forked from luck/tmp_suning_uos_patched
8a75f4f2ac
Allow propagating ethtool::rxnfc programming to the CPU/management port such that it is possible for such a CPU to perform e.g: Wake-on-LAN using filters configured by the switch. We need a tiny bit of cooperation between the switch drivers which is able to do the full flow matching, whereas the CPU/management port might not. The CPU/management driver needs to return -EOPNOTSUPP to indicate an non critical error, any other error code otherwise. Signed-off-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
1305 lines
33 KiB
C
1305 lines
33 KiB
C
/*
|
|
* Broadcom Starfighter 2 DSA switch CFP support
|
|
*
|
|
* Copyright (C) 2016, Broadcom
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*/
|
|
|
|
#include <linux/list.h>
|
|
#include <linux/ethtool.h>
|
|
#include <linux/if_ether.h>
|
|
#include <linux/in.h>
|
|
#include <linux/netdevice.h>
|
|
#include <net/dsa.h>
|
|
#include <linux/bitmap.h>
|
|
|
|
#include "bcm_sf2.h"
|
|
#include "bcm_sf2_regs.h"
|
|
|
|
struct cfp_udf_slice_layout {
|
|
u8 slices[UDFS_PER_SLICE];
|
|
u32 mask_value;
|
|
u32 base_offset;
|
|
};
|
|
|
|
struct cfp_udf_layout {
|
|
struct cfp_udf_slice_layout udfs[UDF_NUM_SLICES];
|
|
};
|
|
|
|
static const u8 zero_slice[UDFS_PER_SLICE] = { };
|
|
|
|
/* UDF slices layout for a TCPv4/UDPv4 specification */
|
|
static const struct cfp_udf_layout udf_tcpip4_layout = {
|
|
.udfs = {
|
|
[1] = {
|
|
.slices = {
|
|
/* End of L2, byte offset 12, src IP[0:15] */
|
|
CFG_UDF_EOL2 | 6,
|
|
/* End of L2, byte offset 14, src IP[16:31] */
|
|
CFG_UDF_EOL2 | 7,
|
|
/* End of L2, byte offset 16, dst IP[0:15] */
|
|
CFG_UDF_EOL2 | 8,
|
|
/* End of L2, byte offset 18, dst IP[16:31] */
|
|
CFG_UDF_EOL2 | 9,
|
|
/* End of L3, byte offset 0, src port */
|
|
CFG_UDF_EOL3 | 0,
|
|
/* End of L3, byte offset 2, dst port */
|
|
CFG_UDF_EOL3 | 1,
|
|
0, 0, 0
|
|
},
|
|
.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
|
|
.base_offset = CORE_UDF_0_A_0_8_PORT_0 + UDF_SLICE_OFFSET,
|
|
},
|
|
},
|
|
};
|
|
|
|
/* UDF slices layout for a TCPv6/UDPv6 specification */
|
|
static const struct cfp_udf_layout udf_tcpip6_layout = {
|
|
.udfs = {
|
|
[0] = {
|
|
.slices = {
|
|
/* End of L2, byte offset 8, src IP[0:15] */
|
|
CFG_UDF_EOL2 | 4,
|
|
/* End of L2, byte offset 10, src IP[16:31] */
|
|
CFG_UDF_EOL2 | 5,
|
|
/* End of L2, byte offset 12, src IP[32:47] */
|
|
CFG_UDF_EOL2 | 6,
|
|
/* End of L2, byte offset 14, src IP[48:63] */
|
|
CFG_UDF_EOL2 | 7,
|
|
/* End of L2, byte offset 16, src IP[64:79] */
|
|
CFG_UDF_EOL2 | 8,
|
|
/* End of L2, byte offset 18, src IP[80:95] */
|
|
CFG_UDF_EOL2 | 9,
|
|
/* End of L2, byte offset 20, src IP[96:111] */
|
|
CFG_UDF_EOL2 | 10,
|
|
/* End of L2, byte offset 22, src IP[112:127] */
|
|
CFG_UDF_EOL2 | 11,
|
|
/* End of L3, byte offset 0, src port */
|
|
CFG_UDF_EOL3 | 0,
|
|
},
|
|
.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
|
|
.base_offset = CORE_UDF_0_B_0_8_PORT_0,
|
|
},
|
|
[3] = {
|
|
.slices = {
|
|
/* End of L2, byte offset 24, dst IP[0:15] */
|
|
CFG_UDF_EOL2 | 12,
|
|
/* End of L2, byte offset 26, dst IP[16:31] */
|
|
CFG_UDF_EOL2 | 13,
|
|
/* End of L2, byte offset 28, dst IP[32:47] */
|
|
CFG_UDF_EOL2 | 14,
|
|
/* End of L2, byte offset 30, dst IP[48:63] */
|
|
CFG_UDF_EOL2 | 15,
|
|
/* End of L2, byte offset 32, dst IP[64:79] */
|
|
CFG_UDF_EOL2 | 16,
|
|
/* End of L2, byte offset 34, dst IP[80:95] */
|
|
CFG_UDF_EOL2 | 17,
|
|
/* End of L2, byte offset 36, dst IP[96:111] */
|
|
CFG_UDF_EOL2 | 18,
|
|
/* End of L2, byte offset 38, dst IP[112:127] */
|
|
CFG_UDF_EOL2 | 19,
|
|
/* End of L3, byte offset 2, dst port */
|
|
CFG_UDF_EOL3 | 1,
|
|
},
|
|
.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
|
|
.base_offset = CORE_UDF_0_D_0_11_PORT_0,
|
|
},
|
|
},
|
|
};
|
|
|
|
static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout)
|
|
{
|
|
unsigned int i, count = 0;
|
|
|
|
for (i = 0; i < UDFS_PER_SLICE; i++) {
|
|
if (layout[i] != 0)
|
|
count++;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static inline u32 udf_upper_bits(unsigned int num_udf)
|
|
{
|
|
return GENMASK(num_udf - 1, 0) >> (UDFS_PER_SLICE - 1);
|
|
}
|
|
|
|
static inline u32 udf_lower_bits(unsigned int num_udf)
|
|
{
|
|
return (u8)GENMASK(num_udf - 1, 0);
|
|
}
|
|
|
|
static unsigned int bcm_sf2_get_slice_number(const struct cfp_udf_layout *l,
|
|
unsigned int start)
|
|
{
|
|
const struct cfp_udf_slice_layout *slice_layout;
|
|
unsigned int slice_idx;
|
|
|
|
for (slice_idx = start; slice_idx < UDF_NUM_SLICES; slice_idx++) {
|
|
slice_layout = &l->udfs[slice_idx];
|
|
if (memcmp(slice_layout->slices, zero_slice,
|
|
sizeof(zero_slice)))
|
|
break;
|
|
}
|
|
|
|
return slice_idx;
|
|
}
|
|
|
|
static void bcm_sf2_cfp_udf_set(struct bcm_sf2_priv *priv,
|
|
const struct cfp_udf_layout *layout,
|
|
unsigned int slice_num)
|
|
{
|
|
u32 offset = layout->udfs[slice_num].base_offset;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < UDFS_PER_SLICE; i++)
|
|
core_writel(priv, layout->udfs[slice_num].slices[i],
|
|
offset + i * 4);
|
|
}
|
|
|
|
static int bcm_sf2_cfp_op(struct bcm_sf2_priv *priv, unsigned int op)
|
|
{
|
|
unsigned int timeout = 1000;
|
|
u32 reg;
|
|
|
|
reg = core_readl(priv, CORE_CFP_ACC);
|
|
reg &= ~(OP_SEL_MASK | RAM_SEL_MASK);
|
|
reg |= OP_STR_DONE | op;
|
|
core_writel(priv, reg, CORE_CFP_ACC);
|
|
|
|
do {
|
|
reg = core_readl(priv, CORE_CFP_ACC);
|
|
if (!(reg & OP_STR_DONE))
|
|
break;
|
|
|
|
cpu_relax();
|
|
} while (timeout--);
|
|
|
|
if (!timeout)
|
|
return -ETIMEDOUT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void bcm_sf2_cfp_rule_addr_set(struct bcm_sf2_priv *priv,
|
|
unsigned int addr)
|
|
{
|
|
u32 reg;
|
|
|
|
WARN_ON(addr >= priv->num_cfp_rules);
|
|
|
|
reg = core_readl(priv, CORE_CFP_ACC);
|
|
reg &= ~(XCESS_ADDR_MASK << XCESS_ADDR_SHIFT);
|
|
reg |= addr << XCESS_ADDR_SHIFT;
|
|
core_writel(priv, reg, CORE_CFP_ACC);
|
|
}
|
|
|
|
static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv)
|
|
{
|
|
/* Entry #0 is reserved */
|
|
return priv->num_cfp_rules - 1;
|
|
}
|
|
|
|
static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv,
|
|
unsigned int rule_index,
|
|
unsigned int port_num,
|
|
unsigned int queue_num,
|
|
bool fwd_map_change)
|
|
{
|
|
int ret;
|
|
u32 reg;
|
|
|
|
/* Replace ARL derived destination with DST_MAP derived, define
|
|
* which port and queue this should be forwarded to.
|
|
*/
|
|
if (fwd_map_change)
|
|
reg = CHANGE_FWRD_MAP_IB_REP_ARL |
|
|
BIT(port_num + DST_MAP_IB_SHIFT) |
|
|
CHANGE_TC | queue_num << NEW_TC_SHIFT;
|
|
else
|
|
reg = 0;
|
|
|
|
core_writel(priv, reg, CORE_ACT_POL_DATA0);
|
|
|
|
/* Set classification ID that needs to be put in Broadcom tag */
|
|
core_writel(priv, rule_index << CHAIN_ID_SHIFT, CORE_ACT_POL_DATA1);
|
|
|
|
core_writel(priv, 0, CORE_ACT_POL_DATA2);
|
|
|
|
/* Configure policer RAM now */
|
|
ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | ACT_POL_RAM);
|
|
if (ret) {
|
|
pr_err("Policer entry at %d failed\n", rule_index);
|
|
return ret;
|
|
}
|
|
|
|
/* Disable the policer */
|
|
core_writel(priv, POLICER_MODE_DISABLE, CORE_RATE_METER0);
|
|
|
|
/* Now the rate meter */
|
|
ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | RATE_METER_RAM);
|
|
if (ret) {
|
|
pr_err("Meter entry at %d failed\n", rule_index);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bcm_sf2_cfp_slice_ipv4(struct bcm_sf2_priv *priv,
|
|
struct ethtool_tcpip4_spec *v4_spec,
|
|
unsigned int slice_num,
|
|
bool mask)
|
|
{
|
|
u32 reg, offset;
|
|
|
|
/* C-Tag [31:24]
|
|
* UDF_n_A8 [23:8]
|
|
* UDF_n_A7 [7:0]
|
|
*/
|
|
reg = 0;
|
|
if (mask)
|
|
offset = CORE_CFP_MASK_PORT(4);
|
|
else
|
|
offset = CORE_CFP_DATA_PORT(4);
|
|
core_writel(priv, reg, offset);
|
|
|
|
/* UDF_n_A7 [31:24]
|
|
* UDF_n_A6 [23:8]
|
|
* UDF_n_A5 [7:0]
|
|
*/
|
|
reg = be16_to_cpu(v4_spec->pdst) >> 8;
|
|
if (mask)
|
|
offset = CORE_CFP_MASK_PORT(3);
|
|
else
|
|
offset = CORE_CFP_DATA_PORT(3);
|
|
core_writel(priv, reg, offset);
|
|
|
|
/* UDF_n_A5 [31:24]
|
|
* UDF_n_A4 [23:8]
|
|
* UDF_n_A3 [7:0]
|
|
*/
|
|
reg = (be16_to_cpu(v4_spec->pdst) & 0xff) << 24 |
|
|
(u32)be16_to_cpu(v4_spec->psrc) << 8 |
|
|
(be32_to_cpu(v4_spec->ip4dst) & 0x0000ff00) >> 8;
|
|
if (mask)
|
|
offset = CORE_CFP_MASK_PORT(2);
|
|
else
|
|
offset = CORE_CFP_DATA_PORT(2);
|
|
core_writel(priv, reg, offset);
|
|
|
|
/* UDF_n_A3 [31:24]
|
|
* UDF_n_A2 [23:8]
|
|
* UDF_n_A1 [7:0]
|
|
*/
|
|
reg = (u32)(be32_to_cpu(v4_spec->ip4dst) & 0xff) << 24 |
|
|
(u32)(be32_to_cpu(v4_spec->ip4dst) >> 16) << 8 |
|
|
(be32_to_cpu(v4_spec->ip4src) & 0x0000ff00) >> 8;
|
|
if (mask)
|
|
offset = CORE_CFP_MASK_PORT(1);
|
|
else
|
|
offset = CORE_CFP_DATA_PORT(1);
|
|
core_writel(priv, reg, offset);
|
|
|
|
/* UDF_n_A1 [31:24]
|
|
* UDF_n_A0 [23:8]
|
|
* Reserved [7:4]
|
|
* Slice ID [3:2]
|
|
* Slice valid [1:0]
|
|
*/
|
|
reg = (u32)(be32_to_cpu(v4_spec->ip4src) & 0xff) << 24 |
|
|
(u32)(be32_to_cpu(v4_spec->ip4src) >> 16) << 8 |
|
|
SLICE_NUM(slice_num) | SLICE_VALID;
|
|
if (mask)
|
|
offset = CORE_CFP_MASK_PORT(0);
|
|
else
|
|
offset = CORE_CFP_DATA_PORT(0);
|
|
core_writel(priv, reg, offset);
|
|
}
|
|
|
|
static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port,
|
|
unsigned int port_num,
|
|
unsigned int queue_num,
|
|
struct ethtool_rx_flow_spec *fs)
|
|
{
|
|
struct ethtool_tcpip4_spec *v4_spec, *v4_m_spec;
|
|
const struct cfp_udf_layout *layout;
|
|
unsigned int slice_num, rule_index;
|
|
u8 ip_proto, ip_frag;
|
|
u8 num_udf;
|
|
u32 reg;
|
|
int ret;
|
|
|
|
switch (fs->flow_type & ~FLOW_EXT) {
|
|
case TCP_V4_FLOW:
|
|
ip_proto = IPPROTO_TCP;
|
|
v4_spec = &fs->h_u.tcp_ip4_spec;
|
|
v4_m_spec = &fs->m_u.tcp_ip4_spec;
|
|
break;
|
|
case UDP_V4_FLOW:
|
|
ip_proto = IPPROTO_UDP;
|
|
v4_spec = &fs->h_u.udp_ip4_spec;
|
|
v4_m_spec = &fs->m_u.udp_ip4_spec;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
ip_frag = be32_to_cpu(fs->m_ext.data[0]);
|
|
|
|
/* Locate the first rule available */
|
|
if (fs->location == RX_CLS_LOC_ANY)
|
|
rule_index = find_first_zero_bit(priv->cfp.used,
|
|
priv->num_cfp_rules);
|
|
else
|
|
rule_index = fs->location;
|
|
|
|
if (rule_index > bcm_sf2_cfp_rule_size(priv))
|
|
return -ENOSPC;
|
|
|
|
layout = &udf_tcpip4_layout;
|
|
/* We only use one UDF slice for now */
|
|
slice_num = bcm_sf2_get_slice_number(layout, 0);
|
|
if (slice_num == UDF_NUM_SLICES)
|
|
return -EINVAL;
|
|
|
|
num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
|
|
|
|
/* Apply the UDF layout for this filter */
|
|
bcm_sf2_cfp_udf_set(priv, layout, slice_num);
|
|
|
|
/* Apply to all packets received through this port */
|
|
core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
|
|
|
|
/* Source port map match */
|
|
core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
|
|
|
|
/* S-Tag status [31:30]
|
|
* C-Tag status [29:28]
|
|
* L2 framing [27:26]
|
|
* L3 framing [25:24]
|
|
* IP ToS [23:16]
|
|
* IP proto [15:08]
|
|
* IP Fragm [7]
|
|
* Non 1st frag [6]
|
|
* IP Authen [5]
|
|
* TTL range [4:3]
|
|
* PPPoE session [2]
|
|
* Reserved [1]
|
|
* UDF_Valid[8] [0]
|
|
*/
|
|
core_writel(priv, v4_spec->tos << IPTOS_SHIFT |
|
|
ip_proto << IPPROTO_SHIFT | ip_frag << IP_FRAG_SHIFT |
|
|
udf_upper_bits(num_udf),
|
|
CORE_CFP_DATA_PORT(6));
|
|
|
|
/* Mask with the specific layout for IPv4 packets */
|
|
core_writel(priv, layout->udfs[slice_num].mask_value |
|
|
udf_upper_bits(num_udf), CORE_CFP_MASK_PORT(6));
|
|
|
|
/* UDF_Valid[7:0] [31:24]
|
|
* S-Tag [23:8]
|
|
* C-Tag [7:0]
|
|
*/
|
|
core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
|
|
|
|
/* Mask all but valid UDFs */
|
|
core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
|
|
|
|
/* Program the match and the mask */
|
|
bcm_sf2_cfp_slice_ipv4(priv, v4_spec, slice_num, false);
|
|
bcm_sf2_cfp_slice_ipv4(priv, v4_m_spec, SLICE_NUM_MASK, true);
|
|
|
|
/* Insert into TCAM now */
|
|
bcm_sf2_cfp_rule_addr_set(priv, rule_index);
|
|
|
|
ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
|
|
if (ret) {
|
|
pr_err("TCAM entry at addr %d failed\n", rule_index);
|
|
return ret;
|
|
}
|
|
|
|
/* Insert into Action and policer RAMs now */
|
|
ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port_num,
|
|
queue_num, true);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Turn on CFP for this rule now */
|
|
reg = core_readl(priv, CORE_CFP_CTL_REG);
|
|
reg |= BIT(port);
|
|
core_writel(priv, reg, CORE_CFP_CTL_REG);
|
|
|
|
/* Flag the rule as being used and return it */
|
|
set_bit(rule_index, priv->cfp.used);
|
|
set_bit(rule_index, priv->cfp.unique);
|
|
fs->location = rule_index;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv *priv,
|
|
const __be32 *ip6_addr, const __be16 port,
|
|
unsigned int slice_num,
|
|
bool mask)
|
|
{
|
|
u32 reg, tmp, val, offset;
|
|
|
|
/* C-Tag [31:24]
|
|
* UDF_n_B8 [23:8] (port)
|
|
* UDF_n_B7 (upper) [7:0] (addr[15:8])
|
|
*/
|
|
reg = be32_to_cpu(ip6_addr[3]);
|
|
val = (u32)be16_to_cpu(port) << 8 | ((reg >> 8) & 0xff);
|
|
if (mask)
|
|
offset = CORE_CFP_MASK_PORT(4);
|
|
else
|
|
offset = CORE_CFP_DATA_PORT(4);
|
|
core_writel(priv, val, offset);
|
|
|
|
/* UDF_n_B7 (lower) [31:24] (addr[7:0])
|
|
* UDF_n_B6 [23:8] (addr[31:16])
|
|
* UDF_n_B5 (upper) [7:0] (addr[47:40])
|
|
*/
|
|
tmp = be32_to_cpu(ip6_addr[2]);
|
|
val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
|
|
((tmp >> 8) & 0xff);
|
|
if (mask)
|
|
offset = CORE_CFP_MASK_PORT(3);
|
|
else
|
|
offset = CORE_CFP_DATA_PORT(3);
|
|
core_writel(priv, val, offset);
|
|
|
|
/* UDF_n_B5 (lower) [31:24] (addr[39:32])
|
|
* UDF_n_B4 [23:8] (addr[63:48])
|
|
* UDF_n_B3 (upper) [7:0] (addr[79:72])
|
|
*/
|
|
reg = be32_to_cpu(ip6_addr[1]);
|
|
val = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
|
|
((reg >> 8) & 0xff);
|
|
if (mask)
|
|
offset = CORE_CFP_MASK_PORT(2);
|
|
else
|
|
offset = CORE_CFP_DATA_PORT(2);
|
|
core_writel(priv, val, offset);
|
|
|
|
/* UDF_n_B3 (lower) [31:24] (addr[71:64])
|
|
* UDF_n_B2 [23:8] (addr[95:80])
|
|
* UDF_n_B1 (upper) [7:0] (addr[111:104])
|
|
*/
|
|
tmp = be32_to_cpu(ip6_addr[0]);
|
|
val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
|
|
((tmp >> 8) & 0xff);
|
|
if (mask)
|
|
offset = CORE_CFP_MASK_PORT(1);
|
|
else
|
|
offset = CORE_CFP_DATA_PORT(1);
|
|
core_writel(priv, val, offset);
|
|
|
|
/* UDF_n_B1 (lower) [31:24] (addr[103:96])
|
|
* UDF_n_B0 [23:8] (addr[127:112])
|
|
* Reserved [7:4]
|
|
* Slice ID [3:2]
|
|
* Slice valid [1:0]
|
|
*/
|
|
reg = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
|
|
SLICE_NUM(slice_num) | SLICE_VALID;
|
|
if (mask)
|
|
offset = CORE_CFP_MASK_PORT(0);
|
|
else
|
|
offset = CORE_CFP_DATA_PORT(0);
|
|
core_writel(priv, reg, offset);
|
|
}
|
|
|
|
static int bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv *priv, int port,
|
|
unsigned int port_num,
|
|
unsigned int queue_num,
|
|
struct ethtool_rx_flow_spec *fs)
|
|
{
|
|
struct ethtool_tcpip6_spec *v6_spec, *v6_m_spec;
|
|
unsigned int slice_num, rule_index[2];
|
|
const struct cfp_udf_layout *layout;
|
|
u8 ip_proto, ip_frag;
|
|
int ret = 0;
|
|
u8 num_udf;
|
|
u32 reg;
|
|
|
|
switch (fs->flow_type & ~FLOW_EXT) {
|
|
case TCP_V6_FLOW:
|
|
ip_proto = IPPROTO_TCP;
|
|
v6_spec = &fs->h_u.tcp_ip6_spec;
|
|
v6_m_spec = &fs->m_u.tcp_ip6_spec;
|
|
break;
|
|
case UDP_V6_FLOW:
|
|
ip_proto = IPPROTO_UDP;
|
|
v6_spec = &fs->h_u.udp_ip6_spec;
|
|
v6_m_spec = &fs->m_u.udp_ip6_spec;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
ip_frag = be32_to_cpu(fs->m_ext.data[0]);
|
|
|
|
layout = &udf_tcpip6_layout;
|
|
slice_num = bcm_sf2_get_slice_number(layout, 0);
|
|
if (slice_num == UDF_NUM_SLICES)
|
|
return -EINVAL;
|
|
|
|
num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
|
|
|
|
/* Negotiate two indexes, one for the second half which we are chained
|
|
* from, which is what we will return to user-space, and a second one
|
|
* which is used to store its first half. That first half does not
|
|
* allow any choice of placement, so it just needs to find the next
|
|
* available bit. We return the second half as fs->location because
|
|
* that helps with the rule lookup later on since the second half is
|
|
* chained from its first half, we can easily identify IPv6 CFP rules
|
|
* by looking whether they carry a CHAIN_ID.
|
|
*
|
|
* We also want the second half to have a lower rule_index than its
|
|
* first half because the HW search is by incrementing addresses.
|
|
*/
|
|
if (fs->location == RX_CLS_LOC_ANY)
|
|
rule_index[1] = find_first_zero_bit(priv->cfp.used,
|
|
priv->num_cfp_rules);
|
|
else
|
|
rule_index[1] = fs->location;
|
|
if (rule_index[1] > bcm_sf2_cfp_rule_size(priv))
|
|
return -ENOSPC;
|
|
|
|
/* Flag it as used (cleared on error path) such that we can immediately
|
|
* obtain a second one to chain from.
|
|
*/
|
|
set_bit(rule_index[1], priv->cfp.used);
|
|
|
|
rule_index[0] = find_first_zero_bit(priv->cfp.used,
|
|
priv->num_cfp_rules);
|
|
if (rule_index[0] > bcm_sf2_cfp_rule_size(priv)) {
|
|
ret = -ENOSPC;
|
|
goto out_err;
|
|
}
|
|
|
|
/* Apply the UDF layout for this filter */
|
|
bcm_sf2_cfp_udf_set(priv, layout, slice_num);
|
|
|
|
/* Apply to all packets received through this port */
|
|
core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
|
|
|
|
/* Source port map match */
|
|
core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
|
|
|
|
/* S-Tag status [31:30]
|
|
* C-Tag status [29:28]
|
|
* L2 framing [27:26]
|
|
* L3 framing [25:24]
|
|
* IP ToS [23:16]
|
|
* IP proto [15:08]
|
|
* IP Fragm [7]
|
|
* Non 1st frag [6]
|
|
* IP Authen [5]
|
|
* TTL range [4:3]
|
|
* PPPoE session [2]
|
|
* Reserved [1]
|
|
* UDF_Valid[8] [0]
|
|
*/
|
|
reg = 1 << L3_FRAMING_SHIFT | ip_proto << IPPROTO_SHIFT |
|
|
ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf);
|
|
core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
|
|
|
|
/* Mask with the specific layout for IPv6 packets including
|
|
* UDF_Valid[8]
|
|
*/
|
|
reg = layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf);
|
|
core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
|
|
|
|
/* UDF_Valid[7:0] [31:24]
|
|
* S-Tag [23:8]
|
|
* C-Tag [7:0]
|
|
*/
|
|
core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
|
|
|
|
/* Mask all but valid UDFs */
|
|
core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
|
|
|
|
/* Slice the IPv6 source address and port */
|
|
bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6src, v6_spec->psrc,
|
|
slice_num, false);
|
|
bcm_sf2_cfp_slice_ipv6(priv, v6_m_spec->ip6src, v6_m_spec->psrc,
|
|
SLICE_NUM_MASK, true);
|
|
|
|
/* Insert into TCAM now because we need to insert a second rule */
|
|
bcm_sf2_cfp_rule_addr_set(priv, rule_index[0]);
|
|
|
|
ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
|
|
if (ret) {
|
|
pr_err("TCAM entry at addr %d failed\n", rule_index[0]);
|
|
goto out_err;
|
|
}
|
|
|
|
/* Insert into Action and policer RAMs now */
|
|
ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port_num,
|
|
queue_num, false);
|
|
if (ret)
|
|
goto out_err;
|
|
|
|
/* Now deal with the second slice to chain this rule */
|
|
slice_num = bcm_sf2_get_slice_number(layout, slice_num + 1);
|
|
if (slice_num == UDF_NUM_SLICES) {
|
|
ret = -EINVAL;
|
|
goto out_err;
|
|
}
|
|
|
|
num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
|
|
|
|
/* Apply the UDF layout for this filter */
|
|
bcm_sf2_cfp_udf_set(priv, layout, slice_num);
|
|
|
|
/* Chained rule, source port match is coming from the rule we are
|
|
* chained from.
|
|
*/
|
|
core_writel(priv, 0, CORE_CFP_DATA_PORT(7));
|
|
core_writel(priv, 0, CORE_CFP_MASK_PORT(7));
|
|
|
|
/*
|
|
* CHAIN ID [31:24] chain to previous slice
|
|
* Reserved [23:20]
|
|
* UDF_Valid[11:8] [19:16]
|
|
* UDF_Valid[7:0] [15:8]
|
|
* UDF_n_D11 [7:0]
|
|
*/
|
|
reg = rule_index[0] << 24 | udf_upper_bits(num_udf) << 16 |
|
|
udf_lower_bits(num_udf) << 8;
|
|
core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
|
|
|
|
/* Mask all except chain ID, UDF Valid[8] and UDF Valid[7:0] */
|
|
reg = XCESS_ADDR_MASK << 24 | udf_upper_bits(num_udf) << 16 |
|
|
udf_lower_bits(num_udf) << 8;
|
|
core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
|
|
|
|
/* Don't care */
|
|
core_writel(priv, 0, CORE_CFP_DATA_PORT(5));
|
|
|
|
/* Mask all */
|
|
core_writel(priv, 0, CORE_CFP_MASK_PORT(5));
|
|
|
|
bcm_sf2_cfp_slice_ipv6(priv, v6_spec->ip6dst, v6_spec->pdst, slice_num,
|
|
false);
|
|
bcm_sf2_cfp_slice_ipv6(priv, v6_m_spec->ip6dst, v6_m_spec->pdst,
|
|
SLICE_NUM_MASK, true);
|
|
|
|
/* Insert into TCAM now */
|
|
bcm_sf2_cfp_rule_addr_set(priv, rule_index[1]);
|
|
|
|
ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
|
|
if (ret) {
|
|
pr_err("TCAM entry at addr %d failed\n", rule_index[1]);
|
|
goto out_err;
|
|
}
|
|
|
|
/* Insert into Action and policer RAMs now, set chain ID to
|
|
* the one we are chained to
|
|
*/
|
|
ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[1], port_num,
|
|
queue_num, true);
|
|
if (ret)
|
|
goto out_err;
|
|
|
|
/* Turn on CFP for this rule now */
|
|
reg = core_readl(priv, CORE_CFP_CTL_REG);
|
|
reg |= BIT(port);
|
|
core_writel(priv, reg, CORE_CFP_CTL_REG);
|
|
|
|
/* Flag the second half rule as being used now, return it as the
|
|
* location, and flag it as unique while dumping rules
|
|
*/
|
|
set_bit(rule_index[0], priv->cfp.used);
|
|
set_bit(rule_index[1], priv->cfp.unique);
|
|
fs->location = rule_index[1];
|
|
|
|
return ret;
|
|
|
|
out_err:
|
|
clear_bit(rule_index[1], priv->cfp.used);
|
|
return ret;
|
|
}
|
|
|
|
static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port,
|
|
struct ethtool_rx_flow_spec *fs)
|
|
{
|
|
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
|
|
s8 cpu_port = ds->ports[port].cpu_dp->index;
|
|
__u64 ring_cookie = fs->ring_cookie;
|
|
unsigned int queue_num, port_num;
|
|
int ret = -EINVAL;
|
|
|
|
/* Check for unsupported extensions */
|
|
if ((fs->flow_type & FLOW_EXT) && (fs->m_ext.vlan_etype ||
|
|
fs->m_ext.data[1]))
|
|
return -EINVAL;
|
|
|
|
if (fs->location != RX_CLS_LOC_ANY &&
|
|
test_bit(fs->location, priv->cfp.used))
|
|
return -EBUSY;
|
|
|
|
if (fs->location != RX_CLS_LOC_ANY &&
|
|
fs->location > bcm_sf2_cfp_rule_size(priv))
|
|
return -EINVAL;
|
|
|
|
/* This rule is a Wake-on-LAN filter and we must specifically
|
|
* target the CPU port in order for it to be working.
|
|
*/
|
|
if (ring_cookie == RX_CLS_FLOW_WAKE)
|
|
ring_cookie = cpu_port * SF2_NUM_EGRESS_QUEUES;
|
|
|
|
/* We do not support discarding packets, check that the
|
|
* destination port is enabled and that we are within the
|
|
* number of ports supported by the switch
|
|
*/
|
|
port_num = ring_cookie / SF2_NUM_EGRESS_QUEUES;
|
|
|
|
if (ring_cookie == RX_CLS_FLOW_DISC ||
|
|
!(dsa_is_user_port(ds, port_num) ||
|
|
dsa_is_cpu_port(ds, port_num)) ||
|
|
port_num >= priv->hw_params.num_ports)
|
|
return -EINVAL;
|
|
/*
|
|
* We have a small oddity where Port 6 just does not have a
|
|
* valid bit here (so we substract by one).
|
|
*/
|
|
queue_num = ring_cookie % SF2_NUM_EGRESS_QUEUES;
|
|
if (port_num >= 7)
|
|
port_num -= 1;
|
|
|
|
switch (fs->flow_type & ~FLOW_EXT) {
|
|
case TCP_V4_FLOW:
|
|
case UDP_V4_FLOW:
|
|
ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num,
|
|
queue_num, fs);
|
|
break;
|
|
case TCP_V6_FLOW:
|
|
case UDP_V6_FLOW:
|
|
ret = bcm_sf2_cfp_ipv6_rule_set(priv, port, port_num,
|
|
queue_num, fs);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv *priv, int port,
|
|
u32 loc, u32 *next_loc)
|
|
{
|
|
int ret;
|
|
u32 reg;
|
|
|
|
/* Indicate which rule we want to read */
|
|
bcm_sf2_cfp_rule_addr_set(priv, loc);
|
|
|
|
ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Check if this is possibly an IPv6 rule that would
|
|
* indicate we need to delete its companion rule
|
|
* as well
|
|
*/
|
|
reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
|
|
if (next_loc)
|
|
*next_loc = (reg >> 24) & CHAIN_ID_MASK;
|
|
|
|
/* Clear its valid bits */
|
|
reg = core_readl(priv, CORE_CFP_DATA_PORT(0));
|
|
reg &= ~SLICE_VALID;
|
|
core_writel(priv, reg, CORE_CFP_DATA_PORT(0));
|
|
|
|
/* Write back this entry into the TCAM now */
|
|
ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
clear_bit(loc, priv->cfp.used);
|
|
clear_bit(loc, priv->cfp.unique);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port,
|
|
u32 loc)
|
|
{
|
|
u32 next_loc = 0;
|
|
int ret;
|
|
|
|
/* Refuse deleting unused rules, and those that are not unique since
|
|
* that could leave IPv6 rules with one of the chained rule in the
|
|
* table.
|
|
*/
|
|
if (!test_bit(loc, priv->cfp.unique) || loc == 0)
|
|
return -EINVAL;
|
|
|
|
ret = bcm_sf2_cfp_rule_del_one(priv, port, loc, &next_loc);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* If this was an IPv6 rule, delete is companion rule too */
|
|
if (next_loc)
|
|
ret = bcm_sf2_cfp_rule_del_one(priv, port, next_loc, NULL);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < sizeof(flow->m_u); i++)
|
|
flow->m_u.hdata[i] ^= 0xff;
|
|
|
|
flow->m_ext.vlan_etype ^= cpu_to_be16(~0);
|
|
flow->m_ext.vlan_tci ^= cpu_to_be16(~0);
|
|
flow->m_ext.data[0] ^= cpu_to_be32(~0);
|
|
flow->m_ext.data[1] ^= cpu_to_be32(~0);
|
|
}
|
|
|
|
static int bcm_sf2_cfp_unslice_ipv4(struct bcm_sf2_priv *priv,
|
|
struct ethtool_tcpip4_spec *v4_spec,
|
|
bool mask)
|
|
{
|
|
u32 reg, offset, ipv4;
|
|
u16 src_dst_port;
|
|
|
|
if (mask)
|
|
offset = CORE_CFP_MASK_PORT(3);
|
|
else
|
|
offset = CORE_CFP_DATA_PORT(3);
|
|
|
|
reg = core_readl(priv, offset);
|
|
/* src port [15:8] */
|
|
src_dst_port = reg << 8;
|
|
|
|
if (mask)
|
|
offset = CORE_CFP_MASK_PORT(2);
|
|
else
|
|
offset = CORE_CFP_DATA_PORT(2);
|
|
|
|
reg = core_readl(priv, offset);
|
|
/* src port [7:0] */
|
|
src_dst_port |= (reg >> 24);
|
|
|
|
v4_spec->pdst = cpu_to_be16(src_dst_port);
|
|
v4_spec->psrc = cpu_to_be16((u16)(reg >> 8));
|
|
|
|
/* IPv4 dst [15:8] */
|
|
ipv4 = (reg & 0xff) << 8;
|
|
|
|
if (mask)
|
|
offset = CORE_CFP_MASK_PORT(1);
|
|
else
|
|
offset = CORE_CFP_DATA_PORT(1);
|
|
|
|
reg = core_readl(priv, offset);
|
|
/* IPv4 dst [31:16] */
|
|
ipv4 |= ((reg >> 8) & 0xffff) << 16;
|
|
/* IPv4 dst [7:0] */
|
|
ipv4 |= (reg >> 24) & 0xff;
|
|
v4_spec->ip4dst = cpu_to_be32(ipv4);
|
|
|
|
/* IPv4 src [15:8] */
|
|
ipv4 = (reg & 0xff) << 8;
|
|
|
|
if (mask)
|
|
offset = CORE_CFP_MASK_PORT(0);
|
|
else
|
|
offset = CORE_CFP_DATA_PORT(0);
|
|
reg = core_readl(priv, offset);
|
|
|
|
/* Once the TCAM is programmed, the mask reflects the slice number
|
|
* being matched, don't bother checking it when reading back the
|
|
* mask spec
|
|
*/
|
|
if (!mask && !(reg & SLICE_VALID))
|
|
return -EINVAL;
|
|
|
|
/* IPv4 src [7:0] */
|
|
ipv4 |= (reg >> 24) & 0xff;
|
|
/* IPv4 src [31:16] */
|
|
ipv4 |= ((reg >> 8) & 0xffff) << 16;
|
|
v4_spec->ip4src = cpu_to_be32(ipv4);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bcm_sf2_cfp_ipv4_rule_get(struct bcm_sf2_priv *priv, int port,
|
|
struct ethtool_rx_flow_spec *fs)
|
|
{
|
|
struct ethtool_tcpip4_spec *v4_spec = NULL, *v4_m_spec = NULL;
|
|
u32 reg;
|
|
int ret;
|
|
|
|
reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
|
|
|
|
switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
|
|
case IPPROTO_TCP:
|
|
fs->flow_type = TCP_V4_FLOW;
|
|
v4_spec = &fs->h_u.tcp_ip4_spec;
|
|
v4_m_spec = &fs->m_u.tcp_ip4_spec;
|
|
break;
|
|
case IPPROTO_UDP:
|
|
fs->flow_type = UDP_V4_FLOW;
|
|
v4_spec = &fs->h_u.udp_ip4_spec;
|
|
v4_m_spec = &fs->m_u.udp_ip4_spec;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
fs->m_ext.data[0] = cpu_to_be32((reg >> IP_FRAG_SHIFT) & 1);
|
|
v4_spec->tos = (reg >> IPTOS_SHIFT) & IPTOS_MASK;
|
|
|
|
ret = bcm_sf2_cfp_unslice_ipv4(priv, v4_spec, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return bcm_sf2_cfp_unslice_ipv4(priv, v4_m_spec, true);
|
|
}
|
|
|
|
static int bcm_sf2_cfp_unslice_ipv6(struct bcm_sf2_priv *priv,
|
|
__be32 *ip6_addr, __be16 *port,
|
|
bool mask)
|
|
{
|
|
u32 reg, tmp, offset;
|
|
|
|
/* C-Tag [31:24]
|
|
* UDF_n_B8 [23:8] (port)
|
|
* UDF_n_B7 (upper) [7:0] (addr[15:8])
|
|
*/
|
|
if (mask)
|
|
offset = CORE_CFP_MASK_PORT(4);
|
|
else
|
|
offset = CORE_CFP_DATA_PORT(4);
|
|
reg = core_readl(priv, offset);
|
|
*port = cpu_to_be32(reg) >> 8;
|
|
tmp = (u32)(reg & 0xff) << 8;
|
|
|
|
/* UDF_n_B7 (lower) [31:24] (addr[7:0])
|
|
* UDF_n_B6 [23:8] (addr[31:16])
|
|
* UDF_n_B5 (upper) [7:0] (addr[47:40])
|
|
*/
|
|
if (mask)
|
|
offset = CORE_CFP_MASK_PORT(3);
|
|
else
|
|
offset = CORE_CFP_DATA_PORT(3);
|
|
reg = core_readl(priv, offset);
|
|
tmp |= (reg >> 24) & 0xff;
|
|
tmp |= (u32)((reg >> 8) << 16);
|
|
ip6_addr[3] = cpu_to_be32(tmp);
|
|
tmp = (u32)(reg & 0xff) << 8;
|
|
|
|
/* UDF_n_B5 (lower) [31:24] (addr[39:32])
|
|
* UDF_n_B4 [23:8] (addr[63:48])
|
|
* UDF_n_B3 (upper) [7:0] (addr[79:72])
|
|
*/
|
|
if (mask)
|
|
offset = CORE_CFP_MASK_PORT(2);
|
|
else
|
|
offset = CORE_CFP_DATA_PORT(2);
|
|
reg = core_readl(priv, offset);
|
|
tmp |= (reg >> 24) & 0xff;
|
|
tmp |= (u32)((reg >> 8) << 16);
|
|
ip6_addr[2] = cpu_to_be32(tmp);
|
|
tmp = (u32)(reg & 0xff) << 8;
|
|
|
|
/* UDF_n_B3 (lower) [31:24] (addr[71:64])
|
|
* UDF_n_B2 [23:8] (addr[95:80])
|
|
* UDF_n_B1 (upper) [7:0] (addr[111:104])
|
|
*/
|
|
if (mask)
|
|
offset = CORE_CFP_MASK_PORT(1);
|
|
else
|
|
offset = CORE_CFP_DATA_PORT(1);
|
|
reg = core_readl(priv, offset);
|
|
tmp |= (reg >> 24) & 0xff;
|
|
tmp |= (u32)((reg >> 8) << 16);
|
|
ip6_addr[1] = cpu_to_be32(tmp);
|
|
tmp = (u32)(reg & 0xff) << 8;
|
|
|
|
/* UDF_n_B1 (lower) [31:24] (addr[103:96])
|
|
* UDF_n_B0 [23:8] (addr[127:112])
|
|
* Reserved [7:4]
|
|
* Slice ID [3:2]
|
|
* Slice valid [1:0]
|
|
*/
|
|
if (mask)
|
|
offset = CORE_CFP_MASK_PORT(0);
|
|
else
|
|
offset = CORE_CFP_DATA_PORT(0);
|
|
reg = core_readl(priv, offset);
|
|
tmp |= (reg >> 24) & 0xff;
|
|
tmp |= (u32)((reg >> 8) << 16);
|
|
ip6_addr[0] = cpu_to_be32(tmp);
|
|
|
|
if (!mask && !(reg & SLICE_VALID))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bcm_sf2_cfp_ipv6_rule_get(struct bcm_sf2_priv *priv, int port,
|
|
struct ethtool_rx_flow_spec *fs,
|
|
u32 next_loc)
|
|
{
|
|
struct ethtool_tcpip6_spec *v6_spec = NULL, *v6_m_spec = NULL;
|
|
u32 reg;
|
|
int ret;
|
|
|
|
/* UDPv6 and TCPv6 both use ethtool_tcpip6_spec so we are fine
|
|
* assuming tcp_ip6_spec here being an union.
|
|
*/
|
|
v6_spec = &fs->h_u.tcp_ip6_spec;
|
|
v6_m_spec = &fs->m_u.tcp_ip6_spec;
|
|
|
|
/* Read the second half first */
|
|
ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6dst, &v6_spec->pdst,
|
|
false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_m_spec->ip6dst,
|
|
&v6_m_spec->pdst, true);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Read last to avoid next entry clobbering the results during search
|
|
* operations. We would not have the port enabled for this rule, so
|
|
* don't bother checking it.
|
|
*/
|
|
(void)core_readl(priv, CORE_CFP_DATA_PORT(7));
|
|
|
|
/* The slice number is valid, so read the rule we are chained from now
|
|
* which is our first half.
|
|
*/
|
|
bcm_sf2_cfp_rule_addr_set(priv, next_loc);
|
|
ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
|
|
|
|
switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
|
|
case IPPROTO_TCP:
|
|
fs->flow_type = TCP_V6_FLOW;
|
|
break;
|
|
case IPPROTO_UDP:
|
|
fs->flow_type = UDP_V6_FLOW;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = bcm_sf2_cfp_unslice_ipv6(priv, v6_spec->ip6src, &v6_spec->psrc,
|
|
false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return bcm_sf2_cfp_unslice_ipv6(priv, v6_m_spec->ip6src,
|
|
&v6_m_spec->psrc, true);
|
|
}
|
|
|
|
static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port,
|
|
struct ethtool_rxnfc *nfc)
|
|
{
|
|
u32 reg, ipv4_or_chain_id;
|
|
unsigned int queue_num;
|
|
int ret;
|
|
|
|
bcm_sf2_cfp_rule_addr_set(priv, nfc->fs.location);
|
|
|
|
ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | ACT_POL_RAM);
|
|
if (ret)
|
|
return ret;
|
|
|
|
reg = core_readl(priv, CORE_ACT_POL_DATA0);
|
|
|
|
ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Extract the destination port */
|
|
nfc->fs.ring_cookie = fls((reg >> DST_MAP_IB_SHIFT) &
|
|
DST_MAP_IB_MASK) - 1;
|
|
|
|
/* There is no Port 6, so we compensate for that here */
|
|
if (nfc->fs.ring_cookie >= 6)
|
|
nfc->fs.ring_cookie++;
|
|
nfc->fs.ring_cookie *= SF2_NUM_EGRESS_QUEUES;
|
|
|
|
/* Extract the destination queue */
|
|
queue_num = (reg >> NEW_TC_SHIFT) & NEW_TC_MASK;
|
|
nfc->fs.ring_cookie += queue_num;
|
|
|
|
/* Extract the L3_FRAMING or CHAIN_ID */
|
|
reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
|
|
|
|
/* With IPv6 rules this would contain a non-zero chain ID since
|
|
* we reserve entry 0 and it cannot be used. So if we read 0 here
|
|
* this means an IPv4 rule.
|
|
*/
|
|
ipv4_or_chain_id = (reg >> L3_FRAMING_SHIFT) & 0xff;
|
|
if (ipv4_or_chain_id == 0)
|
|
ret = bcm_sf2_cfp_ipv4_rule_get(priv, port, &nfc->fs);
|
|
else
|
|
ret = bcm_sf2_cfp_ipv6_rule_get(priv, port, &nfc->fs,
|
|
ipv4_or_chain_id);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Read last to avoid next entry clobbering the results during search
|
|
* operations
|
|
*/
|
|
reg = core_readl(priv, CORE_CFP_DATA_PORT(7));
|
|
if (!(reg & 1 << port))
|
|
return -EINVAL;
|
|
|
|
bcm_sf2_invert_masks(&nfc->fs);
|
|
|
|
/* Put the TCAM size here */
|
|
nfc->data = bcm_sf2_cfp_rule_size(priv);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* We implement the search doing a TCAM search operation */
|
|
static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv,
|
|
int port, struct ethtool_rxnfc *nfc,
|
|
u32 *rule_locs)
|
|
{
|
|
unsigned int index = 1, rules_cnt = 0;
|
|
|
|
for_each_set_bit_from(index, priv->cfp.unique, priv->num_cfp_rules) {
|
|
rule_locs[rules_cnt] = index;
|
|
rules_cnt++;
|
|
}
|
|
|
|
/* Put the TCAM size here */
|
|
nfc->data = bcm_sf2_cfp_rule_size(priv);
|
|
nfc->rule_cnt = rules_cnt;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port,
|
|
struct ethtool_rxnfc *nfc, u32 *rule_locs)
|
|
{
|
|
struct net_device *p = ds->ports[port].cpu_dp->master;
|
|
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
|
|
int ret = 0;
|
|
|
|
mutex_lock(&priv->cfp.lock);
|
|
|
|
switch (nfc->cmd) {
|
|
case ETHTOOL_GRXCLSRLCNT:
|
|
/* Subtract the default, unusable rule */
|
|
nfc->rule_cnt = bitmap_weight(priv->cfp.unique,
|
|
priv->num_cfp_rules) - 1;
|
|
/* We support specifying rule locations */
|
|
nfc->data |= RX_CLS_LOC_SPECIAL;
|
|
break;
|
|
case ETHTOOL_GRXCLSRULE:
|
|
ret = bcm_sf2_cfp_rule_get(priv, port, nfc);
|
|
break;
|
|
case ETHTOOL_GRXCLSRLALL:
|
|
ret = bcm_sf2_cfp_rule_get_all(priv, port, nfc, rule_locs);
|
|
break;
|
|
default:
|
|
ret = -EOPNOTSUPP;
|
|
break;
|
|
}
|
|
|
|
mutex_unlock(&priv->cfp.lock);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Pass up the commands to the attached master network device */
|
|
if (p->ethtool_ops->get_rxnfc) {
|
|
ret = p->ethtool_ops->get_rxnfc(p, nfc, rule_locs);
|
|
if (ret == -EOPNOTSUPP)
|
|
ret = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int bcm_sf2_set_rxnfc(struct dsa_switch *ds, int port,
|
|
struct ethtool_rxnfc *nfc)
|
|
{
|
|
struct net_device *p = ds->ports[port].cpu_dp->master;
|
|
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
|
|
int ret = 0;
|
|
|
|
mutex_lock(&priv->cfp.lock);
|
|
|
|
switch (nfc->cmd) {
|
|
case ETHTOOL_SRXCLSRLINS:
|
|
ret = bcm_sf2_cfp_rule_set(ds, port, &nfc->fs);
|
|
break;
|
|
|
|
case ETHTOOL_SRXCLSRLDEL:
|
|
ret = bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
|
|
break;
|
|
default:
|
|
ret = -EOPNOTSUPP;
|
|
break;
|
|
}
|
|
|
|
mutex_unlock(&priv->cfp.lock);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Pass up the commands to the attached master network device.
|
|
* This can fail, so rollback the operation if we need to.
|
|
*/
|
|
if (p->ethtool_ops->set_rxnfc) {
|
|
ret = p->ethtool_ops->set_rxnfc(p, nfc);
|
|
if (ret && ret != -EOPNOTSUPP) {
|
|
mutex_lock(&priv->cfp.lock);
|
|
bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
|
|
mutex_unlock(&priv->cfp.lock);
|
|
} else {
|
|
ret = 0;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int bcm_sf2_cfp_rst(struct bcm_sf2_priv *priv)
|
|
{
|
|
unsigned int timeout = 1000;
|
|
u32 reg;
|
|
|
|
reg = core_readl(priv, CORE_CFP_ACC);
|
|
reg |= TCAM_RESET;
|
|
core_writel(priv, reg, CORE_CFP_ACC);
|
|
|
|
do {
|
|
reg = core_readl(priv, CORE_CFP_ACC);
|
|
if (!(reg & TCAM_RESET))
|
|
break;
|
|
|
|
cpu_relax();
|
|
} while (timeout--);
|
|
|
|
if (!timeout)
|
|
return -ETIMEDOUT;
|
|
|
|
return 0;
|
|
}
|