optimize_test/mm/mincore.c
Naoya Horiguchi 4f16fc107d mm: hugetlb: fix hugepage memory leak in mincore()
Most callers of pmd_none_or_clear_bad() check whether the target page is
in a hugepage or not, but mincore() and walk_page_range() do not check it.
 So if we use mincore() on a hugepage on x86 machine, the hugepage memory
is leaked as shown below.  This patch fixes it by extending mincore()
system call to support hugepages.

Details
=======
My test program (leak_mincore) works as follows:
 - creat() and mmap() a file on hugetlbfs (file size is 200MB == 100 hugepages,)
 - read()/write() something on it,
 - call mincore() for first ten pages and printf() the values of *vec
 - munmap() and unlink() the file on hugetlbfs

Without my patch
----------------
$ cat /proc/meminfo| grep "HugePage"
HugePages_Total:    1000
HugePages_Free:     1000
HugePages_Rsvd:        0
HugePages_Surp:        0
$ ./leak_mincore
vec[0] 0
vec[1] 0
vec[2] 0
vec[3] 0
vec[4] 0
vec[5] 0
vec[6] 0
vec[7] 0
vec[8] 0
vec[9] 0
$ cat /proc/meminfo |grep "HugePage"
HugePages_Total:    1000
HugePages_Free:      999
HugePages_Rsvd:        0
HugePages_Surp:        0
$ ls /hugetlbfs/
$

Return values in *vec from mincore() are set to 0, while the hugepage
should be in memory, and 1 hugepage is still accounted as used while
there is no file on hugetlbfs.

With my patch
-------------
$ cat /proc/meminfo| grep "HugePage"
HugePages_Total:    1000
HugePages_Free:     1000
HugePages_Rsvd:        0
HugePages_Surp:        0
$ ./leak_mincore
vec[0] 1
vec[1] 1
vec[2] 1
vec[3] 1
vec[4] 1
vec[5] 1
vec[6] 1
vec[7] 1
vec[8] 1
vec[9] 1
$ cat /proc/meminfo |grep "HugePage"
HugePages_Total:    1000
HugePages_Free:     1000
HugePages_Rsvd:        0
HugePages_Surp:        0
$ ls /hugetlbfs/
$

Return value in *vec set to 1 and no memory leaks.

[akpm@linux-foundation.org: cleanup]
[akpm@linux-foundation.org: build fix]
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: David Rientjes <rientjes@google.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 08:53:24 -08:00

267 lines
6.6 KiB
C

/*
* linux/mm/mincore.c
*
* Copyright (C) 1994-2006 Linus Torvalds
*/
/*
* The mincore() system call.
*/
#include <linux/slab.h>
#include <linux/pagemap.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/syscalls.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/hugetlb.h>
#include <asm/uaccess.h>
#include <asm/pgtable.h>
/*
* Later we can get more picky about what "in core" means precisely.
* For now, simply check to see if the page is in the page cache,
* and is up to date; i.e. that no page-in operation would be required
* at this time if an application were to map and access this page.
*/
static unsigned char mincore_page(struct address_space *mapping, pgoff_t pgoff)
{
unsigned char present = 0;
struct page *page;
/*
* When tmpfs swaps out a page from a file, any process mapping that
* file will not get a swp_entry_t in its pte, but rather it is like
* any other file mapping (ie. marked !present and faulted in with
* tmpfs's .fault). So swapped out tmpfs mappings are tested here.
*
* However when tmpfs moves the page from pagecache and into swapcache,
* it is still in core, but the find_get_page below won't find it.
* No big deal, but make a note of it.
*/
page = find_get_page(mapping, pgoff);
if (page) {
present = PageUptodate(page);
page_cache_release(page);
}
return present;
}
/*
* Do a chunk of "sys_mincore()". We've already checked
* all the arguments, we hold the mmap semaphore: we should
* just return the amount of info we're asked for.
*/
static long do_mincore(unsigned long addr, unsigned char *vec, unsigned long pages)
{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *ptep;
spinlock_t *ptl;
unsigned long nr;
int i;
pgoff_t pgoff;
struct vm_area_struct *vma = find_vma(current->mm, addr);
/*
* find_vma() didn't find anything above us, or we're
* in an unmapped hole in the address space: ENOMEM.
*/
if (!vma || addr < vma->vm_start)
return -ENOMEM;
#ifdef CONFIG_HUGETLB_PAGE
if (is_vm_hugetlb_page(vma)) {
struct hstate *h;
unsigned long nr_huge;
unsigned char present;
i = 0;
nr = min(pages, (vma->vm_end - addr) >> PAGE_SHIFT);
h = hstate_vma(vma);
nr_huge = ((addr + pages * PAGE_SIZE - 1) >> huge_page_shift(h))
- (addr >> huge_page_shift(h)) + 1;
nr_huge = min(nr_huge,
(vma->vm_end - addr) >> huge_page_shift(h));
while (1) {
/* hugepage always in RAM for now,
* but generally it needs to be check */
ptep = huge_pte_offset(current->mm,
addr & huge_page_mask(h));
present = !!(ptep &&
!huge_pte_none(huge_ptep_get(ptep)));
while (1) {
vec[i++] = present;
addr += PAGE_SIZE;
/* reach buffer limit */
if (i == nr)
return nr;
/* check hugepage border */
if (!((addr & ~huge_page_mask(h))
>> PAGE_SHIFT))
break;
}
}
return nr;
}
#endif
/*
* Calculate how many pages there are left in the last level of the
* PTE array for our address.
*/
nr = PTRS_PER_PTE - ((addr >> PAGE_SHIFT) & (PTRS_PER_PTE-1));
/*
* Don't overrun this vma
*/
nr = min(nr, (vma->vm_end - addr) >> PAGE_SHIFT);
/*
* Don't return more than the caller asked for
*/
nr = min(nr, pages);
pgd = pgd_offset(vma->vm_mm, addr);
if (pgd_none_or_clear_bad(pgd))
goto none_mapped;
pud = pud_offset(pgd, addr);
if (pud_none_or_clear_bad(pud))
goto none_mapped;
pmd = pmd_offset(pud, addr);
if (pmd_none_or_clear_bad(pmd))
goto none_mapped;
ptep = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
for (i = 0; i < nr; i++, ptep++, addr += PAGE_SIZE) {
unsigned char present;
pte_t pte = *ptep;
if (pte_present(pte)) {
present = 1;
} else if (pte_none(pte)) {
if (vma->vm_file) {
pgoff = linear_page_index(vma, addr);
present = mincore_page(vma->vm_file->f_mapping,
pgoff);
} else
present = 0;
} else if (pte_file(pte)) {
pgoff = pte_to_pgoff(pte);
present = mincore_page(vma->vm_file->f_mapping, pgoff);
} else { /* pte is a swap entry */
swp_entry_t entry = pte_to_swp_entry(pte);
if (is_migration_entry(entry)) {
/* migration entries are always uptodate */
present = 1;
} else {
#ifdef CONFIG_SWAP
pgoff = entry.val;
present = mincore_page(&swapper_space, pgoff);
#else
WARN_ON(1);
present = 1;
#endif
}
}
vec[i] = present;
}
pte_unmap_unlock(ptep-1, ptl);
return nr;
none_mapped:
if (vma->vm_file) {
pgoff = linear_page_index(vma, addr);
for (i = 0; i < nr; i++, pgoff++)
vec[i] = mincore_page(vma->vm_file->f_mapping, pgoff);
} else {
for (i = 0; i < nr; i++)
vec[i] = 0;
}
return nr;
}
/*
* The mincore(2) system call.
*
* mincore() returns the memory residency status of the pages in the
* current process's address space specified by [addr, addr + len).
* The status is returned in a vector of bytes. The least significant
* bit of each byte is 1 if the referenced page is in memory, otherwise
* it is zero.
*
* Because the status of a page can change after mincore() checks it
* but before it returns to the application, the returned vector may
* contain stale information. Only locked pages are guaranteed to
* remain in memory.
*
* return values:
* zero - success
* -EFAULT - vec points to an illegal address
* -EINVAL - addr is not a multiple of PAGE_CACHE_SIZE
* -ENOMEM - Addresses in the range [addr, addr + len] are
* invalid for the address space of this process, or
* specify one or more pages which are not currently
* mapped
* -EAGAIN - A kernel resource was temporarily unavailable.
*/
SYSCALL_DEFINE3(mincore, unsigned long, start, size_t, len,
unsigned char __user *, vec)
{
long retval;
unsigned long pages;
unsigned char *tmp;
/* Check the start address: needs to be page-aligned.. */
if (start & ~PAGE_CACHE_MASK)
return -EINVAL;
/* ..and we need to be passed a valid user-space range */
if (!access_ok(VERIFY_READ, (void __user *) start, len))
return -ENOMEM;
/* This also avoids any overflows on PAGE_CACHE_ALIGN */
pages = len >> PAGE_SHIFT;
pages += (len & ~PAGE_MASK) != 0;
if (!access_ok(VERIFY_WRITE, vec, pages))
return -EFAULT;
tmp = (void *) __get_free_page(GFP_USER);
if (!tmp)
return -EAGAIN;
retval = 0;
while (pages) {
/*
* Do at most PAGE_SIZE entries per iteration, due to
* the temporary buffer size.
*/
down_read(&current->mm->mmap_sem);
retval = do_mincore(start, tmp, min(pages, PAGE_SIZE));
up_read(&current->mm->mmap_sem);
if (retval <= 0)
break;
if (copy_to_user(vec, tmp, retval)) {
retval = -EFAULT;
break;
}
pages -= retval;
vec += retval;
start += retval << PAGE_SHIFT;
retval = 0;
}
free_page((unsigned long) tmp);
return retval;
}