kernel_optimize_test/arch/sh64/kernel/process.c
Arnd Bergmann 821278a75d [PATCH] sh64: remove the use of kernel syscalls
sh64 is using system call macros to call some functions from the kernel.

The old debug code can simply be removed, since we don't really have that much
of a need for it anymore, it was mostly something that was handy during the
initial bringup.  This also brings us closer to something that looks like
readable code again..

I also added a sane kernel_thread() implementation that gets away from this,
so that should take care of sh64 at least.

Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Andi Kleen <ak@muc.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Ian Molton <spyro@f2s.com>
Cc: Mikael Starvik <starvik@axis.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Hirokazu Takata <takata.hirokazu@renesas.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp>
Cc: Richard Curnow <rc@rc0.org.uk>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Cc: Miles Bader <uclinux-v850@lsi.nec.co.jp>
Cc: Chris Zankel <chris@zankel.net>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Roman Zippel <zippel@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-02 07:57:23 -07:00

695 lines
18 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* arch/sh64/kernel/process.c
*
* Copyright (C) 2000, 2001 Paolo Alberelli
* Copyright (C) 2003 Paul Mundt
* Copyright (C) 2003, 2004 Richard Curnow
*
* Started from SH3/4 version:
* Copyright (C) 1999, 2000 Niibe Yutaka & Kaz Kojima
*
* In turn started from i386 version:
* Copyright (C) 1995 Linus Torvalds
*
*/
/*
* This file handles the architecture-dependent parts of process handling..
*/
#include <linux/mm.h>
#include <linux/ptrace.h>
#include <linux/reboot.h>
#include <linux/init.h>
#include <linux/module.h>
#include <asm/uaccess.h>
#include <asm/pgtable.h>
struct task_struct *last_task_used_math = NULL;
static int hlt_counter = 1;
#define HARD_IDLE_TIMEOUT (HZ / 3)
void disable_hlt(void)
{
hlt_counter++;
}
void enable_hlt(void)
{
hlt_counter--;
}
static int __init nohlt_setup(char *__unused)
{
hlt_counter = 1;
return 1;
}
static int __init hlt_setup(char *__unused)
{
hlt_counter = 0;
return 1;
}
__setup("nohlt", nohlt_setup);
__setup("hlt", hlt_setup);
static inline void hlt(void)
{
__asm__ __volatile__ ("sleep" : : : "memory");
}
/*
* The idle loop on a uniprocessor SH..
*/
void cpu_idle(void)
{
/* endless idle loop with no priority at all */
while (1) {
if (hlt_counter) {
while (!need_resched())
cpu_relax();
} else {
local_irq_disable();
while (!need_resched()) {
local_irq_enable();
hlt();
local_irq_disable();
}
local_irq_enable();
}
preempt_enable_no_resched();
schedule();
preempt_disable();
}
}
void machine_restart(char * __unused)
{
extern void phys_stext(void);
phys_stext();
}
void machine_halt(void)
{
for (;;);
}
void machine_power_off(void)
{
extern void enter_deep_standby(void);
enter_deep_standby();
}
void (*pm_power_off)(void) = machine_power_off;
EXPORT_SYMBOL(pm_power_off);
void show_regs(struct pt_regs * regs)
{
unsigned long long ah, al, bh, bl, ch, cl;
printk("\n");
ah = (regs->pc) >> 32;
al = (regs->pc) & 0xffffffff;
bh = (regs->regs[18]) >> 32;
bl = (regs->regs[18]) & 0xffffffff;
ch = (regs->regs[15]) >> 32;
cl = (regs->regs[15]) & 0xffffffff;
printk("PC : %08Lx%08Lx LINK: %08Lx%08Lx SP : %08Lx%08Lx\n",
ah, al, bh, bl, ch, cl);
ah = (regs->sr) >> 32;
al = (regs->sr) & 0xffffffff;
asm volatile ("getcon " __TEA ", %0" : "=r" (bh));
asm volatile ("getcon " __TEA ", %0" : "=r" (bl));
bh = (bh) >> 32;
bl = (bl) & 0xffffffff;
asm volatile ("getcon " __KCR0 ", %0" : "=r" (ch));
asm volatile ("getcon " __KCR0 ", %0" : "=r" (cl));
ch = (ch) >> 32;
cl = (cl) & 0xffffffff;
printk("SR : %08Lx%08Lx TEA : %08Lx%08Lx KCR0: %08Lx%08Lx\n",
ah, al, bh, bl, ch, cl);
ah = (regs->regs[0]) >> 32;
al = (regs->regs[0]) & 0xffffffff;
bh = (regs->regs[1]) >> 32;
bl = (regs->regs[1]) & 0xffffffff;
ch = (regs->regs[2]) >> 32;
cl = (regs->regs[2]) & 0xffffffff;
printk("R0 : %08Lx%08Lx R1 : %08Lx%08Lx R2 : %08Lx%08Lx\n",
ah, al, bh, bl, ch, cl);
ah = (regs->regs[3]) >> 32;
al = (regs->regs[3]) & 0xffffffff;
bh = (regs->regs[4]) >> 32;
bl = (regs->regs[4]) & 0xffffffff;
ch = (regs->regs[5]) >> 32;
cl = (regs->regs[5]) & 0xffffffff;
printk("R3 : %08Lx%08Lx R4 : %08Lx%08Lx R5 : %08Lx%08Lx\n",
ah, al, bh, bl, ch, cl);
ah = (regs->regs[6]) >> 32;
al = (regs->regs[6]) & 0xffffffff;
bh = (regs->regs[7]) >> 32;
bl = (regs->regs[7]) & 0xffffffff;
ch = (regs->regs[8]) >> 32;
cl = (regs->regs[8]) & 0xffffffff;
printk("R6 : %08Lx%08Lx R7 : %08Lx%08Lx R8 : %08Lx%08Lx\n",
ah, al, bh, bl, ch, cl);
ah = (regs->regs[9]) >> 32;
al = (regs->regs[9]) & 0xffffffff;
bh = (regs->regs[10]) >> 32;
bl = (regs->regs[10]) & 0xffffffff;
ch = (regs->regs[11]) >> 32;
cl = (regs->regs[11]) & 0xffffffff;
printk("R9 : %08Lx%08Lx R10 : %08Lx%08Lx R11 : %08Lx%08Lx\n",
ah, al, bh, bl, ch, cl);
ah = (regs->regs[12]) >> 32;
al = (regs->regs[12]) & 0xffffffff;
bh = (regs->regs[13]) >> 32;
bl = (regs->regs[13]) & 0xffffffff;
ch = (regs->regs[14]) >> 32;
cl = (regs->regs[14]) & 0xffffffff;
printk("R12 : %08Lx%08Lx R13 : %08Lx%08Lx R14 : %08Lx%08Lx\n",
ah, al, bh, bl, ch, cl);
ah = (regs->regs[16]) >> 32;
al = (regs->regs[16]) & 0xffffffff;
bh = (regs->regs[17]) >> 32;
bl = (regs->regs[17]) & 0xffffffff;
ch = (regs->regs[19]) >> 32;
cl = (regs->regs[19]) & 0xffffffff;
printk("R16 : %08Lx%08Lx R17 : %08Lx%08Lx R19 : %08Lx%08Lx\n",
ah, al, bh, bl, ch, cl);
ah = (regs->regs[20]) >> 32;
al = (regs->regs[20]) & 0xffffffff;
bh = (regs->regs[21]) >> 32;
bl = (regs->regs[21]) & 0xffffffff;
ch = (regs->regs[22]) >> 32;
cl = (regs->regs[22]) & 0xffffffff;
printk("R20 : %08Lx%08Lx R21 : %08Lx%08Lx R22 : %08Lx%08Lx\n",
ah, al, bh, bl, ch, cl);
ah = (regs->regs[23]) >> 32;
al = (regs->regs[23]) & 0xffffffff;
bh = (regs->regs[24]) >> 32;
bl = (regs->regs[24]) & 0xffffffff;
ch = (regs->regs[25]) >> 32;
cl = (regs->regs[25]) & 0xffffffff;
printk("R23 : %08Lx%08Lx R24 : %08Lx%08Lx R25 : %08Lx%08Lx\n",
ah, al, bh, bl, ch, cl);
ah = (regs->regs[26]) >> 32;
al = (regs->regs[26]) & 0xffffffff;
bh = (regs->regs[27]) >> 32;
bl = (regs->regs[27]) & 0xffffffff;
ch = (regs->regs[28]) >> 32;
cl = (regs->regs[28]) & 0xffffffff;
printk("R26 : %08Lx%08Lx R27 : %08Lx%08Lx R28 : %08Lx%08Lx\n",
ah, al, bh, bl, ch, cl);
ah = (regs->regs[29]) >> 32;
al = (regs->regs[29]) & 0xffffffff;
bh = (regs->regs[30]) >> 32;
bl = (regs->regs[30]) & 0xffffffff;
ch = (regs->regs[31]) >> 32;
cl = (regs->regs[31]) & 0xffffffff;
printk("R29 : %08Lx%08Lx R30 : %08Lx%08Lx R31 : %08Lx%08Lx\n",
ah, al, bh, bl, ch, cl);
ah = (regs->regs[32]) >> 32;
al = (regs->regs[32]) & 0xffffffff;
bh = (regs->regs[33]) >> 32;
bl = (regs->regs[33]) & 0xffffffff;
ch = (regs->regs[34]) >> 32;
cl = (regs->regs[34]) & 0xffffffff;
printk("R32 : %08Lx%08Lx R33 : %08Lx%08Lx R34 : %08Lx%08Lx\n",
ah, al, bh, bl, ch, cl);
ah = (regs->regs[35]) >> 32;
al = (regs->regs[35]) & 0xffffffff;
bh = (regs->regs[36]) >> 32;
bl = (regs->regs[36]) & 0xffffffff;
ch = (regs->regs[37]) >> 32;
cl = (regs->regs[37]) & 0xffffffff;
printk("R35 : %08Lx%08Lx R36 : %08Lx%08Lx R37 : %08Lx%08Lx\n",
ah, al, bh, bl, ch, cl);
ah = (regs->regs[38]) >> 32;
al = (regs->regs[38]) & 0xffffffff;
bh = (regs->regs[39]) >> 32;
bl = (regs->regs[39]) & 0xffffffff;
ch = (regs->regs[40]) >> 32;
cl = (regs->regs[40]) & 0xffffffff;
printk("R38 : %08Lx%08Lx R39 : %08Lx%08Lx R40 : %08Lx%08Lx\n",
ah, al, bh, bl, ch, cl);
ah = (regs->regs[41]) >> 32;
al = (regs->regs[41]) & 0xffffffff;
bh = (regs->regs[42]) >> 32;
bl = (regs->regs[42]) & 0xffffffff;
ch = (regs->regs[43]) >> 32;
cl = (regs->regs[43]) & 0xffffffff;
printk("R41 : %08Lx%08Lx R42 : %08Lx%08Lx R43 : %08Lx%08Lx\n",
ah, al, bh, bl, ch, cl);
ah = (regs->regs[44]) >> 32;
al = (regs->regs[44]) & 0xffffffff;
bh = (regs->regs[45]) >> 32;
bl = (regs->regs[45]) & 0xffffffff;
ch = (regs->regs[46]) >> 32;
cl = (regs->regs[46]) & 0xffffffff;
printk("R44 : %08Lx%08Lx R45 : %08Lx%08Lx R46 : %08Lx%08Lx\n",
ah, al, bh, bl, ch, cl);
ah = (regs->regs[47]) >> 32;
al = (regs->regs[47]) & 0xffffffff;
bh = (regs->regs[48]) >> 32;
bl = (regs->regs[48]) & 0xffffffff;
ch = (regs->regs[49]) >> 32;
cl = (regs->regs[49]) & 0xffffffff;
printk("R47 : %08Lx%08Lx R48 : %08Lx%08Lx R49 : %08Lx%08Lx\n",
ah, al, bh, bl, ch, cl);
ah = (regs->regs[50]) >> 32;
al = (regs->regs[50]) & 0xffffffff;
bh = (regs->regs[51]) >> 32;
bl = (regs->regs[51]) & 0xffffffff;
ch = (regs->regs[52]) >> 32;
cl = (regs->regs[52]) & 0xffffffff;
printk("R50 : %08Lx%08Lx R51 : %08Lx%08Lx R52 : %08Lx%08Lx\n",
ah, al, bh, bl, ch, cl);
ah = (regs->regs[53]) >> 32;
al = (regs->regs[53]) & 0xffffffff;
bh = (regs->regs[54]) >> 32;
bl = (regs->regs[54]) & 0xffffffff;
ch = (regs->regs[55]) >> 32;
cl = (regs->regs[55]) & 0xffffffff;
printk("R53 : %08Lx%08Lx R54 : %08Lx%08Lx R55 : %08Lx%08Lx\n",
ah, al, bh, bl, ch, cl);
ah = (regs->regs[56]) >> 32;
al = (regs->regs[56]) & 0xffffffff;
bh = (regs->regs[57]) >> 32;
bl = (regs->regs[57]) & 0xffffffff;
ch = (regs->regs[58]) >> 32;
cl = (regs->regs[58]) & 0xffffffff;
printk("R56 : %08Lx%08Lx R57 : %08Lx%08Lx R58 : %08Lx%08Lx\n",
ah, al, bh, bl, ch, cl);
ah = (regs->regs[59]) >> 32;
al = (regs->regs[59]) & 0xffffffff;
bh = (regs->regs[60]) >> 32;
bl = (regs->regs[60]) & 0xffffffff;
ch = (regs->regs[61]) >> 32;
cl = (regs->regs[61]) & 0xffffffff;
printk("R59 : %08Lx%08Lx R60 : %08Lx%08Lx R61 : %08Lx%08Lx\n",
ah, al, bh, bl, ch, cl);
ah = (regs->regs[62]) >> 32;
al = (regs->regs[62]) & 0xffffffff;
bh = (regs->tregs[0]) >> 32;
bl = (regs->tregs[0]) & 0xffffffff;
ch = (regs->tregs[1]) >> 32;
cl = (regs->tregs[1]) & 0xffffffff;
printk("R62 : %08Lx%08Lx T0 : %08Lx%08Lx T1 : %08Lx%08Lx\n",
ah, al, bh, bl, ch, cl);
ah = (regs->tregs[2]) >> 32;
al = (regs->tregs[2]) & 0xffffffff;
bh = (regs->tregs[3]) >> 32;
bl = (regs->tregs[3]) & 0xffffffff;
ch = (regs->tregs[4]) >> 32;
cl = (regs->tregs[4]) & 0xffffffff;
printk("T2 : %08Lx%08Lx T3 : %08Lx%08Lx T4 : %08Lx%08Lx\n",
ah, al, bh, bl, ch, cl);
ah = (regs->tregs[5]) >> 32;
al = (regs->tregs[5]) & 0xffffffff;
bh = (regs->tregs[6]) >> 32;
bl = (regs->tregs[6]) & 0xffffffff;
ch = (regs->tregs[7]) >> 32;
cl = (regs->tregs[7]) & 0xffffffff;
printk("T5 : %08Lx%08Lx T6 : %08Lx%08Lx T7 : %08Lx%08Lx\n",
ah, al, bh, bl, ch, cl);
/*
* If we're in kernel mode, dump the stack too..
*/
if (!user_mode(regs)) {
void show_stack(struct task_struct *tsk, unsigned long *sp);
unsigned long sp = regs->regs[15] & 0xffffffff;
struct task_struct *tsk = get_current();
tsk->thread.kregs = regs;
show_stack(tsk, (unsigned long *)sp);
}
}
struct task_struct * alloc_task_struct(void)
{
/* Get task descriptor pages */
return (struct task_struct *)
__get_free_pages(GFP_KERNEL, get_order(THREAD_SIZE));
}
void free_task_struct(struct task_struct *p)
{
free_pages((unsigned long) p, get_order(THREAD_SIZE));
}
/*
* Create a kernel thread
*/
ATTRIB_NORET void kernel_thread_helper(void *arg, int (*fn)(void *))
{
do_exit(fn(arg));
}
/*
* This is the mechanism for creating a new kernel thread.
*
* NOTE! Only a kernel-only process(ie the swapper or direct descendants
* who haven't done an "execve()") should use this: it will work within
* a system call from a "real" process, but the process memory space will
* not be free'd until both the parent and the child have exited.
*/
int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
{
struct pt_regs regs;
memset(&regs, 0, sizeof(regs));
regs.regs[2] = (unsigned long)arg;
regs.regs[3] = (unsigned long)fn;
regs.pc = (unsigned long)kernel_thread_helper;
regs.sr = (1 << 30);
return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0,
&regs, 0, NULL, NULL);
}
/*
* Free current thread data structures etc..
*/
void exit_thread(void)
{
/* See arch/sparc/kernel/process.c for the precedent for doing this -- RPC.
The SH-5 FPU save/restore approach relies on last_task_used_math
pointing to a live task_struct. When another task tries to use the
FPU for the 1st time, the FPUDIS trap handling (see
arch/sh64/kernel/fpu.c) will save the existing FPU state to the
FP regs field within last_task_used_math before re-loading the new
task's FPU state (or initialising it if the FPU has been used
before). So if last_task_used_math is stale, and its page has already been
re-allocated for another use, the consequences are rather grim. Unless we
null it here, there is no other path through which it would get safely
nulled. */
#ifdef CONFIG_SH_FPU
if (last_task_used_math == current) {
last_task_used_math = NULL;
}
#endif
}
void flush_thread(void)
{
/* Called by fs/exec.c (flush_old_exec) to remove traces of a
* previously running executable. */
#ifdef CONFIG_SH_FPU
if (last_task_used_math == current) {
last_task_used_math = NULL;
}
/* Force FPU state to be reinitialised after exec */
clear_used_math();
#endif
/* if we are a kernel thread, about to change to user thread,
* update kreg
*/
if(current->thread.kregs==&fake_swapper_regs) {
current->thread.kregs =
((struct pt_regs *)(THREAD_SIZE + (unsigned long) current) - 1);
current->thread.uregs = current->thread.kregs;
}
}
void release_thread(struct task_struct *dead_task)
{
/* do nothing */
}
/* Fill in the fpu structure for a core dump.. */
int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpu)
{
#ifdef CONFIG_SH_FPU
int fpvalid;
struct task_struct *tsk = current;
fpvalid = !!tsk_used_math(tsk);
if (fpvalid) {
if (current == last_task_used_math) {
grab_fpu();
fpsave(&tsk->thread.fpu.hard);
release_fpu();
last_task_used_math = 0;
regs->sr |= SR_FD;
}
memcpy(fpu, &tsk->thread.fpu.hard, sizeof(*fpu));
}
return fpvalid;
#else
return 0; /* Task didn't use the fpu at all. */
#endif
}
asmlinkage void ret_from_fork(void);
int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
unsigned long unused,
struct task_struct *p, struct pt_regs *regs)
{
struct pt_regs *childregs;
unsigned long long se; /* Sign extension */
#ifdef CONFIG_SH_FPU
if(last_task_used_math == current) {
grab_fpu();
fpsave(&current->thread.fpu.hard);
release_fpu();
last_task_used_math = NULL;
regs->sr |= SR_FD;
}
#endif
/* Copy from sh version */
childregs = (struct pt_regs *)(THREAD_SIZE + task_stack_page(p)) - 1;
*childregs = *regs;
if (user_mode(regs)) {
childregs->regs[15] = usp;
p->thread.uregs = childregs;
} else {
childregs->regs[15] = (unsigned long)task_stack_page(p) + THREAD_SIZE;
}
childregs->regs[9] = 0; /* Set return value for child */
childregs->sr |= SR_FD; /* Invalidate FPU flag */
p->thread.sp = (unsigned long) childregs;
p->thread.pc = (unsigned long) ret_from_fork;
/*
* Sign extend the edited stack.
* Note that thread.pc and thread.pc will stay
* 32-bit wide and context switch must take care
* of NEFF sign extension.
*/
se = childregs->regs[15];
se = (se & NEFF_SIGN) ? (se | NEFF_MASK) : se;
childregs->regs[15] = se;
return 0;
}
asmlinkage int sys_fork(unsigned long r2, unsigned long r3,
unsigned long r4, unsigned long r5,
unsigned long r6, unsigned long r7,
struct pt_regs *pregs)
{
return do_fork(SIGCHLD, pregs->regs[15], pregs, 0, 0, 0);
}
asmlinkage int sys_clone(unsigned long clone_flags, unsigned long newsp,
unsigned long r4, unsigned long r5,
unsigned long r6, unsigned long r7,
struct pt_regs *pregs)
{
if (!newsp)
newsp = pregs->regs[15];
return do_fork(clone_flags, newsp, pregs, 0, 0, 0);
}
/*
* This is trivial, and on the face of it looks like it
* could equally well be done in user mode.
*
* Not so, for quite unobvious reasons - register pressure.
* In user mode vfork() cannot have a stack frame, and if
* done by calling the "clone()" system call directly, you
* do not have enough call-clobbered registers to hold all
* the information you need.
*/
asmlinkage int sys_vfork(unsigned long r2, unsigned long r3,
unsigned long r4, unsigned long r5,
unsigned long r6, unsigned long r7,
struct pt_regs *pregs)
{
return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, pregs->regs[15], pregs, 0, 0, 0);
}
/*
* sys_execve() executes a new program.
*/
asmlinkage int sys_execve(char *ufilename, char **uargv,
char **uenvp, unsigned long r5,
unsigned long r6, unsigned long r7,
struct pt_regs *pregs)
{
int error;
char *filename;
lock_kernel();
filename = getname((char __user *)ufilename);
error = PTR_ERR(filename);
if (IS_ERR(filename))
goto out;
error = do_execve(filename,
(char __user * __user *)uargv,
(char __user * __user *)uenvp,
pregs);
if (error == 0) {
task_lock(current);
current->ptrace &= ~PT_DTRACE;
task_unlock(current);
}
putname(filename);
out:
unlock_kernel();
return error;
}
/*
* These bracket the sleeping functions..
*/
extern void interruptible_sleep_on(wait_queue_head_t *q);
#define mid_sched ((unsigned long) interruptible_sleep_on)
static int in_sh64_switch_to(unsigned long pc)
{
extern char __sh64_switch_to_end;
/* For a sleeping task, the PC is somewhere in the middle of the function,
so we don't have to worry about masking the LSB off */
return (pc >= (unsigned long) sh64_switch_to) &&
(pc < (unsigned long) &__sh64_switch_to_end);
}
unsigned long get_wchan(struct task_struct *p)
{
unsigned long schedule_fp;
unsigned long sh64_switch_to_fp;
unsigned long schedule_caller_pc;
unsigned long pc;
if (!p || p == current || p->state == TASK_RUNNING)
return 0;
/*
* The same comment as on the Alpha applies here, too ...
*/
pc = thread_saved_pc(p);
#ifdef CONFIG_FRAME_POINTER
if (in_sh64_switch_to(pc)) {
sh64_switch_to_fp = (long) p->thread.sp;
/* r14 is saved at offset 4 in the sh64_switch_to frame */
schedule_fp = *(unsigned long *) (long)(sh64_switch_to_fp + 4);
/* and the caller of 'schedule' is (currently!) saved at offset 24
in the frame of schedule (from disasm) */
schedule_caller_pc = *(unsigned long *) (long)(schedule_fp + 24);
return schedule_caller_pc;
}
#endif
return pc;
}
/* Provide a /proc/asids file that lists out the
ASIDs currently associated with the processes. (If the DM.PC register is
examined through the debug link, this shows ASID + PC. To make use of this,
the PID->ASID relationship needs to be known. This is primarily for
debugging.)
*/
#if defined(CONFIG_SH64_PROC_ASIDS)
#include <linux/init.h>
#include <linux/proc_fs.h>
static int
asids_proc_info(char *buf, char **start, off_t fpos, int length, int *eof, void *data)
{
int len=0;
struct task_struct *p;
read_lock(&tasklist_lock);
for_each_process(p) {
int pid = p->pid;
struct mm_struct *mm;
if (!pid) continue;
mm = p->mm;
if (mm) {
unsigned long asid, context;
context = mm->context;
asid = (context & 0xff);
len += sprintf(buf+len, "%5d : %02lx\n", pid, asid);
} else {
len += sprintf(buf+len, "%5d : (none)\n", pid);
}
}
read_unlock(&tasklist_lock);
*eof = 1;
return len;
}
static int __init register_proc_asids(void)
{
create_proc_read_entry("asids", 0, NULL, asids_proc_info, NULL);
return 0;
}
__initcall(register_proc_asids);
#endif