kernel_optimize_test/kernel/trace/trace_benchmark.c
Steven Rostedt (Red Hat) 72e2fe38ea tracing: Convert stddev into u64 in tracepoint benchmark
I've been told that do_div() expects an unsigned 64 bit number, and
is undefined if a signed is used. This gave a warning on the MIPS
build. I'm not sure if a signed 64 bit dividend is really an issue
or not, but the calculation this is used for is standard deviation,
and that isn't going to be negative. We can just convert it to
unsigned and be safe.

Reported-by: David Daney <ddaney.cavm@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2014-06-05 20:35:30 -04:00

176 lines
3.7 KiB
C

#include <linux/delay.h>
#include <linux/module.h>
#include <linux/kthread.h>
#include <linux/trace_clock.h>
#define CREATE_TRACE_POINTS
#include "trace_benchmark.h"
static struct task_struct *bm_event_thread;
static char bm_str[BENCHMARK_EVENT_STRLEN] = "START";
static u64 bm_total;
static u64 bm_totalsq;
static u64 bm_last;
static u64 bm_max;
static u64 bm_min;
static u64 bm_first;
static s64 bm_cnt;
/*
* This gets called in a loop recording the time it took to write
* the tracepoint. What it writes is the time statistics of the last
* tracepoint write. As there is nothing to write the first time
* it simply writes "START". As the first write is cold cache and
* the rest is hot, we save off that time in bm_first and it is
* reported as "first", which is shown in the second write to the
* tracepoint. The "first" field is writen within the statics from
* then on but never changes.
*/
static void trace_do_benchmark(void)
{
u64 start;
u64 stop;
u64 delta;
u64 stddev;
u64 seed;
u64 last_seed;
unsigned int avg;
unsigned int std = 0;
/* Only run if the tracepoint is actually active */
if (!trace_benchmark_event_enabled())
return;
local_irq_disable();
start = trace_clock_local();
trace_benchmark_event(bm_str);
stop = trace_clock_local();
local_irq_enable();
bm_cnt++;
delta = stop - start;
/*
* The first read is cold cached, keep it separate from the
* other calculations.
*/
if (bm_cnt == 1) {
bm_first = delta;
scnprintf(bm_str, BENCHMARK_EVENT_STRLEN,
"first=%llu [COLD CACHED]", bm_first);
return;
}
bm_last = delta;
bm_total += delta;
bm_totalsq += delta * delta;
if (delta > bm_max)
bm_max = delta;
if (!bm_min || delta < bm_min)
bm_min = delta;
if (bm_cnt > 1) {
/*
* Apply Welford's method to calculate standard deviation:
* s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2)
*/
stddev = (u64)bm_cnt * bm_totalsq - bm_total * bm_total;
do_div(stddev, bm_cnt);
do_div(stddev, bm_cnt - 1);
} else
stddev = 0;
delta = bm_total;
do_div(delta, bm_cnt);
avg = delta;
if (stddev > 0) {
int i = 0;
/*
* stddev is the square of standard deviation but
* we want the actualy number. Use the average
* as our seed to find the std.
*
* The next try is:
* x = (x + N/x) / 2
*
* Where N is the squared number to find the square
* root of.
*/
seed = avg;
do {
last_seed = seed;
seed = stddev;
if (!last_seed)
break;
do_div(seed, last_seed);
seed += last_seed;
do_div(seed, 2);
} while (i++ < 10 && last_seed != seed);
std = seed;
}
scnprintf(bm_str, BENCHMARK_EVENT_STRLEN,
"last=%llu first=%llu max=%llu min=%llu avg=%u std=%d std^2=%lld",
bm_last, bm_first, bm_max, bm_min, avg, std, stddev);
}
static int benchmark_event_kthread(void *arg)
{
/* sleep a bit to make sure the tracepoint gets activated */
msleep(100);
while (!kthread_should_stop()) {
trace_do_benchmark();
/*
* We don't go to sleep, but let others
* run as well.
*/
cond_resched();
}
return 0;
}
/*
* When the benchmark tracepoint is enabled, it calls this
* function and the thread that calls the tracepoint is created.
*/
void trace_benchmark_reg(void)
{
bm_event_thread = kthread_run(benchmark_event_kthread,
NULL, "event_benchmark");
WARN_ON(!bm_event_thread);
}
/*
* When the benchmark tracepoint is disabled, it calls this
* function and the thread that calls the tracepoint is deleted
* and all the numbers are reset.
*/
void trace_benchmark_unreg(void)
{
if (!bm_event_thread)
return;
kthread_stop(bm_event_thread);
strcpy(bm_str, "START");
bm_total = 0;
bm_totalsq = 0;
bm_last = 0;
bm_max = 0;
bm_min = 0;
bm_cnt = 0;
/* bm_first doesn't need to be reset but reset it anyway */
bm_first = 0;
}