forked from luck/tmp_suning_uos_patched
a64b384818
The address limit is already set in flush_old_exec() so this set_fs(USER_DS) is redundant. Signed-off-by: Mathias Krause <minipli@googlemail.com> Signed-off-by: Mike Frysinger <vapier@gentoo.org>
513 lines
13 KiB
C
513 lines
13 KiB
C
/*
|
|
* Blackfin architecture-dependent process handling
|
|
*
|
|
* Copyright 2004-2009 Analog Devices Inc.
|
|
*
|
|
* Licensed under the GPL-2 or later
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/unistd.h>
|
|
#include <linux/user.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/tick.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/err.h>
|
|
|
|
#include <asm/blackfin.h>
|
|
#include <asm/fixed_code.h>
|
|
#include <asm/mem_map.h>
|
|
|
|
asmlinkage void ret_from_fork(void);
|
|
|
|
/* Points to the SDRAM backup memory for the stack that is currently in
|
|
* L1 scratchpad memory.
|
|
*/
|
|
void *current_l1_stack_save;
|
|
|
|
/* The number of tasks currently using a L1 stack area. The SRAM is
|
|
* allocated/deallocated whenever this changes from/to zero.
|
|
*/
|
|
int nr_l1stack_tasks;
|
|
|
|
/* Start and length of the area in L1 scratchpad memory which we've allocated
|
|
* for process stacks.
|
|
*/
|
|
void *l1_stack_base;
|
|
unsigned long l1_stack_len;
|
|
|
|
/*
|
|
* Powermanagement idle function, if any..
|
|
*/
|
|
void (*pm_idle)(void) = NULL;
|
|
EXPORT_SYMBOL(pm_idle);
|
|
|
|
void (*pm_power_off)(void) = NULL;
|
|
EXPORT_SYMBOL(pm_power_off);
|
|
|
|
/*
|
|
* The idle loop on BFIN
|
|
*/
|
|
#ifdef CONFIG_IDLE_L1
|
|
static void default_idle(void)__attribute__((l1_text));
|
|
void cpu_idle(void)__attribute__((l1_text));
|
|
#endif
|
|
|
|
/*
|
|
* This is our default idle handler. We need to disable
|
|
* interrupts here to ensure we don't miss a wakeup call.
|
|
*/
|
|
static void default_idle(void)
|
|
{
|
|
#ifdef CONFIG_IPIPE
|
|
ipipe_suspend_domain();
|
|
#endif
|
|
hard_local_irq_disable();
|
|
if (!need_resched())
|
|
idle_with_irq_disabled();
|
|
|
|
hard_local_irq_enable();
|
|
}
|
|
|
|
/*
|
|
* The idle thread. We try to conserve power, while trying to keep
|
|
* overall latency low. The architecture specific idle is passed
|
|
* a value to indicate the level of "idleness" of the system.
|
|
*/
|
|
void cpu_idle(void)
|
|
{
|
|
/* endless idle loop with no priority at all */
|
|
while (1) {
|
|
void (*idle)(void) = pm_idle;
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
if (cpu_is_offline(smp_processor_id()))
|
|
cpu_die();
|
|
#endif
|
|
if (!idle)
|
|
idle = default_idle;
|
|
tick_nohz_stop_sched_tick(1);
|
|
while (!need_resched())
|
|
idle();
|
|
tick_nohz_restart_sched_tick();
|
|
preempt_enable_no_resched();
|
|
schedule();
|
|
preempt_disable();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This gets run with P1 containing the
|
|
* function to call, and R1 containing
|
|
* the "args". Note P0 is clobbered on the way here.
|
|
*/
|
|
void kernel_thread_helper(void);
|
|
__asm__(".section .text\n"
|
|
".align 4\n"
|
|
"_kernel_thread_helper:\n\t"
|
|
"\tsp += -12;\n\t"
|
|
"\tr0 = r1;\n\t" "\tcall (p1);\n\t" "\tcall _do_exit;\n" ".previous");
|
|
|
|
/*
|
|
* Create a kernel thread.
|
|
*/
|
|
pid_t kernel_thread(int (*fn) (void *), void *arg, unsigned long flags)
|
|
{
|
|
struct pt_regs regs;
|
|
|
|
memset(®s, 0, sizeof(regs));
|
|
|
|
regs.r1 = (unsigned long)arg;
|
|
regs.p1 = (unsigned long)fn;
|
|
regs.pc = (unsigned long)kernel_thread_helper;
|
|
regs.orig_p0 = -1;
|
|
/* Set bit 2 to tell ret_from_fork we should be returning to kernel
|
|
mode. */
|
|
regs.ipend = 0x8002;
|
|
__asm__ __volatile__("%0 = syscfg;":"=da"(regs.syscfg):);
|
|
return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL,
|
|
NULL);
|
|
}
|
|
EXPORT_SYMBOL(kernel_thread);
|
|
|
|
/*
|
|
* Do necessary setup to start up a newly executed thread.
|
|
*
|
|
* pass the data segment into user programs if it exists,
|
|
* it can't hurt anything as far as I can tell
|
|
*/
|
|
void start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
|
|
{
|
|
regs->pc = new_ip;
|
|
if (current->mm)
|
|
regs->p5 = current->mm->start_data;
|
|
#ifndef CONFIG_SMP
|
|
task_thread_info(current)->l1_task_info.stack_start =
|
|
(void *)current->mm->context.stack_start;
|
|
task_thread_info(current)->l1_task_info.lowest_sp = (void *)new_sp;
|
|
memcpy(L1_SCRATCH_TASK_INFO, &task_thread_info(current)->l1_task_info,
|
|
sizeof(*L1_SCRATCH_TASK_INFO));
|
|
#endif
|
|
wrusp(new_sp);
|
|
}
|
|
EXPORT_SYMBOL_GPL(start_thread);
|
|
|
|
void flush_thread(void)
|
|
{
|
|
}
|
|
|
|
asmlinkage int bfin_vfork(struct pt_regs *regs)
|
|
{
|
|
return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, rdusp(), regs, 0, NULL,
|
|
NULL);
|
|
}
|
|
|
|
asmlinkage int bfin_clone(struct pt_regs *regs)
|
|
{
|
|
unsigned long clone_flags;
|
|
unsigned long newsp;
|
|
|
|
#ifdef __ARCH_SYNC_CORE_DCACHE
|
|
if (current->rt.nr_cpus_allowed == num_possible_cpus())
|
|
set_cpus_allowed_ptr(current, cpumask_of(smp_processor_id()));
|
|
#endif
|
|
|
|
/* syscall2 puts clone_flags in r0 and usp in r1 */
|
|
clone_flags = regs->r0;
|
|
newsp = regs->r1;
|
|
if (!newsp)
|
|
newsp = rdusp();
|
|
else
|
|
newsp -= 12;
|
|
return do_fork(clone_flags, newsp, regs, 0, NULL, NULL);
|
|
}
|
|
|
|
int
|
|
copy_thread(unsigned long clone_flags,
|
|
unsigned long usp, unsigned long topstk,
|
|
struct task_struct *p, struct pt_regs *regs)
|
|
{
|
|
struct pt_regs *childregs;
|
|
|
|
childregs = (struct pt_regs *) (task_stack_page(p) + THREAD_SIZE) - 1;
|
|
*childregs = *regs;
|
|
childregs->r0 = 0;
|
|
|
|
p->thread.usp = usp;
|
|
p->thread.ksp = (unsigned long)childregs;
|
|
p->thread.pc = (unsigned long)ret_from_fork;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* sys_execve() executes a new program.
|
|
*/
|
|
asmlinkage int sys_execve(const char __user *name,
|
|
const char __user *const __user *argv,
|
|
const char __user *const __user *envp)
|
|
{
|
|
int error;
|
|
char *filename;
|
|
struct pt_regs *regs = (struct pt_regs *)((&name) + 6);
|
|
|
|
filename = getname(name);
|
|
error = PTR_ERR(filename);
|
|
if (IS_ERR(filename))
|
|
return error;
|
|
error = do_execve(filename, argv, envp, regs);
|
|
putname(filename);
|
|
return error;
|
|
}
|
|
|
|
unsigned long get_wchan(struct task_struct *p)
|
|
{
|
|
unsigned long fp, pc;
|
|
unsigned long stack_page;
|
|
int count = 0;
|
|
if (!p || p == current || p->state == TASK_RUNNING)
|
|
return 0;
|
|
|
|
stack_page = (unsigned long)p;
|
|
fp = p->thread.usp;
|
|
do {
|
|
if (fp < stack_page + sizeof(struct thread_info) ||
|
|
fp >= 8184 + stack_page)
|
|
return 0;
|
|
pc = ((unsigned long *)fp)[1];
|
|
if (!in_sched_functions(pc))
|
|
return pc;
|
|
fp = *(unsigned long *)fp;
|
|
}
|
|
while (count++ < 16);
|
|
return 0;
|
|
}
|
|
|
|
void finish_atomic_sections (struct pt_regs *regs)
|
|
{
|
|
int __user *up0 = (int __user *)regs->p0;
|
|
|
|
switch (regs->pc) {
|
|
default:
|
|
/* not in middle of an atomic step, so resume like normal */
|
|
return;
|
|
|
|
case ATOMIC_XCHG32 + 2:
|
|
put_user(regs->r1, up0);
|
|
break;
|
|
|
|
case ATOMIC_CAS32 + 2:
|
|
case ATOMIC_CAS32 + 4:
|
|
if (regs->r0 == regs->r1)
|
|
case ATOMIC_CAS32 + 6:
|
|
put_user(regs->r2, up0);
|
|
break;
|
|
|
|
case ATOMIC_ADD32 + 2:
|
|
regs->r0 = regs->r1 + regs->r0;
|
|
/* fall through */
|
|
case ATOMIC_ADD32 + 4:
|
|
put_user(regs->r0, up0);
|
|
break;
|
|
|
|
case ATOMIC_SUB32 + 2:
|
|
regs->r0 = regs->r1 - regs->r0;
|
|
/* fall through */
|
|
case ATOMIC_SUB32 + 4:
|
|
put_user(regs->r0, up0);
|
|
break;
|
|
|
|
case ATOMIC_IOR32 + 2:
|
|
regs->r0 = regs->r1 | regs->r0;
|
|
/* fall through */
|
|
case ATOMIC_IOR32 + 4:
|
|
put_user(regs->r0, up0);
|
|
break;
|
|
|
|
case ATOMIC_AND32 + 2:
|
|
regs->r0 = regs->r1 & regs->r0;
|
|
/* fall through */
|
|
case ATOMIC_AND32 + 4:
|
|
put_user(regs->r0, up0);
|
|
break;
|
|
|
|
case ATOMIC_XOR32 + 2:
|
|
regs->r0 = regs->r1 ^ regs->r0;
|
|
/* fall through */
|
|
case ATOMIC_XOR32 + 4:
|
|
put_user(regs->r0, up0);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* We've finished the atomic section, and the only thing left for
|
|
* userspace is to do a RTS, so we might as well handle that too
|
|
* since we need to update the PC anyways.
|
|
*/
|
|
regs->pc = regs->rets;
|
|
}
|
|
|
|
static inline
|
|
int in_mem(unsigned long addr, unsigned long size,
|
|
unsigned long start, unsigned long end)
|
|
{
|
|
return addr >= start && addr + size <= end;
|
|
}
|
|
static inline
|
|
int in_mem_const_off(unsigned long addr, unsigned long size, unsigned long off,
|
|
unsigned long const_addr, unsigned long const_size)
|
|
{
|
|
return const_size &&
|
|
in_mem(addr, size, const_addr + off, const_addr + const_size);
|
|
}
|
|
static inline
|
|
int in_mem_const(unsigned long addr, unsigned long size,
|
|
unsigned long const_addr, unsigned long const_size)
|
|
{
|
|
return in_mem_const_off(addr, size, 0, const_addr, const_size);
|
|
}
|
|
#define ASYNC_ENABLED(bnum, bctlnum) \
|
|
({ \
|
|
(bfin_read_EBIU_AMGCTL() & 0xe) < ((bnum + 1) << 1) ? 0 : \
|
|
bfin_read_EBIU_AMBCTL##bctlnum() & B##bnum##RDYEN ? 0 : \
|
|
1; \
|
|
})
|
|
/*
|
|
* We can't read EBIU banks that aren't enabled or we end up hanging
|
|
* on the access to the async space. Make sure we validate accesses
|
|
* that cross async banks too.
|
|
* 0 - found, but unusable
|
|
* 1 - found & usable
|
|
* 2 - not found
|
|
*/
|
|
static
|
|
int in_async(unsigned long addr, unsigned long size)
|
|
{
|
|
if (addr >= ASYNC_BANK0_BASE && addr < ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE) {
|
|
if (!ASYNC_ENABLED(0, 0))
|
|
return 0;
|
|
if (addr + size <= ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE)
|
|
return 1;
|
|
size -= ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE - addr;
|
|
addr = ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE;
|
|
}
|
|
if (addr >= ASYNC_BANK1_BASE && addr < ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE) {
|
|
if (!ASYNC_ENABLED(1, 0))
|
|
return 0;
|
|
if (addr + size <= ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE)
|
|
return 1;
|
|
size -= ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE - addr;
|
|
addr = ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE;
|
|
}
|
|
if (addr >= ASYNC_BANK2_BASE && addr < ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE) {
|
|
if (!ASYNC_ENABLED(2, 1))
|
|
return 0;
|
|
if (addr + size <= ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE)
|
|
return 1;
|
|
size -= ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE - addr;
|
|
addr = ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE;
|
|
}
|
|
if (addr >= ASYNC_BANK3_BASE && addr < ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE) {
|
|
if (ASYNC_ENABLED(3, 1))
|
|
return 0;
|
|
if (addr + size <= ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/* not within async bounds */
|
|
return 2;
|
|
}
|
|
|
|
int bfin_mem_access_type(unsigned long addr, unsigned long size)
|
|
{
|
|
int cpu = raw_smp_processor_id();
|
|
|
|
/* Check that things do not wrap around */
|
|
if (addr > ULONG_MAX - size)
|
|
return -EFAULT;
|
|
|
|
if (in_mem(addr, size, FIXED_CODE_START, physical_mem_end))
|
|
return BFIN_MEM_ACCESS_CORE;
|
|
|
|
if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH))
|
|
return cpu == 0 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA;
|
|
if (in_mem_const(addr, size, L1_SCRATCH_START, L1_SCRATCH_LENGTH))
|
|
return cpu == 0 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT;
|
|
if (in_mem_const(addr, size, L1_DATA_A_START, L1_DATA_A_LENGTH))
|
|
return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
|
|
if (in_mem_const(addr, size, L1_DATA_B_START, L1_DATA_B_LENGTH))
|
|
return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
|
|
#ifdef COREB_L1_CODE_START
|
|
if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH))
|
|
return cpu == 1 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA;
|
|
if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
|
|
return cpu == 1 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT;
|
|
if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH))
|
|
return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
|
|
if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH))
|
|
return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
|
|
#endif
|
|
if (in_mem_const(addr, size, L2_START, L2_LENGTH))
|
|
return BFIN_MEM_ACCESS_CORE;
|
|
|
|
if (addr >= SYSMMR_BASE)
|
|
return BFIN_MEM_ACCESS_CORE_ONLY;
|
|
|
|
switch (in_async(addr, size)) {
|
|
case 0: return -EFAULT;
|
|
case 1: return BFIN_MEM_ACCESS_CORE;
|
|
case 2: /* fall through */;
|
|
}
|
|
|
|
if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH))
|
|
return BFIN_MEM_ACCESS_CORE;
|
|
if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH))
|
|
return BFIN_MEM_ACCESS_DMA;
|
|
|
|
return -EFAULT;
|
|
}
|
|
|
|
#if defined(CONFIG_ACCESS_CHECK)
|
|
#ifdef CONFIG_ACCESS_OK_L1
|
|
__attribute__((l1_text))
|
|
#endif
|
|
/* Return 1 if access to memory range is OK, 0 otherwise */
|
|
int _access_ok(unsigned long addr, unsigned long size)
|
|
{
|
|
int aret;
|
|
|
|
if (size == 0)
|
|
return 1;
|
|
/* Check that things do not wrap around */
|
|
if (addr > ULONG_MAX - size)
|
|
return 0;
|
|
if (segment_eq(get_fs(), KERNEL_DS))
|
|
return 1;
|
|
#ifdef CONFIG_MTD_UCLINUX
|
|
if (1)
|
|
#else
|
|
if (0)
|
|
#endif
|
|
{
|
|
if (in_mem(addr, size, memory_start, memory_end))
|
|
return 1;
|
|
if (in_mem(addr, size, memory_mtd_end, physical_mem_end))
|
|
return 1;
|
|
# ifndef CONFIG_ROMFS_ON_MTD
|
|
if (0)
|
|
# endif
|
|
/* For XIP, allow user space to use pointers within the ROMFS. */
|
|
if (in_mem(addr, size, memory_mtd_start, memory_mtd_end))
|
|
return 1;
|
|
} else {
|
|
if (in_mem(addr, size, memory_start, physical_mem_end))
|
|
return 1;
|
|
}
|
|
|
|
if (in_mem(addr, size, (unsigned long)__init_begin, (unsigned long)__init_end))
|
|
return 1;
|
|
|
|
if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH))
|
|
return 1;
|
|
if (in_mem_const_off(addr, size, _etext_l1 - _stext_l1, L1_CODE_START, L1_CODE_LENGTH))
|
|
return 1;
|
|
if (in_mem_const_off(addr, size, _ebss_l1 - _sdata_l1, L1_DATA_A_START, L1_DATA_A_LENGTH))
|
|
return 1;
|
|
if (in_mem_const_off(addr, size, _ebss_b_l1 - _sdata_b_l1, L1_DATA_B_START, L1_DATA_B_LENGTH))
|
|
return 1;
|
|
#ifdef COREB_L1_CODE_START
|
|
if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH))
|
|
return 1;
|
|
if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
|
|
return 1;
|
|
if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH))
|
|
return 1;
|
|
if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH))
|
|
return 1;
|
|
#endif
|
|
|
|
#ifndef CONFIG_EXCEPTION_L1_SCRATCH
|
|
if (in_mem_const(addr, size, (unsigned long)l1_stack_base, l1_stack_len))
|
|
return 1;
|
|
#endif
|
|
|
|
aret = in_async(addr, size);
|
|
if (aret < 2)
|
|
return aret;
|
|
|
|
if (in_mem_const_off(addr, size, _ebss_l2 - _stext_l2, L2_START, L2_LENGTH))
|
|
return 1;
|
|
|
|
if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH))
|
|
return 1;
|
|
if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(_access_ok);
|
|
#endif /* CONFIG_ACCESS_CHECK */
|