kernel_optimize_test/drivers/media/dvb-frontends/sp887x.c
Mauro Carvalho Chehab f1b1eabff0 media: dvb: represent min/max/step/tolerance freqs in Hz
Right now, satellite frontend drivers specify frequencies in kHz,
while terrestrial/cable ones specify in Hz. That's confusing
for developers.

However, the main problem is that universal frontends capable
of handling both satellite and non-satelite delivery systems
are appearing. We end by needing to hack the drivers in
order to support such hybrid frontends.

So, convert everything to specify frontend frequencies in Hz.

Tested-by: Katsuhiro Suzuki <suzuki.katsuhiro@socionext.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
2018-08-02 18:10:48 -04:00

629 lines
15 KiB
C

/*
Driver for the Spase sp887x demodulator
*/
/*
* This driver needs external firmware. Please use the command
* "<kerneldir>/scripts/get_dvb_firmware sp887x" to
* download/extract it, and then copy it to /usr/lib/hotplug/firmware
* or /lib/firmware (depending on configuration of firmware hotplug).
*/
#define SP887X_DEFAULT_FIRMWARE "dvb-fe-sp887x.fw"
#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/firmware.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <media/dvb_frontend.h>
#include "sp887x.h"
struct sp887x_state {
struct i2c_adapter* i2c;
const struct sp887x_config* config;
struct dvb_frontend frontend;
/* demodulator private data */
u8 initialised:1;
};
static int debug;
#define dprintk(args...) \
do { \
if (debug) printk(KERN_DEBUG "sp887x: " args); \
} while (0)
static int i2c_writebytes (struct sp887x_state* state, u8 *buf, u8 len)
{
struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = len };
int err;
if ((err = i2c_transfer (state->i2c, &msg, 1)) != 1) {
printk ("%s: i2c write error (addr %02x, err == %i)\n",
__func__, state->config->demod_address, err);
return -EREMOTEIO;
}
return 0;
}
static int sp887x_writereg (struct sp887x_state* state, u16 reg, u16 data)
{
u8 b0 [] = { reg >> 8 , reg & 0xff, data >> 8, data & 0xff };
struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = b0, .len = 4 };
int ret;
if ((ret = i2c_transfer(state->i2c, &msg, 1)) != 1) {
/*
* in case of soft reset we ignore ACK errors...
*/
if (!(reg == 0xf1a && data == 0x000 &&
(ret == -EREMOTEIO || ret == -EFAULT)))
{
printk("%s: writereg error (reg %03x, data %03x, ret == %i)\n",
__func__, reg & 0xffff, data & 0xffff, ret);
return ret;
}
}
return 0;
}
static int sp887x_readreg (struct sp887x_state* state, u16 reg)
{
u8 b0 [] = { reg >> 8 , reg & 0xff };
u8 b1 [2];
int ret;
struct i2c_msg msg[] = {{ .addr = state->config->demod_address, .flags = 0, .buf = b0, .len = 2 },
{ .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b1, .len = 2 }};
if ((ret = i2c_transfer(state->i2c, msg, 2)) != 2) {
printk("%s: readreg error (ret == %i)\n", __func__, ret);
return -1;
}
return (((b1[0] << 8) | b1[1]) & 0xfff);
}
static void sp887x_microcontroller_stop (struct sp887x_state* state)
{
dprintk("%s\n", __func__);
sp887x_writereg(state, 0xf08, 0x000);
sp887x_writereg(state, 0xf09, 0x000);
/* microcontroller STOP */
sp887x_writereg(state, 0xf00, 0x000);
}
static void sp887x_microcontroller_start (struct sp887x_state* state)
{
dprintk("%s\n", __func__);
sp887x_writereg(state, 0xf08, 0x000);
sp887x_writereg(state, 0xf09, 0x000);
/* microcontroller START */
sp887x_writereg(state, 0xf00, 0x001);
}
static void sp887x_setup_agc (struct sp887x_state* state)
{
/* setup AGC parameters */
dprintk("%s\n", __func__);
sp887x_writereg(state, 0x33c, 0x054);
sp887x_writereg(state, 0x33b, 0x04c);
sp887x_writereg(state, 0x328, 0x000);
sp887x_writereg(state, 0x327, 0x005);
sp887x_writereg(state, 0x326, 0x001);
sp887x_writereg(state, 0x325, 0x001);
sp887x_writereg(state, 0x324, 0x001);
sp887x_writereg(state, 0x318, 0x050);
sp887x_writereg(state, 0x317, 0x3fe);
sp887x_writereg(state, 0x316, 0x001);
sp887x_writereg(state, 0x313, 0x005);
sp887x_writereg(state, 0x312, 0x002);
sp887x_writereg(state, 0x306, 0x000);
sp887x_writereg(state, 0x303, 0x000);
}
#define BLOCKSIZE 30
#define FW_SIZE 0x4000
/*
* load firmware and setup MPEG interface...
*/
static int sp887x_initial_setup (struct dvb_frontend* fe, const struct firmware *fw)
{
struct sp887x_state* state = fe->demodulator_priv;
u8 buf [BLOCKSIZE + 2];
int i;
int fw_size = fw->size;
const unsigned char *mem = fw->data;
dprintk("%s\n", __func__);
/* ignore the first 10 bytes, then we expect 0x4000 bytes of firmware */
if (fw_size < FW_SIZE + 10)
return -ENODEV;
mem = fw->data + 10;
/* soft reset */
sp887x_writereg(state, 0xf1a, 0x000);
sp887x_microcontroller_stop (state);
printk ("%s: firmware upload... ", __func__);
/* setup write pointer to -1 (end of memory) */
/* bit 0x8000 in address is set to enable 13bit mode */
sp887x_writereg(state, 0x8f08, 0x1fff);
/* dummy write (wrap around to start of memory) */
sp887x_writereg(state, 0x8f0a, 0x0000);
for (i = 0; i < FW_SIZE; i += BLOCKSIZE) {
int c = BLOCKSIZE;
int err;
if (c > FW_SIZE - i)
c = FW_SIZE - i;
/* bit 0x8000 in address is set to enable 13bit mode */
/* bit 0x4000 enables multibyte read/write transfers */
/* write register is 0xf0a */
buf[0] = 0xcf;
buf[1] = 0x0a;
memcpy(&buf[2], mem + i, c);
if ((err = i2c_writebytes (state, buf, c+2)) < 0) {
printk ("failed.\n");
printk ("%s: i2c error (err == %i)\n", __func__, err);
return err;
}
}
/* don't write RS bytes between packets */
sp887x_writereg(state, 0xc13, 0x001);
/* suppress clock if (!data_valid) */
sp887x_writereg(state, 0xc14, 0x000);
/* setup MPEG interface... */
sp887x_writereg(state, 0xc1a, 0x872);
sp887x_writereg(state, 0xc1b, 0x001);
sp887x_writereg(state, 0xc1c, 0x000); /* parallel mode (serial mode == 1) */
sp887x_writereg(state, 0xc1a, 0x871);
/* ADC mode, 2 for MT8872, 3 for SP8870/SP8871 */
sp887x_writereg(state, 0x301, 0x002);
sp887x_setup_agc(state);
/* bit 0x010: enable data valid signal */
sp887x_writereg(state, 0xd00, 0x010);
sp887x_writereg(state, 0x0d1, 0x000);
return 0;
};
static int configure_reg0xc05(struct dtv_frontend_properties *p, u16 *reg0xc05)
{
int known_parameters = 1;
*reg0xc05 = 0x000;
switch (p->modulation) {
case QPSK:
break;
case QAM_16:
*reg0xc05 |= (1 << 10);
break;
case QAM_64:
*reg0xc05 |= (2 << 10);
break;
case QAM_AUTO:
known_parameters = 0;
break;
default:
return -EINVAL;
}
switch (p->hierarchy) {
case HIERARCHY_NONE:
break;
case HIERARCHY_1:
*reg0xc05 |= (1 << 7);
break;
case HIERARCHY_2:
*reg0xc05 |= (2 << 7);
break;
case HIERARCHY_4:
*reg0xc05 |= (3 << 7);
break;
case HIERARCHY_AUTO:
known_parameters = 0;
break;
default:
return -EINVAL;
}
switch (p->code_rate_HP) {
case FEC_1_2:
break;
case FEC_2_3:
*reg0xc05 |= (1 << 3);
break;
case FEC_3_4:
*reg0xc05 |= (2 << 3);
break;
case FEC_5_6:
*reg0xc05 |= (3 << 3);
break;
case FEC_7_8:
*reg0xc05 |= (4 << 3);
break;
case FEC_AUTO:
known_parameters = 0;
break;
default:
return -EINVAL;
}
if (known_parameters)
*reg0xc05 |= (2 << 1); /* use specified parameters */
else
*reg0xc05 |= (1 << 1); /* enable autoprobing */
return 0;
}
/*
* estimates division of two 24bit numbers,
* derived from the ves1820/stv0299 driver code
*/
static void divide (int n, int d, int *quotient_i, int *quotient_f)
{
unsigned int q, r;
r = (n % d) << 8;
q = (r / d);
if (quotient_i)
*quotient_i = q;
if (quotient_f) {
r = (r % d) << 8;
q = (q << 8) | (r / d);
r = (r % d) << 8;
*quotient_f = (q << 8) | (r / d);
}
}
static void sp887x_correct_offsets (struct sp887x_state* state,
struct dtv_frontend_properties *p,
int actual_freq)
{
static const u32 srate_correction [] = { 1879617, 4544878, 8098561 };
int bw_index;
int freq_offset = actual_freq - p->frequency;
int sysclock = 61003; //[kHz]
int ifreq = 36000000;
int freq;
int frequency_shift;
switch (p->bandwidth_hz) {
default:
case 8000000:
bw_index = 0;
break;
case 7000000:
bw_index = 1;
break;
case 6000000:
bw_index = 2;
break;
}
if (p->inversion == INVERSION_ON)
freq = ifreq - freq_offset;
else
freq = ifreq + freq_offset;
divide(freq / 333, sysclock, NULL, &frequency_shift);
if (p->inversion == INVERSION_ON)
frequency_shift = -frequency_shift;
/* sample rate correction */
sp887x_writereg(state, 0x319, srate_correction[bw_index] >> 12);
sp887x_writereg(state, 0x31a, srate_correction[bw_index] & 0xfff);
/* carrier offset correction */
sp887x_writereg(state, 0x309, frequency_shift >> 12);
sp887x_writereg(state, 0x30a, frequency_shift & 0xfff);
}
static int sp887x_setup_frontend_parameters(struct dvb_frontend *fe)
{
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
struct sp887x_state* state = fe->demodulator_priv;
unsigned actual_freq;
int err;
u16 val, reg0xc05;
if (p->bandwidth_hz != 8000000 &&
p->bandwidth_hz != 7000000 &&
p->bandwidth_hz != 6000000)
return -EINVAL;
if ((err = configure_reg0xc05(p, &reg0xc05)))
return err;
sp887x_microcontroller_stop(state);
/* setup the PLL */
if (fe->ops.tuner_ops.set_params) {
fe->ops.tuner_ops.set_params(fe);
if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
}
if (fe->ops.tuner_ops.get_frequency) {
fe->ops.tuner_ops.get_frequency(fe, &actual_freq);
if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
} else {
actual_freq = p->frequency;
}
/* read status reg in order to clear <pending irqs */
sp887x_readreg(state, 0x200);
sp887x_correct_offsets(state, p, actual_freq);
/* filter for 6/7/8 Mhz channel */
if (p->bandwidth_hz == 6000000)
val = 2;
else if (p->bandwidth_hz == 7000000)
val = 1;
else
val = 0;
sp887x_writereg(state, 0x311, val);
/* scan order: 2k first = 0, 8k first = 1 */
if (p->transmission_mode == TRANSMISSION_MODE_2K)
sp887x_writereg(state, 0x338, 0x000);
else
sp887x_writereg(state, 0x338, 0x001);
sp887x_writereg(state, 0xc05, reg0xc05);
if (p->bandwidth_hz == 6000000)
val = 2 << 3;
else if (p->bandwidth_hz == 7000000)
val = 3 << 3;
else
val = 0 << 3;
/* enable OFDM and SAW bits as lock indicators in sync register 0xf17,
* optimize algorithm for given bandwidth...
*/
sp887x_writereg(state, 0xf14, 0x160 | val);
sp887x_writereg(state, 0xf15, 0x000);
sp887x_microcontroller_start(state);
return 0;
}
static int sp887x_read_status(struct dvb_frontend *fe, enum fe_status *status)
{
struct sp887x_state* state = fe->demodulator_priv;
u16 snr12 = sp887x_readreg(state, 0xf16);
u16 sync0x200 = sp887x_readreg(state, 0x200);
u16 sync0xf17 = sp887x_readreg(state, 0xf17);
*status = 0;
if (snr12 > 0x00f)
*status |= FE_HAS_SIGNAL;
//if (sync0x200 & 0x004)
// *status |= FE_HAS_SYNC | FE_HAS_CARRIER;
//if (sync0x200 & 0x008)
// *status |= FE_HAS_VITERBI;
if ((sync0xf17 & 0x00f) == 0x002) {
*status |= FE_HAS_LOCK;
*status |= FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_CARRIER;
}
if (sync0x200 & 0x001) { /* tuner adjustment requested...*/
int steps = (sync0x200 >> 4) & 0x00f;
if (steps & 0x008)
steps = -steps;
dprintk("sp887x: implement tuner adjustment (%+i steps)!!\n",
steps);
}
return 0;
}
static int sp887x_read_ber(struct dvb_frontend* fe, u32* ber)
{
struct sp887x_state* state = fe->demodulator_priv;
*ber = (sp887x_readreg(state, 0xc08) & 0x3f) |
(sp887x_readreg(state, 0xc07) << 6);
sp887x_writereg(state, 0xc08, 0x000);
sp887x_writereg(state, 0xc07, 0x000);
if (*ber >= 0x3fff0)
*ber = ~0;
return 0;
}
static int sp887x_read_signal_strength(struct dvb_frontend* fe, u16* strength)
{
struct sp887x_state* state = fe->demodulator_priv;
u16 snr12 = sp887x_readreg(state, 0xf16);
u32 signal = 3 * (snr12 << 4);
*strength = (signal < 0xffff) ? signal : 0xffff;
return 0;
}
static int sp887x_read_snr(struct dvb_frontend* fe, u16* snr)
{
struct sp887x_state* state = fe->demodulator_priv;
u16 snr12 = sp887x_readreg(state, 0xf16);
*snr = (snr12 << 4) | (snr12 >> 8);
return 0;
}
static int sp887x_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
{
struct sp887x_state* state = fe->demodulator_priv;
*ucblocks = sp887x_readreg(state, 0xc0c);
if (*ucblocks == 0xfff)
*ucblocks = ~0;
return 0;
}
static int sp887x_i2c_gate_ctrl(struct dvb_frontend* fe, int enable)
{
struct sp887x_state* state = fe->demodulator_priv;
if (enable) {
return sp887x_writereg(state, 0x206, 0x001);
} else {
return sp887x_writereg(state, 0x206, 0x000);
}
}
static int sp887x_sleep(struct dvb_frontend* fe)
{
struct sp887x_state* state = fe->demodulator_priv;
/* tristate TS output and disable interface pins */
sp887x_writereg(state, 0xc18, 0x000);
return 0;
}
static int sp887x_init(struct dvb_frontend* fe)
{
struct sp887x_state* state = fe->demodulator_priv;
const struct firmware *fw = NULL;
int ret;
if (!state->initialised) {
/* request the firmware, this will block until someone uploads it */
printk("sp887x: waiting for firmware upload (%s)...\n", SP887X_DEFAULT_FIRMWARE);
ret = state->config->request_firmware(fe, &fw, SP887X_DEFAULT_FIRMWARE);
if (ret) {
printk("sp887x: no firmware upload (timeout or file not found?)\n");
return ret;
}
ret = sp887x_initial_setup(fe, fw);
release_firmware(fw);
if (ret) {
printk("sp887x: writing firmware to device failed\n");
return ret;
}
printk("sp887x: firmware upload complete\n");
state->initialised = 1;
}
/* enable TS output and interface pins */
sp887x_writereg(state, 0xc18, 0x00d);
return 0;
}
static int sp887x_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings* fesettings)
{
fesettings->min_delay_ms = 350;
fesettings->step_size = 166666*2;
fesettings->max_drift = (166666*2)+1;
return 0;
}
static void sp887x_release(struct dvb_frontend* fe)
{
struct sp887x_state* state = fe->demodulator_priv;
kfree(state);
}
static const struct dvb_frontend_ops sp887x_ops;
struct dvb_frontend* sp887x_attach(const struct sp887x_config* config,
struct i2c_adapter* i2c)
{
struct sp887x_state* state = NULL;
/* allocate memory for the internal state */
state = kzalloc(sizeof(struct sp887x_state), GFP_KERNEL);
if (state == NULL) goto error;
/* setup the state */
state->config = config;
state->i2c = i2c;
state->initialised = 0;
/* check if the demod is there */
if (sp887x_readreg(state, 0x0200) < 0) goto error;
/* create dvb_frontend */
memcpy(&state->frontend.ops, &sp887x_ops, sizeof(struct dvb_frontend_ops));
state->frontend.demodulator_priv = state;
return &state->frontend;
error:
kfree(state);
return NULL;
}
static const struct dvb_frontend_ops sp887x_ops = {
.delsys = { SYS_DVBT },
.info = {
.name = "Spase SP887x DVB-T",
.frequency_min_hz = 50500 * kHz,
.frequency_max_hz = 858000 * kHz,
.frequency_stepsize_hz = 166666,
.caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 |
FE_CAN_RECOVER
},
.release = sp887x_release,
.init = sp887x_init,
.sleep = sp887x_sleep,
.i2c_gate_ctrl = sp887x_i2c_gate_ctrl,
.set_frontend = sp887x_setup_frontend_parameters,
.get_tune_settings = sp887x_get_tune_settings,
.read_status = sp887x_read_status,
.read_ber = sp887x_read_ber,
.read_signal_strength = sp887x_read_signal_strength,
.read_snr = sp887x_read_snr,
.read_ucblocks = sp887x_read_ucblocks,
};
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
MODULE_DESCRIPTION("Spase sp887x DVB-T demodulator driver");
MODULE_LICENSE("GPL");
EXPORT_SYMBOL(sp887x_attach);