kernel_optimize_test/arch/powerpc/mm/fault.c
Olof Johansson 723925b7b1 [PATCH] powerpc: Nicer printing of address at oops
Add nicer printing of faulting address on unresolvable kernel faults.

Makes life a little easier for those who don't know how to decode our
register contents at oops time.

Signed-off-by: Olof Johansson <olof@lixom.net>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2005-11-07 12:37:28 +11:00

411 lines
11 KiB
C

/*
* arch/ppc/mm/fault.c
*
* PowerPC version
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
*
* Derived from "arch/i386/mm/fault.c"
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
*
* Modified by Cort Dougan and Paul Mackerras.
*
* Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/config.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/ptrace.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/highmem.h>
#include <linux/module.h>
#include <linux/kprobes.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/mmu.h>
#include <asm/mmu_context.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include <asm/tlbflush.h>
#include <asm/kdebug.h>
#include <asm/siginfo.h>
/*
* Check whether the instruction at regs->nip is a store using
* an update addressing form which will update r1.
*/
static int store_updates_sp(struct pt_regs *regs)
{
unsigned int inst;
if (get_user(inst, (unsigned int __user *)regs->nip))
return 0;
/* check for 1 in the rA field */
if (((inst >> 16) & 0x1f) != 1)
return 0;
/* check major opcode */
switch (inst >> 26) {
case 37: /* stwu */
case 39: /* stbu */
case 45: /* sthu */
case 53: /* stfsu */
case 55: /* stfdu */
return 1;
case 62: /* std or stdu */
return (inst & 3) == 1;
case 31:
/* check minor opcode */
switch ((inst >> 1) & 0x3ff) {
case 181: /* stdux */
case 183: /* stwux */
case 247: /* stbux */
case 439: /* sthux */
case 695: /* stfsux */
case 759: /* stfdux */
return 1;
}
}
return 0;
}
#if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
static void do_dabr(struct pt_regs *regs, unsigned long error_code)
{
siginfo_t info;
if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
11, SIGSEGV) == NOTIFY_STOP)
return;
if (debugger_dabr_match(regs))
return;
/* Clear the DABR */
set_dabr(0);
/* Deliver the signal to userspace */
info.si_signo = SIGTRAP;
info.si_errno = 0;
info.si_code = TRAP_HWBKPT;
info.si_addr = (void __user *)regs->nip;
force_sig_info(SIGTRAP, &info, current);
}
#endif /* !(CONFIG_4xx || CONFIG_BOOKE)*/
/*
* For 600- and 800-family processors, the error_code parameter is DSISR
* for a data fault, SRR1 for an instruction fault. For 400-family processors
* the error_code parameter is ESR for a data fault, 0 for an instruction
* fault.
* For 64-bit processors, the error_code parameter is
* - DSISR for a non-SLB data access fault,
* - SRR1 & 0x08000000 for a non-SLB instruction access fault
* - 0 any SLB fault.
*
* The return value is 0 if the fault was handled, or the signal
* number if this is a kernel fault that can't be handled here.
*/
int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address,
unsigned long error_code)
{
struct vm_area_struct * vma;
struct mm_struct *mm = current->mm;
siginfo_t info;
int code = SEGV_MAPERR;
int is_write = 0;
int trap = TRAP(regs);
int is_exec = trap == 0x400;
#if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
/*
* Fortunately the bit assignments in SRR1 for an instruction
* fault and DSISR for a data fault are mostly the same for the
* bits we are interested in. But there are some bits which
* indicate errors in DSISR but can validly be set in SRR1.
*/
if (trap == 0x400)
error_code &= 0x48200000;
else
is_write = error_code & DSISR_ISSTORE;
#else
is_write = error_code & ESR_DST;
#endif /* CONFIG_4xx || CONFIG_BOOKE */
if (notify_die(DIE_PAGE_FAULT, "page_fault", regs, error_code,
11, SIGSEGV) == NOTIFY_STOP)
return 0;
if (trap == 0x300) {
if (debugger_fault_handler(regs))
return 0;
}
/* On a kernel SLB miss we can only check for a valid exception entry */
if (!user_mode(regs) && (address >= TASK_SIZE))
return SIGSEGV;
#if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
if (error_code & DSISR_DABRMATCH) {
/* DABR match */
do_dabr(regs, error_code);
return 0;
}
#endif /* !(CONFIG_4xx || CONFIG_BOOKE)*/
if (in_atomic() || mm == NULL) {
if (!user_mode(regs))
return SIGSEGV;
/* in_atomic() in user mode is really bad,
as is current->mm == NULL. */
printk(KERN_EMERG "Page fault in user mode with"
"in_atomic() = %d mm = %p\n", in_atomic(), mm);
printk(KERN_EMERG "NIP = %lx MSR = %lx\n",
regs->nip, regs->msr);
die("Weird page fault", regs, SIGSEGV);
}
/* When running in the kernel we expect faults to occur only to
* addresses in user space. All other faults represent errors in the
* kernel and should generate an OOPS. Unfortunatly, in the case of an
* erroneous fault occuring in a code path which already holds mmap_sem
* we will deadlock attempting to validate the fault against the
* address space. Luckily the kernel only validly references user
* space from well defined areas of code, which are listed in the
* exceptions table.
*
* As the vast majority of faults will be valid we will only perform
* the source reference check when there is a possibilty of a deadlock.
* Attempt to lock the address space, if we cannot we then validate the
* source. If this is invalid we can skip the address space check,
* thus avoiding the deadlock.
*/
if (!down_read_trylock(&mm->mmap_sem)) {
if (!user_mode(regs) && !search_exception_tables(regs->nip))
goto bad_area_nosemaphore;
down_read(&mm->mmap_sem);
}
vma = find_vma(mm, address);
if (!vma)
goto bad_area;
if (vma->vm_start <= address)
goto good_area;
if (!(vma->vm_flags & VM_GROWSDOWN))
goto bad_area;
/*
* N.B. The POWER/Open ABI allows programs to access up to
* 288 bytes below the stack pointer.
* The kernel signal delivery code writes up to about 1.5kB
* below the stack pointer (r1) before decrementing it.
* The exec code can write slightly over 640kB to the stack
* before setting the user r1. Thus we allow the stack to
* expand to 1MB without further checks.
*/
if (address + 0x100000 < vma->vm_end) {
/* get user regs even if this fault is in kernel mode */
struct pt_regs *uregs = current->thread.regs;
if (uregs == NULL)
goto bad_area;
/*
* A user-mode access to an address a long way below
* the stack pointer is only valid if the instruction
* is one which would update the stack pointer to the
* address accessed if the instruction completed,
* i.e. either stwu rs,n(r1) or stwux rs,r1,rb
* (or the byte, halfword, float or double forms).
*
* If we don't check this then any write to the area
* between the last mapped region and the stack will
* expand the stack rather than segfaulting.
*/
if (address + 2048 < uregs->gpr[1]
&& (!user_mode(regs) || !store_updates_sp(regs)))
goto bad_area;
}
if (expand_stack(vma, address))
goto bad_area;
good_area:
code = SEGV_ACCERR;
#if defined(CONFIG_6xx)
if (error_code & 0x95700000)
/* an error such as lwarx to I/O controller space,
address matching DABR, eciwx, etc. */
goto bad_area;
#endif /* CONFIG_6xx */
#if defined(CONFIG_8xx)
/* The MPC8xx seems to always set 0x80000000, which is
* "undefined". Of those that can be set, this is the only
* one which seems bad.
*/
if (error_code & 0x10000000)
/* Guarded storage error. */
goto bad_area;
#endif /* CONFIG_8xx */
if (is_exec) {
#ifdef CONFIG_PPC64
/* protection fault */
if (error_code & DSISR_PROTFAULT)
goto bad_area;
if (!(vma->vm_flags & VM_EXEC))
goto bad_area;
#endif
#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
pte_t *ptep;
/* Since 4xx/Book-E supports per-page execute permission,
* we lazily flush dcache to icache. */
ptep = NULL;
if (get_pteptr(mm, address, &ptep) && pte_present(*ptep)) {
struct page *page = pte_page(*ptep);
if (! test_bit(PG_arch_1, &page->flags)) {
flush_dcache_icache_page(page);
set_bit(PG_arch_1, &page->flags);
}
pte_update(ptep, 0, _PAGE_HWEXEC);
_tlbie(address);
pte_unmap(ptep);
up_read(&mm->mmap_sem);
return 0;
}
if (ptep != NULL)
pte_unmap(ptep);
#endif
/* a write */
} else if (is_write) {
if (!(vma->vm_flags & VM_WRITE))
goto bad_area;
/* a read */
} else {
/* protection fault */
if (error_code & 0x08000000)
goto bad_area;
if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
goto bad_area;
}
/*
* If for any reason at all we couldn't handle the fault,
* make sure we exit gracefully rather than endlessly redo
* the fault.
*/
survive:
switch (handle_mm_fault(mm, vma, address, is_write)) {
case VM_FAULT_MINOR:
current->min_flt++;
break;
case VM_FAULT_MAJOR:
current->maj_flt++;
break;
case VM_FAULT_SIGBUS:
goto do_sigbus;
case VM_FAULT_OOM:
goto out_of_memory;
default:
BUG();
}
up_read(&mm->mmap_sem);
return 0;
bad_area:
up_read(&mm->mmap_sem);
bad_area_nosemaphore:
/* User mode accesses cause a SIGSEGV */
if (user_mode(regs)) {
_exception(SIGSEGV, regs, code, address);
return 0;
}
if (is_exec && (error_code & DSISR_PROTFAULT)
&& printk_ratelimit())
printk(KERN_CRIT "kernel tried to execute NX-protected"
" page (%lx) - exploit attempt? (uid: %d)\n",
address, current->uid);
return SIGSEGV;
/*
* We ran out of memory, or some other thing happened to us that made
* us unable to handle the page fault gracefully.
*/
out_of_memory:
up_read(&mm->mmap_sem);
if (current->pid == 1) {
yield();
down_read(&mm->mmap_sem);
goto survive;
}
printk("VM: killing process %s\n", current->comm);
if (user_mode(regs))
do_exit(SIGKILL);
return SIGKILL;
do_sigbus:
up_read(&mm->mmap_sem);
if (user_mode(regs)) {
info.si_signo = SIGBUS;
info.si_errno = 0;
info.si_code = BUS_ADRERR;
info.si_addr = (void __user *)address;
force_sig_info(SIGBUS, &info, current);
return 0;
}
return SIGBUS;
}
/*
* bad_page_fault is called when we have a bad access from the kernel.
* It is called from the DSI and ISI handlers in head.S and from some
* of the procedures in traps.c.
*/
void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
{
const struct exception_table_entry *entry;
/* Are we prepared to handle this fault? */
if ((entry = search_exception_tables(regs->nip)) != NULL) {
regs->nip = entry->fixup;
return;
}
/* kernel has accessed a bad area */
printk(KERN_ALERT "Unable to handle kernel paging request for ");
switch (regs->trap) {
case 0x300:
case 0x380:
printk("data at address 0x%08lx\n", regs->dar);
break;
case 0x400:
case 0x480:
printk("instruction fetch\n");
break;
default:
printk("unknown fault\n");
}
printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
regs->nip);
die("Kernel access of bad area", regs, sig);
}