kernel_optimize_test/security/selinux/ss/policydb.c
Eric Paris cee74f47a6 SELinux: allow userspace to read policy back out of the kernel
There is interest in being able to see what the actual policy is that was
loaded into the kernel.  The patch creates a new selinuxfs file
/selinux/policy which can be read by userspace.  The actual policy that is
loaded into the kernel will be written back out to userspace.

Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2010-10-21 10:12:58 +11:00

3160 lines
63 KiB
C

/*
* Implementation of the policy database.
*
* Author : Stephen Smalley, <sds@epoch.ncsc.mil>
*/
/*
* Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
*
* Support for enhanced MLS infrastructure.
*
* Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
*
* Added conditional policy language extensions
*
* Updated: Hewlett-Packard <paul.moore@hp.com>
*
* Added support for the policy capability bitmap
*
* Copyright (C) 2007 Hewlett-Packard Development Company, L.P.
* Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
* Copyright (C) 2003 - 2004 Tresys Technology, LLC
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, version 2.
*/
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/audit.h>
#include <linux/flex_array.h>
#include "security.h"
#include "policydb.h"
#include "conditional.h"
#include "mls.h"
#include "services.h"
#define _DEBUG_HASHES
#ifdef DEBUG_HASHES
static const char *symtab_name[SYM_NUM] = {
"common prefixes",
"classes",
"roles",
"types",
"users",
"bools",
"levels",
"categories",
};
#endif
static unsigned int symtab_sizes[SYM_NUM] = {
2,
32,
16,
512,
128,
16,
16,
16,
};
struct policydb_compat_info {
int version;
int sym_num;
int ocon_num;
};
/* These need to be updated if SYM_NUM or OCON_NUM changes */
static struct policydb_compat_info policydb_compat[] = {
{
.version = POLICYDB_VERSION_BASE,
.sym_num = SYM_NUM - 3,
.ocon_num = OCON_NUM - 1,
},
{
.version = POLICYDB_VERSION_BOOL,
.sym_num = SYM_NUM - 2,
.ocon_num = OCON_NUM - 1,
},
{
.version = POLICYDB_VERSION_IPV6,
.sym_num = SYM_NUM - 2,
.ocon_num = OCON_NUM,
},
{
.version = POLICYDB_VERSION_NLCLASS,
.sym_num = SYM_NUM - 2,
.ocon_num = OCON_NUM,
},
{
.version = POLICYDB_VERSION_MLS,
.sym_num = SYM_NUM,
.ocon_num = OCON_NUM,
},
{
.version = POLICYDB_VERSION_AVTAB,
.sym_num = SYM_NUM,
.ocon_num = OCON_NUM,
},
{
.version = POLICYDB_VERSION_RANGETRANS,
.sym_num = SYM_NUM,
.ocon_num = OCON_NUM,
},
{
.version = POLICYDB_VERSION_POLCAP,
.sym_num = SYM_NUM,
.ocon_num = OCON_NUM,
},
{
.version = POLICYDB_VERSION_PERMISSIVE,
.sym_num = SYM_NUM,
.ocon_num = OCON_NUM,
},
{
.version = POLICYDB_VERSION_BOUNDARY,
.sym_num = SYM_NUM,
.ocon_num = OCON_NUM,
},
};
static struct policydb_compat_info *policydb_lookup_compat(int version)
{
int i;
struct policydb_compat_info *info = NULL;
for (i = 0; i < ARRAY_SIZE(policydb_compat); i++) {
if (policydb_compat[i].version == version) {
info = &policydb_compat[i];
break;
}
}
return info;
}
/*
* Initialize the role table.
*/
static int roles_init(struct policydb *p)
{
char *key = NULL;
int rc;
struct role_datum *role;
role = kzalloc(sizeof(*role), GFP_KERNEL);
if (!role) {
rc = -ENOMEM;
goto out;
}
role->value = ++p->p_roles.nprim;
if (role->value != OBJECT_R_VAL) {
rc = -EINVAL;
goto out_free_role;
}
key = kstrdup(OBJECT_R, GFP_KERNEL);
if (!key) {
rc = -ENOMEM;
goto out_free_role;
}
rc = hashtab_insert(p->p_roles.table, key, role);
if (rc)
goto out_free_key;
out:
return rc;
out_free_key:
kfree(key);
out_free_role:
kfree(role);
goto out;
}
static u32 rangetr_hash(struct hashtab *h, const void *k)
{
const struct range_trans *key = k;
return (key->source_type + (key->target_type << 3) +
(key->target_class << 5)) & (h->size - 1);
}
static int rangetr_cmp(struct hashtab *h, const void *k1, const void *k2)
{
const struct range_trans *key1 = k1, *key2 = k2;
int v;
v = key1->source_type - key2->source_type;
if (v)
return v;
v = key1->target_type - key2->target_type;
if (v)
return v;
v = key1->target_class - key2->target_class;
return v;
}
/*
* Initialize a policy database structure.
*/
static int policydb_init(struct policydb *p)
{
int i, rc;
memset(p, 0, sizeof(*p));
for (i = 0; i < SYM_NUM; i++) {
rc = symtab_init(&p->symtab[i], symtab_sizes[i]);
if (rc)
goto out_free_symtab;
}
rc = avtab_init(&p->te_avtab);
if (rc)
goto out_free_symtab;
rc = roles_init(p);
if (rc)
goto out_free_symtab;
rc = cond_policydb_init(p);
if (rc)
goto out_free_symtab;
p->range_tr = hashtab_create(rangetr_hash, rangetr_cmp, 256);
if (!p->range_tr)
goto out_free_symtab;
ebitmap_init(&p->policycaps);
ebitmap_init(&p->permissive_map);
out:
return rc;
out_free_symtab:
for (i = 0; i < SYM_NUM; i++)
hashtab_destroy(p->symtab[i].table);
goto out;
}
/*
* The following *_index functions are used to
* define the val_to_name and val_to_struct arrays
* in a policy database structure. The val_to_name
* arrays are used when converting security context
* structures into string representations. The
* val_to_struct arrays are used when the attributes
* of a class, role, or user are needed.
*/
static int common_index(void *key, void *datum, void *datap)
{
struct policydb *p;
struct common_datum *comdatum;
comdatum = datum;
p = datap;
if (!comdatum->value || comdatum->value > p->p_commons.nprim)
return -EINVAL;
p->p_common_val_to_name[comdatum->value - 1] = key;
return 0;
}
static int class_index(void *key, void *datum, void *datap)
{
struct policydb *p;
struct class_datum *cladatum;
cladatum = datum;
p = datap;
if (!cladatum->value || cladatum->value > p->p_classes.nprim)
return -EINVAL;
p->p_class_val_to_name[cladatum->value - 1] = key;
p->class_val_to_struct[cladatum->value - 1] = cladatum;
return 0;
}
static int role_index(void *key, void *datum, void *datap)
{
struct policydb *p;
struct role_datum *role;
role = datum;
p = datap;
if (!role->value
|| role->value > p->p_roles.nprim
|| role->bounds > p->p_roles.nprim)
return -EINVAL;
p->p_role_val_to_name[role->value - 1] = key;
p->role_val_to_struct[role->value - 1] = role;
return 0;
}
static int type_index(void *key, void *datum, void *datap)
{
struct policydb *p;
struct type_datum *typdatum;
typdatum = datum;
p = datap;
if (typdatum->primary) {
if (!typdatum->value
|| typdatum->value > p->p_types.nprim
|| typdatum->bounds > p->p_types.nprim)
return -EINVAL;
p->p_type_val_to_name[typdatum->value - 1] = key;
p->type_val_to_struct[typdatum->value - 1] = typdatum;
}
return 0;
}
static int user_index(void *key, void *datum, void *datap)
{
struct policydb *p;
struct user_datum *usrdatum;
usrdatum = datum;
p = datap;
if (!usrdatum->value
|| usrdatum->value > p->p_users.nprim
|| usrdatum->bounds > p->p_users.nprim)
return -EINVAL;
p->p_user_val_to_name[usrdatum->value - 1] = key;
p->user_val_to_struct[usrdatum->value - 1] = usrdatum;
return 0;
}
static int sens_index(void *key, void *datum, void *datap)
{
struct policydb *p;
struct level_datum *levdatum;
levdatum = datum;
p = datap;
if (!levdatum->isalias) {
if (!levdatum->level->sens ||
levdatum->level->sens > p->p_levels.nprim)
return -EINVAL;
p->p_sens_val_to_name[levdatum->level->sens - 1] = key;
}
return 0;
}
static int cat_index(void *key, void *datum, void *datap)
{
struct policydb *p;
struct cat_datum *catdatum;
catdatum = datum;
p = datap;
if (!catdatum->isalias) {
if (!catdatum->value || catdatum->value > p->p_cats.nprim)
return -EINVAL;
p->p_cat_val_to_name[catdatum->value - 1] = key;
}
return 0;
}
static int (*index_f[SYM_NUM]) (void *key, void *datum, void *datap) =
{
common_index,
class_index,
role_index,
type_index,
user_index,
cond_index_bool,
sens_index,
cat_index,
};
/*
* Define the common val_to_name array and the class
* val_to_name and val_to_struct arrays in a policy
* database structure.
*
* Caller must clean up upon failure.
*/
static int policydb_index_classes(struct policydb *p)
{
int rc;
p->p_common_val_to_name =
kmalloc(p->p_commons.nprim * sizeof(char *), GFP_KERNEL);
if (!p->p_common_val_to_name) {
rc = -ENOMEM;
goto out;
}
rc = hashtab_map(p->p_commons.table, common_index, p);
if (rc)
goto out;
p->class_val_to_struct =
kmalloc(p->p_classes.nprim * sizeof(*(p->class_val_to_struct)), GFP_KERNEL);
if (!p->class_val_to_struct) {
rc = -ENOMEM;
goto out;
}
p->p_class_val_to_name =
kmalloc(p->p_classes.nprim * sizeof(char *), GFP_KERNEL);
if (!p->p_class_val_to_name) {
rc = -ENOMEM;
goto out;
}
rc = hashtab_map(p->p_classes.table, class_index, p);
out:
return rc;
}
#ifdef DEBUG_HASHES
static void symtab_hash_eval(struct symtab *s)
{
int i;
for (i = 0; i < SYM_NUM; i++) {
struct hashtab *h = s[i].table;
struct hashtab_info info;
hashtab_stat(h, &info);
printk(KERN_DEBUG "SELinux: %s: %d entries and %d/%d buckets used, "
"longest chain length %d\n", symtab_name[i], h->nel,
info.slots_used, h->size, info.max_chain_len);
}
}
static void rangetr_hash_eval(struct hashtab *h)
{
struct hashtab_info info;
hashtab_stat(h, &info);
printk(KERN_DEBUG "SELinux: rangetr: %d entries and %d/%d buckets used, "
"longest chain length %d\n", h->nel,
info.slots_used, h->size, info.max_chain_len);
}
#else
static inline void rangetr_hash_eval(struct hashtab *h)
{
}
#endif
/*
* Define the other val_to_name and val_to_struct arrays
* in a policy database structure.
*
* Caller must clean up on failure.
*/
static int policydb_index_others(struct policydb *p)
{
int i, rc = 0;
printk(KERN_DEBUG "SELinux: %d users, %d roles, %d types, %d bools",
p->p_users.nprim, p->p_roles.nprim, p->p_types.nprim, p->p_bools.nprim);
if (p->mls_enabled)
printk(", %d sens, %d cats", p->p_levels.nprim,
p->p_cats.nprim);
printk("\n");
printk(KERN_DEBUG "SELinux: %d classes, %d rules\n",
p->p_classes.nprim, p->te_avtab.nel);
#ifdef DEBUG_HASHES
avtab_hash_eval(&p->te_avtab, "rules");
symtab_hash_eval(p->symtab);
#endif
p->role_val_to_struct =
kmalloc(p->p_roles.nprim * sizeof(*(p->role_val_to_struct)),
GFP_KERNEL);
if (!p->role_val_to_struct) {
rc = -ENOMEM;
goto out;
}
p->user_val_to_struct =
kmalloc(p->p_users.nprim * sizeof(*(p->user_val_to_struct)),
GFP_KERNEL);
if (!p->user_val_to_struct) {
rc = -ENOMEM;
goto out;
}
p->type_val_to_struct =
kmalloc(p->p_types.nprim * sizeof(*(p->type_val_to_struct)),
GFP_KERNEL);
if (!p->type_val_to_struct) {
rc = -ENOMEM;
goto out;
}
if (cond_init_bool_indexes(p)) {
rc = -ENOMEM;
goto out;
}
for (i = SYM_ROLES; i < SYM_NUM; i++) {
p->sym_val_to_name[i] =
kmalloc(p->symtab[i].nprim * sizeof(char *), GFP_KERNEL);
if (!p->sym_val_to_name[i]) {
rc = -ENOMEM;
goto out;
}
rc = hashtab_map(p->symtab[i].table, index_f[i], p);
if (rc)
goto out;
}
out:
return rc;
}
/*
* The following *_destroy functions are used to
* free any memory allocated for each kind of
* symbol data in the policy database.
*/
static int perm_destroy(void *key, void *datum, void *p)
{
kfree(key);
kfree(datum);
return 0;
}
static int common_destroy(void *key, void *datum, void *p)
{
struct common_datum *comdatum;
kfree(key);
comdatum = datum;
hashtab_map(comdatum->permissions.table, perm_destroy, NULL);
hashtab_destroy(comdatum->permissions.table);
kfree(datum);
return 0;
}
static int cls_destroy(void *key, void *datum, void *p)
{
struct class_datum *cladatum;
struct constraint_node *constraint, *ctemp;
struct constraint_expr *e, *etmp;
kfree(key);
cladatum = datum;
hashtab_map(cladatum->permissions.table, perm_destroy, NULL);
hashtab_destroy(cladatum->permissions.table);
constraint = cladatum->constraints;
while (constraint) {
e = constraint->expr;
while (e) {
ebitmap_destroy(&e->names);
etmp = e;
e = e->next;
kfree(etmp);
}
ctemp = constraint;
constraint = constraint->next;
kfree(ctemp);
}
constraint = cladatum->validatetrans;
while (constraint) {
e = constraint->expr;
while (e) {
ebitmap_destroy(&e->names);
etmp = e;
e = e->next;
kfree(etmp);
}
ctemp = constraint;
constraint = constraint->next;
kfree(ctemp);
}
kfree(cladatum->comkey);
kfree(datum);
return 0;
}
static int role_destroy(void *key, void *datum, void *p)
{
struct role_datum *role;
kfree(key);
role = datum;
ebitmap_destroy(&role->dominates);
ebitmap_destroy(&role->types);
kfree(datum);
return 0;
}
static int type_destroy(void *key, void *datum, void *p)
{
kfree(key);
kfree(datum);
return 0;
}
static int user_destroy(void *key, void *datum, void *p)
{
struct user_datum *usrdatum;
kfree(key);
usrdatum = datum;
ebitmap_destroy(&usrdatum->roles);
ebitmap_destroy(&usrdatum->range.level[0].cat);
ebitmap_destroy(&usrdatum->range.level[1].cat);
ebitmap_destroy(&usrdatum->dfltlevel.cat);
kfree(datum);
return 0;
}
static int sens_destroy(void *key, void *datum, void *p)
{
struct level_datum *levdatum;
kfree(key);
levdatum = datum;
ebitmap_destroy(&levdatum->level->cat);
kfree(levdatum->level);
kfree(datum);
return 0;
}
static int cat_destroy(void *key, void *datum, void *p)
{
kfree(key);
kfree(datum);
return 0;
}
static int (*destroy_f[SYM_NUM]) (void *key, void *datum, void *datap) =
{
common_destroy,
cls_destroy,
role_destroy,
type_destroy,
user_destroy,
cond_destroy_bool,
sens_destroy,
cat_destroy,
};
static int range_tr_destroy(void *key, void *datum, void *p)
{
struct mls_range *rt = datum;
kfree(key);
ebitmap_destroy(&rt->level[0].cat);
ebitmap_destroy(&rt->level[1].cat);
kfree(datum);
cond_resched();
return 0;
}
static void ocontext_destroy(struct ocontext *c, int i)
{
if (!c)
return;
context_destroy(&c->context[0]);
context_destroy(&c->context[1]);
if (i == OCON_ISID || i == OCON_FS ||
i == OCON_NETIF || i == OCON_FSUSE)
kfree(c->u.name);
kfree(c);
}
/*
* Free any memory allocated by a policy database structure.
*/
void policydb_destroy(struct policydb *p)
{
struct ocontext *c, *ctmp;
struct genfs *g, *gtmp;
int i;
struct role_allow *ra, *lra = NULL;
struct role_trans *tr, *ltr = NULL;
for (i = 0; i < SYM_NUM; i++) {
cond_resched();
hashtab_map(p->symtab[i].table, destroy_f[i], NULL);
hashtab_destroy(p->symtab[i].table);
}
for (i = 0; i < SYM_NUM; i++)
kfree(p->sym_val_to_name[i]);
kfree(p->class_val_to_struct);
kfree(p->role_val_to_struct);
kfree(p->user_val_to_struct);
kfree(p->type_val_to_struct);
avtab_destroy(&p->te_avtab);
for (i = 0; i < OCON_NUM; i++) {
cond_resched();
c = p->ocontexts[i];
while (c) {
ctmp = c;
c = c->next;
ocontext_destroy(ctmp, i);
}
p->ocontexts[i] = NULL;
}
g = p->genfs;
while (g) {
cond_resched();
kfree(g->fstype);
c = g->head;
while (c) {
ctmp = c;
c = c->next;
ocontext_destroy(ctmp, OCON_FSUSE);
}
gtmp = g;
g = g->next;
kfree(gtmp);
}
p->genfs = NULL;
cond_policydb_destroy(p);
for (tr = p->role_tr; tr; tr = tr->next) {
cond_resched();
kfree(ltr);
ltr = tr;
}
kfree(ltr);
for (ra = p->role_allow; ra; ra = ra->next) {
cond_resched();
kfree(lra);
lra = ra;
}
kfree(lra);
hashtab_map(p->range_tr, range_tr_destroy, NULL);
hashtab_destroy(p->range_tr);
if (p->type_attr_map_array) {
for (i = 0; i < p->p_types.nprim; i++) {
struct ebitmap *e;
e = flex_array_get(p->type_attr_map_array, i);
if (!e)
continue;
ebitmap_destroy(e);
}
flex_array_free(p->type_attr_map_array);
}
ebitmap_destroy(&p->policycaps);
ebitmap_destroy(&p->permissive_map);
return;
}
/*
* Load the initial SIDs specified in a policy database
* structure into a SID table.
*/
int policydb_load_isids(struct policydb *p, struct sidtab *s)
{
struct ocontext *head, *c;
int rc;
rc = sidtab_init(s);
if (rc) {
printk(KERN_ERR "SELinux: out of memory on SID table init\n");
goto out;
}
head = p->ocontexts[OCON_ISID];
for (c = head; c; c = c->next) {
if (!c->context[0].user) {
printk(KERN_ERR "SELinux: SID %s was never "
"defined.\n", c->u.name);
rc = -EINVAL;
goto out;
}
if (sidtab_insert(s, c->sid[0], &c->context[0])) {
printk(KERN_ERR "SELinux: unable to load initial "
"SID %s.\n", c->u.name);
rc = -EINVAL;
goto out;
}
}
out:
return rc;
}
int policydb_class_isvalid(struct policydb *p, unsigned int class)
{
if (!class || class > p->p_classes.nprim)
return 0;
return 1;
}
int policydb_role_isvalid(struct policydb *p, unsigned int role)
{
if (!role || role > p->p_roles.nprim)
return 0;
return 1;
}
int policydb_type_isvalid(struct policydb *p, unsigned int type)
{
if (!type || type > p->p_types.nprim)
return 0;
return 1;
}
/*
* Return 1 if the fields in the security context
* structure `c' are valid. Return 0 otherwise.
*/
int policydb_context_isvalid(struct policydb *p, struct context *c)
{
struct role_datum *role;
struct user_datum *usrdatum;
if (!c->role || c->role > p->p_roles.nprim)
return 0;
if (!c->user || c->user > p->p_users.nprim)
return 0;
if (!c->type || c->type > p->p_types.nprim)
return 0;
if (c->role != OBJECT_R_VAL) {
/*
* Role must be authorized for the type.
*/
role = p->role_val_to_struct[c->role - 1];
if (!ebitmap_get_bit(&role->types,
c->type - 1))
/* role may not be associated with type */
return 0;
/*
* User must be authorized for the role.
*/
usrdatum = p->user_val_to_struct[c->user - 1];
if (!usrdatum)
return 0;
if (!ebitmap_get_bit(&usrdatum->roles,
c->role - 1))
/* user may not be associated with role */
return 0;
}
if (!mls_context_isvalid(p, c))
return 0;
return 1;
}
/*
* Read a MLS range structure from a policydb binary
* representation file.
*/
static int mls_read_range_helper(struct mls_range *r, void *fp)
{
__le32 buf[2];
u32 items;
int rc;
rc = next_entry(buf, fp, sizeof(u32));
if (rc < 0)
goto out;
items = le32_to_cpu(buf[0]);
if (items > ARRAY_SIZE(buf)) {
printk(KERN_ERR "SELinux: mls: range overflow\n");
rc = -EINVAL;
goto out;
}
rc = next_entry(buf, fp, sizeof(u32) * items);
if (rc < 0) {
printk(KERN_ERR "SELinux: mls: truncated range\n");
goto out;
}
r->level[0].sens = le32_to_cpu(buf[0]);
if (items > 1)
r->level[1].sens = le32_to_cpu(buf[1]);
else
r->level[1].sens = r->level[0].sens;
rc = ebitmap_read(&r->level[0].cat, fp);
if (rc) {
printk(KERN_ERR "SELinux: mls: error reading low "
"categories\n");
goto out;
}
if (items > 1) {
rc = ebitmap_read(&r->level[1].cat, fp);
if (rc) {
printk(KERN_ERR "SELinux: mls: error reading high "
"categories\n");
goto bad_high;
}
} else {
rc = ebitmap_cpy(&r->level[1].cat, &r->level[0].cat);
if (rc) {
printk(KERN_ERR "SELinux: mls: out of memory\n");
goto bad_high;
}
}
rc = 0;
out:
return rc;
bad_high:
ebitmap_destroy(&r->level[0].cat);
goto out;
}
/*
* Read and validate a security context structure
* from a policydb binary representation file.
*/
static int context_read_and_validate(struct context *c,
struct policydb *p,
void *fp)
{
__le32 buf[3];
int rc;
rc = next_entry(buf, fp, sizeof buf);
if (rc < 0) {
printk(KERN_ERR "SELinux: context truncated\n");
goto out;
}
c->user = le32_to_cpu(buf[0]);
c->role = le32_to_cpu(buf[1]);
c->type = le32_to_cpu(buf[2]);
if (p->policyvers >= POLICYDB_VERSION_MLS) {
if (mls_read_range_helper(&c->range, fp)) {
printk(KERN_ERR "SELinux: error reading MLS range of "
"context\n");
rc = -EINVAL;
goto out;
}
}
if (!policydb_context_isvalid(p, c)) {
printk(KERN_ERR "SELinux: invalid security context\n");
context_destroy(c);
rc = -EINVAL;
}
out:
return rc;
}
/*
* The following *_read functions are used to
* read the symbol data from a policy database
* binary representation file.
*/
static int perm_read(struct policydb *p, struct hashtab *h, void *fp)
{
char *key = NULL;
struct perm_datum *perdatum;
int rc;
__le32 buf[2];
u32 len;
perdatum = kzalloc(sizeof(*perdatum), GFP_KERNEL);
if (!perdatum) {
rc = -ENOMEM;
goto out;
}
rc = next_entry(buf, fp, sizeof buf);
if (rc < 0)
goto bad;
len = le32_to_cpu(buf[0]);
perdatum->value = le32_to_cpu(buf[1]);
key = kmalloc(len + 1, GFP_KERNEL);
if (!key) {
rc = -ENOMEM;
goto bad;
}
rc = next_entry(key, fp, len);
if (rc < 0)
goto bad;
key[len] = '\0';
rc = hashtab_insert(h, key, perdatum);
if (rc)
goto bad;
out:
return rc;
bad:
perm_destroy(key, perdatum, NULL);
goto out;
}
static int common_read(struct policydb *p, struct hashtab *h, void *fp)
{
char *key = NULL;
struct common_datum *comdatum;
__le32 buf[4];
u32 len, nel;
int i, rc;
comdatum = kzalloc(sizeof(*comdatum), GFP_KERNEL);
if (!comdatum) {
rc = -ENOMEM;
goto out;
}
rc = next_entry(buf, fp, sizeof buf);
if (rc < 0)
goto bad;
len = le32_to_cpu(buf[0]);
comdatum->value = le32_to_cpu(buf[1]);
rc = symtab_init(&comdatum->permissions, PERM_SYMTAB_SIZE);
if (rc)
goto bad;
comdatum->permissions.nprim = le32_to_cpu(buf[2]);
nel = le32_to_cpu(buf[3]);
key = kmalloc(len + 1, GFP_KERNEL);
if (!key) {
rc = -ENOMEM;
goto bad;
}
rc = next_entry(key, fp, len);
if (rc < 0)
goto bad;
key[len] = '\0';
for (i = 0; i < nel; i++) {
rc = perm_read(p, comdatum->permissions.table, fp);
if (rc)
goto bad;
}
rc = hashtab_insert(h, key, comdatum);
if (rc)
goto bad;
out:
return rc;
bad:
common_destroy(key, comdatum, NULL);
goto out;
}
static int read_cons_helper(struct constraint_node **nodep, int ncons,
int allowxtarget, void *fp)
{
struct constraint_node *c, *lc;
struct constraint_expr *e, *le;
__le32 buf[3];
u32 nexpr;
int rc, i, j, depth;
lc = NULL;
for (i = 0; i < ncons; i++) {
c = kzalloc(sizeof(*c), GFP_KERNEL);
if (!c)
return -ENOMEM;
if (lc)
lc->next = c;
else
*nodep = c;
rc = next_entry(buf, fp, (sizeof(u32) * 2));
if (rc < 0)
return rc;
c->permissions = le32_to_cpu(buf[0]);
nexpr = le32_to_cpu(buf[1]);
le = NULL;
depth = -1;
for (j = 0; j < nexpr; j++) {
e = kzalloc(sizeof(*e), GFP_KERNEL);
if (!e)
return -ENOMEM;
if (le)
le->next = e;
else
c->expr = e;
rc = next_entry(buf, fp, (sizeof(u32) * 3));
if (rc < 0)
return rc;
e->expr_type = le32_to_cpu(buf[0]);
e->attr = le32_to_cpu(buf[1]);
e->op = le32_to_cpu(buf[2]);
switch (e->expr_type) {
case CEXPR_NOT:
if (depth < 0)
return -EINVAL;
break;
case CEXPR_AND:
case CEXPR_OR:
if (depth < 1)
return -EINVAL;
depth--;
break;
case CEXPR_ATTR:
if (depth == (CEXPR_MAXDEPTH - 1))
return -EINVAL;
depth++;
break;
case CEXPR_NAMES:
if (!allowxtarget && (e->attr & CEXPR_XTARGET))
return -EINVAL;
if (depth == (CEXPR_MAXDEPTH - 1))
return -EINVAL;
depth++;
if (ebitmap_read(&e->names, fp))
return -EINVAL;
break;
default:
return -EINVAL;
}
le = e;
}
if (depth != 0)
return -EINVAL;
lc = c;
}
return 0;
}
static int class_read(struct policydb *p, struct hashtab *h, void *fp)
{
char *key = NULL;
struct class_datum *cladatum;
__le32 buf[6];
u32 len, len2, ncons, nel;
int i, rc;
cladatum = kzalloc(sizeof(*cladatum), GFP_KERNEL);
if (!cladatum) {
rc = -ENOMEM;
goto out;
}
rc = next_entry(buf, fp, sizeof(u32)*6);
if (rc < 0)
goto bad;
len = le32_to_cpu(buf[0]);
len2 = le32_to_cpu(buf[1]);
cladatum->value = le32_to_cpu(buf[2]);
rc = symtab_init(&cladatum->permissions, PERM_SYMTAB_SIZE);
if (rc)
goto bad;
cladatum->permissions.nprim = le32_to_cpu(buf[3]);
nel = le32_to_cpu(buf[4]);
ncons = le32_to_cpu(buf[5]);
key = kmalloc(len + 1, GFP_KERNEL);
if (!key) {
rc = -ENOMEM;
goto bad;
}
rc = next_entry(key, fp, len);
if (rc < 0)
goto bad;
key[len] = '\0';
if (len2) {
cladatum->comkey = kmalloc(len2 + 1, GFP_KERNEL);
if (!cladatum->comkey) {
rc = -ENOMEM;
goto bad;
}
rc = next_entry(cladatum->comkey, fp, len2);
if (rc < 0)
goto bad;
cladatum->comkey[len2] = '\0';
cladatum->comdatum = hashtab_search(p->p_commons.table,
cladatum->comkey);
if (!cladatum->comdatum) {
printk(KERN_ERR "SELinux: unknown common %s\n",
cladatum->comkey);
rc = -EINVAL;
goto bad;
}
}
for (i = 0; i < nel; i++) {
rc = perm_read(p, cladatum->permissions.table, fp);
if (rc)
goto bad;
}
rc = read_cons_helper(&cladatum->constraints, ncons, 0, fp);
if (rc)
goto bad;
if (p->policyvers >= POLICYDB_VERSION_VALIDATETRANS) {
/* grab the validatetrans rules */
rc = next_entry(buf, fp, sizeof(u32));
if (rc < 0)
goto bad;
ncons = le32_to_cpu(buf[0]);
rc = read_cons_helper(&cladatum->validatetrans, ncons, 1, fp);
if (rc)
goto bad;
}
rc = hashtab_insert(h, key, cladatum);
if (rc)
goto bad;
rc = 0;
out:
return rc;
bad:
cls_destroy(key, cladatum, NULL);
goto out;
}
static int role_read(struct policydb *p, struct hashtab *h, void *fp)
{
char *key = NULL;
struct role_datum *role;
int rc, to_read = 2;
__le32 buf[3];
u32 len;
role = kzalloc(sizeof(*role), GFP_KERNEL);
if (!role) {
rc = -ENOMEM;
goto out;
}
if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
to_read = 3;
rc = next_entry(buf, fp, sizeof(buf[0]) * to_read);
if (rc < 0)
goto bad;
len = le32_to_cpu(buf[0]);
role->value = le32_to_cpu(buf[1]);
if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
role->bounds = le32_to_cpu(buf[2]);
key = kmalloc(len + 1, GFP_KERNEL);
if (!key) {
rc = -ENOMEM;
goto bad;
}
rc = next_entry(key, fp, len);
if (rc < 0)
goto bad;
key[len] = '\0';
rc = ebitmap_read(&role->dominates, fp);
if (rc)
goto bad;
rc = ebitmap_read(&role->types, fp);
if (rc)
goto bad;
if (strcmp(key, OBJECT_R) == 0) {
if (role->value != OBJECT_R_VAL) {
printk(KERN_ERR "SELinux: Role %s has wrong value %d\n",
OBJECT_R, role->value);
rc = -EINVAL;
goto bad;
}
rc = 0;
goto bad;
}
rc = hashtab_insert(h, key, role);
if (rc)
goto bad;
out:
return rc;
bad:
role_destroy(key, role, NULL);
goto out;
}
static int type_read(struct policydb *p, struct hashtab *h, void *fp)
{
char *key = NULL;
struct type_datum *typdatum;
int rc, to_read = 3;
__le32 buf[4];
u32 len;
typdatum = kzalloc(sizeof(*typdatum), GFP_KERNEL);
if (!typdatum) {
rc = -ENOMEM;
return rc;
}
if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
to_read = 4;
rc = next_entry(buf, fp, sizeof(buf[0]) * to_read);
if (rc < 0)
goto bad;
len = le32_to_cpu(buf[0]);
typdatum->value = le32_to_cpu(buf[1]);
if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) {
u32 prop = le32_to_cpu(buf[2]);
if (prop & TYPEDATUM_PROPERTY_PRIMARY)
typdatum->primary = 1;
if (prop & TYPEDATUM_PROPERTY_ATTRIBUTE)
typdatum->attribute = 1;
typdatum->bounds = le32_to_cpu(buf[3]);
} else {
typdatum->primary = le32_to_cpu(buf[2]);
}
key = kmalloc(len + 1, GFP_KERNEL);
if (!key) {
rc = -ENOMEM;
goto bad;
}
rc = next_entry(key, fp, len);
if (rc < 0)
goto bad;
key[len] = '\0';
rc = hashtab_insert(h, key, typdatum);
if (rc)
goto bad;
out:
return rc;
bad:
type_destroy(key, typdatum, NULL);
goto out;
}
/*
* Read a MLS level structure from a policydb binary
* representation file.
*/
static int mls_read_level(struct mls_level *lp, void *fp)
{
__le32 buf[1];
int rc;
memset(lp, 0, sizeof(*lp));
rc = next_entry(buf, fp, sizeof buf);
if (rc < 0) {
printk(KERN_ERR "SELinux: mls: truncated level\n");
goto bad;
}
lp->sens = le32_to_cpu(buf[0]);
if (ebitmap_read(&lp->cat, fp)) {
printk(KERN_ERR "SELinux: mls: error reading level "
"categories\n");
goto bad;
}
return 0;
bad:
return -EINVAL;
}
static int user_read(struct policydb *p, struct hashtab *h, void *fp)
{
char *key = NULL;
struct user_datum *usrdatum;
int rc, to_read = 2;
__le32 buf[3];
u32 len;
usrdatum = kzalloc(sizeof(*usrdatum), GFP_KERNEL);
if (!usrdatum) {
rc = -ENOMEM;
goto out;
}
if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
to_read = 3;
rc = next_entry(buf, fp, sizeof(buf[0]) * to_read);
if (rc < 0)
goto bad;
len = le32_to_cpu(buf[0]);
usrdatum->value = le32_to_cpu(buf[1]);
if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
usrdatum->bounds = le32_to_cpu(buf[2]);
key = kmalloc(len + 1, GFP_KERNEL);
if (!key) {
rc = -ENOMEM;
goto bad;
}
rc = next_entry(key, fp, len);
if (rc < 0)
goto bad;
key[len] = '\0';
rc = ebitmap_read(&usrdatum->roles, fp);
if (rc)
goto bad;
if (p->policyvers >= POLICYDB_VERSION_MLS) {
rc = mls_read_range_helper(&usrdatum->range, fp);
if (rc)
goto bad;
rc = mls_read_level(&usrdatum->dfltlevel, fp);
if (rc)
goto bad;
}
rc = hashtab_insert(h, key, usrdatum);
if (rc)
goto bad;
out:
return rc;
bad:
user_destroy(key, usrdatum, NULL);
goto out;
}
static int sens_read(struct policydb *p, struct hashtab *h, void *fp)
{
char *key = NULL;
struct level_datum *levdatum;
int rc;
__le32 buf[2];
u32 len;
levdatum = kzalloc(sizeof(*levdatum), GFP_ATOMIC);
if (!levdatum) {
rc = -ENOMEM;
goto out;
}
rc = next_entry(buf, fp, sizeof buf);
if (rc < 0)
goto bad;
len = le32_to_cpu(buf[0]);
levdatum->isalias = le32_to_cpu(buf[1]);
key = kmalloc(len + 1, GFP_ATOMIC);
if (!key) {
rc = -ENOMEM;
goto bad;
}
rc = next_entry(key, fp, len);
if (rc < 0)
goto bad;
key[len] = '\0';
levdatum->level = kmalloc(sizeof(struct mls_level), GFP_ATOMIC);
if (!levdatum->level) {
rc = -ENOMEM;
goto bad;
}
if (mls_read_level(levdatum->level, fp)) {
rc = -EINVAL;
goto bad;
}
rc = hashtab_insert(h, key, levdatum);
if (rc)
goto bad;
out:
return rc;
bad:
sens_destroy(key, levdatum, NULL);
goto out;
}
static int cat_read(struct policydb *p, struct hashtab *h, void *fp)
{
char *key = NULL;
struct cat_datum *catdatum;
int rc;
__le32 buf[3];
u32 len;
catdatum = kzalloc(sizeof(*catdatum), GFP_ATOMIC);
if (!catdatum) {
rc = -ENOMEM;
goto out;
}
rc = next_entry(buf, fp, sizeof buf);
if (rc < 0)
goto bad;
len = le32_to_cpu(buf[0]);
catdatum->value = le32_to_cpu(buf[1]);
catdatum->isalias = le32_to_cpu(buf[2]);
key = kmalloc(len + 1, GFP_ATOMIC);
if (!key) {
rc = -ENOMEM;
goto bad;
}
rc = next_entry(key, fp, len);
if (rc < 0)
goto bad;
key[len] = '\0';
rc = hashtab_insert(h, key, catdatum);
if (rc)
goto bad;
out:
return rc;
bad:
cat_destroy(key, catdatum, NULL);
goto out;
}
static int (*read_f[SYM_NUM]) (struct policydb *p, struct hashtab *h, void *fp) =
{
common_read,
class_read,
role_read,
type_read,
user_read,
cond_read_bool,
sens_read,
cat_read,
};
static int user_bounds_sanity_check(void *key, void *datum, void *datap)
{
struct user_datum *upper, *user;
struct policydb *p = datap;
int depth = 0;
upper = user = datum;
while (upper->bounds) {
struct ebitmap_node *node;
unsigned long bit;
if (++depth == POLICYDB_BOUNDS_MAXDEPTH) {
printk(KERN_ERR "SELinux: user %s: "
"too deep or looped boundary",
(char *) key);
return -EINVAL;
}
upper = p->user_val_to_struct[upper->bounds - 1];
ebitmap_for_each_positive_bit(&user->roles, node, bit) {
if (ebitmap_get_bit(&upper->roles, bit))
continue;
printk(KERN_ERR
"SELinux: boundary violated policy: "
"user=%s role=%s bounds=%s\n",
p->p_user_val_to_name[user->value - 1],
p->p_role_val_to_name[bit],
p->p_user_val_to_name[upper->value - 1]);
return -EINVAL;
}
}
return 0;
}
static int role_bounds_sanity_check(void *key, void *datum, void *datap)
{
struct role_datum *upper, *role;
struct policydb *p = datap;
int depth = 0;
upper = role = datum;
while (upper->bounds) {
struct ebitmap_node *node;
unsigned long bit;
if (++depth == POLICYDB_BOUNDS_MAXDEPTH) {
printk(KERN_ERR "SELinux: role %s: "
"too deep or looped bounds\n",
(char *) key);
return -EINVAL;
}
upper = p->role_val_to_struct[upper->bounds - 1];
ebitmap_for_each_positive_bit(&role->types, node, bit) {
if (ebitmap_get_bit(&upper->types, bit))
continue;
printk(KERN_ERR
"SELinux: boundary violated policy: "
"role=%s type=%s bounds=%s\n",
p->p_role_val_to_name[role->value - 1],
p->p_type_val_to_name[bit],
p->p_role_val_to_name[upper->value - 1]);
return -EINVAL;
}
}
return 0;
}
static int type_bounds_sanity_check(void *key, void *datum, void *datap)
{
struct type_datum *upper;
struct policydb *p = datap;
int depth = 0;
upper = datum;
while (upper->bounds) {
if (++depth == POLICYDB_BOUNDS_MAXDEPTH) {
printk(KERN_ERR "SELinux: type %s: "
"too deep or looped boundary\n",
(char *) key);
return -EINVAL;
}
upper = p->type_val_to_struct[upper->bounds - 1];
if (upper->attribute) {
printk(KERN_ERR "SELinux: type %s: "
"bounded by attribute %s",
(char *) key,
p->p_type_val_to_name[upper->value - 1]);
return -EINVAL;
}
}
return 0;
}
static int policydb_bounds_sanity_check(struct policydb *p)
{
int rc;
if (p->policyvers < POLICYDB_VERSION_BOUNDARY)
return 0;
rc = hashtab_map(p->p_users.table,
user_bounds_sanity_check, p);
if (rc)
return rc;
rc = hashtab_map(p->p_roles.table,
role_bounds_sanity_check, p);
if (rc)
return rc;
rc = hashtab_map(p->p_types.table,
type_bounds_sanity_check, p);
if (rc)
return rc;
return 0;
}
extern int ss_initialized;
u16 string_to_security_class(struct policydb *p, const char *name)
{
struct class_datum *cladatum;
cladatum = hashtab_search(p->p_classes.table, name);
if (!cladatum)
return 0;
return cladatum->value;
}
u32 string_to_av_perm(struct policydb *p, u16 tclass, const char *name)
{
struct class_datum *cladatum;
struct perm_datum *perdatum = NULL;
struct common_datum *comdatum;
if (!tclass || tclass > p->p_classes.nprim)
return 0;
cladatum = p->class_val_to_struct[tclass-1];
comdatum = cladatum->comdatum;
if (comdatum)
perdatum = hashtab_search(comdatum->permissions.table,
name);
if (!perdatum)
perdatum = hashtab_search(cladatum->permissions.table,
name);
if (!perdatum)
return 0;
return 1U << (perdatum->value-1);
}
static int range_read(struct policydb *p, void *fp)
{
struct range_trans *rt = NULL;
struct mls_range *r = NULL;
int i, rc;
__le32 buf[2];
u32 nel;
if (p->policyvers < POLICYDB_VERSION_MLS)
return 0;
rc = next_entry(buf, fp, sizeof(u32));
if (rc)
goto out;
nel = le32_to_cpu(buf[0]);
for (i = 0; i < nel; i++) {
rc = -ENOMEM;
rt = kzalloc(sizeof(*rt), GFP_KERNEL);
if (!rt)
goto out;
rc = next_entry(buf, fp, (sizeof(u32) * 2));
if (rc)
goto out;
rt->source_type = le32_to_cpu(buf[0]);
rt->target_type = le32_to_cpu(buf[1]);
if (p->policyvers >= POLICYDB_VERSION_RANGETRANS) {
rc = next_entry(buf, fp, sizeof(u32));
if (rc)
goto out;
rt->target_class = le32_to_cpu(buf[0]);
} else
rt->target_class = p->process_class;
rc = -EINVAL;
if (!policydb_type_isvalid(p, rt->source_type) ||
!policydb_type_isvalid(p, rt->target_type) ||
!policydb_class_isvalid(p, rt->target_class))
goto out;
rc = -ENOMEM;
r = kzalloc(sizeof(*r), GFP_KERNEL);
if (!r)
goto out;
rc = mls_read_range_helper(r, fp);
if (rc)
goto out;
rc = -EINVAL;
if (!mls_range_isvalid(p, r)) {
printk(KERN_WARNING "SELinux: rangetrans: invalid range\n");
goto out;
}
rc = hashtab_insert(p->range_tr, rt, r);
if (rc)
goto out;
rt = NULL;
r = NULL;
}
rangetr_hash_eval(p->range_tr);
rc = 0;
out:
kfree(rt);
kfree(r);
return rc;
}
static int genfs_read(struct policydb *p, void *fp)
{
int i, j, rc;
u32 nel, nel2, len, len2;
__le32 buf[1];
struct ocontext *l, *c;
struct ocontext *newc = NULL;
struct genfs *genfs_p, *genfs;
struct genfs *newgenfs = NULL;
rc = next_entry(buf, fp, sizeof(u32));
if (rc)
goto out;
nel = le32_to_cpu(buf[0]);
for (i = 0; i < nel; i++) {
rc = next_entry(buf, fp, sizeof(u32));
if (rc)
goto out;
len = le32_to_cpu(buf[0]);
rc = -ENOMEM;
newgenfs = kzalloc(sizeof(*newgenfs), GFP_KERNEL);
if (!newgenfs)
goto out;
rc = -ENOMEM;
newgenfs->fstype = kmalloc(len + 1, GFP_KERNEL);
if (!newgenfs->fstype)
goto out;
rc = next_entry(newgenfs->fstype, fp, len);
if (rc)
goto out;
newgenfs->fstype[len] = 0;
for (genfs_p = NULL, genfs = p->genfs; genfs;
genfs_p = genfs, genfs = genfs->next) {
rc = -EINVAL;
if (strcmp(newgenfs->fstype, genfs->fstype) == 0) {
printk(KERN_ERR "SELinux: dup genfs fstype %s\n",
newgenfs->fstype);
goto out;
}
if (strcmp(newgenfs->fstype, genfs->fstype) < 0)
break;
}
newgenfs->next = genfs;
if (genfs_p)
genfs_p->next = newgenfs;
else
p->genfs = newgenfs;
genfs = newgenfs;
newgenfs = NULL;
rc = next_entry(buf, fp, sizeof(u32));
if (rc)
goto out;
nel2 = le32_to_cpu(buf[0]);
for (j = 0; j < nel2; j++) {
rc = next_entry(buf, fp, sizeof(u32));
if (rc)
goto out;
len = le32_to_cpu(buf[0]);
rc = -ENOMEM;
newc = kzalloc(sizeof(*newc), GFP_KERNEL);
if (!newc)
goto out;
rc = -ENOMEM;
newc->u.name = kmalloc(len + 1, GFP_KERNEL);
if (!newc->u.name)
goto out;
rc = next_entry(newc->u.name, fp, len);
if (rc)
goto out;
newc->u.name[len] = 0;
rc = next_entry(buf, fp, sizeof(u32));
if (rc)
goto out;
newc->v.sclass = le32_to_cpu(buf[0]);
rc = context_read_and_validate(&newc->context[0], p, fp);
if (rc)
goto out;
for (l = NULL, c = genfs->head; c;
l = c, c = c->next) {
rc = -EINVAL;
if (!strcmp(newc->u.name, c->u.name) &&
(!c->v.sclass || !newc->v.sclass ||
newc->v.sclass == c->v.sclass)) {
printk(KERN_ERR "SELinux: dup genfs entry (%s,%s)\n",
genfs->fstype, c->u.name);
goto out;
}
len = strlen(newc->u.name);
len2 = strlen(c->u.name);
if (len > len2)
break;
}
newc->next = c;
if (l)
l->next = newc;
else
genfs->head = newc;
newc = NULL;
}
}
rc = 0;
out:
if (newgenfs)
kfree(newgenfs->fstype);
kfree(newgenfs);
ocontext_destroy(newc, OCON_FSUSE);
return rc;
}
static int ocontext_read(struct policydb *p, struct policydb_compat_info *info,
void *fp)
{
int i, j, rc;
u32 nel, len;
__le32 buf[3];
struct ocontext *l, *c;
u32 nodebuf[8];
for (i = 0; i < info->ocon_num; i++) {
rc = next_entry(buf, fp, sizeof(u32));
if (rc)
goto out;
nel = le32_to_cpu(buf[0]);
l = NULL;
for (j = 0; j < nel; j++) {
rc = -ENOMEM;
c = kzalloc(sizeof(*c), GFP_KERNEL);
if (!c)
goto out;
if (l)
l->next = c;
else
p->ocontexts[i] = c;
l = c;
switch (i) {
case OCON_ISID:
rc = next_entry(buf, fp, sizeof(u32));
if (rc)
goto out;
c->sid[0] = le32_to_cpu(buf[0]);
rc = context_read_and_validate(&c->context[0], p, fp);
if (rc)
goto out;
break;
case OCON_FS:
case OCON_NETIF:
rc = next_entry(buf, fp, sizeof(u32));
if (rc)
goto out;
len = le32_to_cpu(buf[0]);
rc = -ENOMEM;
c->u.name = kmalloc(len + 1, GFP_KERNEL);
if (!c->u.name)
goto out;
rc = next_entry(c->u.name, fp, len);
if (rc)
goto out;
c->u.name[len] = 0;
rc = context_read_and_validate(&c->context[0], p, fp);
if (rc)
goto out;
rc = context_read_and_validate(&c->context[1], p, fp);
if (rc)
goto out;
break;
case OCON_PORT:
rc = next_entry(buf, fp, sizeof(u32)*3);
if (rc)
goto out;
c->u.port.protocol = le32_to_cpu(buf[0]);
c->u.port.low_port = le32_to_cpu(buf[1]);
c->u.port.high_port = le32_to_cpu(buf[2]);
rc = context_read_and_validate(&c->context[0], p, fp);
if (rc)
goto out;
break;
case OCON_NODE:
rc = next_entry(nodebuf, fp, sizeof(u32) * 2);
if (rc)
goto out;
c->u.node.addr = nodebuf[0]; /* network order */
c->u.node.mask = nodebuf[1]; /* network order */
rc = context_read_and_validate(&c->context[0], p, fp);
if (rc)
goto out;
break;
case OCON_FSUSE:
rc = next_entry(buf, fp, sizeof(u32)*2);
if (rc)
goto out;
rc = -EINVAL;
c->v.behavior = le32_to_cpu(buf[0]);
if (c->v.behavior > SECURITY_FS_USE_NONE)
goto out;
rc = -ENOMEM;
len = le32_to_cpu(buf[1]);
c->u.name = kmalloc(len + 1, GFP_KERNEL);
if (!c->u.name)
goto out;
rc = next_entry(c->u.name, fp, len);
if (rc)
goto out;
c->u.name[len] = 0;
rc = context_read_and_validate(&c->context[0], p, fp);
if (rc)
goto out;
break;
case OCON_NODE6: {
int k;
rc = next_entry(nodebuf, fp, sizeof(u32) * 8);
if (rc)
goto out;
for (k = 0; k < 4; k++)
c->u.node6.addr[k] = nodebuf[k];
for (k = 0; k < 4; k++)
c->u.node6.mask[k] = nodebuf[k+4];
rc = context_read_and_validate(&c->context[0], p, fp);
if (rc)
goto out;
break;
}
}
}
}
rc = 0;
out:
return rc;
}
/*
* Read the configuration data from a policy database binary
* representation file into a policy database structure.
*/
int policydb_read(struct policydb *p, void *fp)
{
struct role_allow *ra, *lra;
struct role_trans *tr, *ltr;
int i, j, rc;
__le32 buf[4];
u32 len, nprim, nel;
char *policydb_str;
struct policydb_compat_info *info;
rc = policydb_init(p);
if (rc)
goto out;
/* Read the magic number and string length. */
rc = next_entry(buf, fp, sizeof(u32) * 2);
if (rc < 0)
goto bad;
if (le32_to_cpu(buf[0]) != POLICYDB_MAGIC) {
printk(KERN_ERR "SELinux: policydb magic number 0x%x does "
"not match expected magic number 0x%x\n",
le32_to_cpu(buf[0]), POLICYDB_MAGIC);
goto bad;
}
len = le32_to_cpu(buf[1]);
if (len != strlen(POLICYDB_STRING)) {
printk(KERN_ERR "SELinux: policydb string length %d does not "
"match expected length %Zu\n",
len, strlen(POLICYDB_STRING));
goto bad;
}
policydb_str = kmalloc(len + 1, GFP_KERNEL);
if (!policydb_str) {
printk(KERN_ERR "SELinux: unable to allocate memory for policydb "
"string of length %d\n", len);
rc = -ENOMEM;
goto bad;
}
rc = next_entry(policydb_str, fp, len);
if (rc < 0) {
printk(KERN_ERR "SELinux: truncated policydb string identifier\n");
kfree(policydb_str);
goto bad;
}
policydb_str[len] = '\0';
if (strcmp(policydb_str, POLICYDB_STRING)) {
printk(KERN_ERR "SELinux: policydb string %s does not match "
"my string %s\n", policydb_str, POLICYDB_STRING);
kfree(policydb_str);
goto bad;
}
/* Done with policydb_str. */
kfree(policydb_str);
policydb_str = NULL;
/* Read the version and table sizes. */
rc = next_entry(buf, fp, sizeof(u32)*4);
if (rc < 0)
goto bad;
p->policyvers = le32_to_cpu(buf[0]);
if (p->policyvers < POLICYDB_VERSION_MIN ||
p->policyvers > POLICYDB_VERSION_MAX) {
printk(KERN_ERR "SELinux: policydb version %d does not match "
"my version range %d-%d\n",
le32_to_cpu(buf[0]), POLICYDB_VERSION_MIN, POLICYDB_VERSION_MAX);
goto bad;
}
if ((le32_to_cpu(buf[1]) & POLICYDB_CONFIG_MLS)) {
p->mls_enabled = 1;
if (p->policyvers < POLICYDB_VERSION_MLS) {
printk(KERN_ERR "SELinux: security policydb version %d "
"(MLS) not backwards compatible\n",
p->policyvers);
goto bad;
}
}
p->reject_unknown = !!(le32_to_cpu(buf[1]) & REJECT_UNKNOWN);
p->allow_unknown = !!(le32_to_cpu(buf[1]) & ALLOW_UNKNOWN);
if (p->policyvers >= POLICYDB_VERSION_POLCAP &&
ebitmap_read(&p->policycaps, fp) != 0)
goto bad;
if (p->policyvers >= POLICYDB_VERSION_PERMISSIVE &&
ebitmap_read(&p->permissive_map, fp) != 0)
goto bad;
info = policydb_lookup_compat(p->policyvers);
if (!info) {
printk(KERN_ERR "SELinux: unable to find policy compat info "
"for version %d\n", p->policyvers);
goto bad;
}
if (le32_to_cpu(buf[2]) != info->sym_num ||
le32_to_cpu(buf[3]) != info->ocon_num) {
printk(KERN_ERR "SELinux: policydb table sizes (%d,%d) do "
"not match mine (%d,%d)\n", le32_to_cpu(buf[2]),
le32_to_cpu(buf[3]),
info->sym_num, info->ocon_num);
goto bad;
}
for (i = 0; i < info->sym_num; i++) {
rc = next_entry(buf, fp, sizeof(u32)*2);
if (rc < 0)
goto bad;
nprim = le32_to_cpu(buf[0]);
nel = le32_to_cpu(buf[1]);
for (j = 0; j < nel; j++) {
rc = read_f[i](p, p->symtab[i].table, fp);
if (rc)
goto bad;
}
p->symtab[i].nprim = nprim;
}
rc = avtab_read(&p->te_avtab, fp, p);
if (rc)
goto bad;
if (p->policyvers >= POLICYDB_VERSION_BOOL) {
rc = cond_read_list(p, fp);
if (rc)
goto bad;
}
rc = next_entry(buf, fp, sizeof(u32));
if (rc < 0)
goto bad;
nel = le32_to_cpu(buf[0]);
ltr = NULL;
for (i = 0; i < nel; i++) {
tr = kzalloc(sizeof(*tr), GFP_KERNEL);
if (!tr) {
rc = -ENOMEM;
goto bad;
}
if (ltr)
ltr->next = tr;
else
p->role_tr = tr;
rc = next_entry(buf, fp, sizeof(u32)*3);
if (rc < 0)
goto bad;
tr->role = le32_to_cpu(buf[0]);
tr->type = le32_to_cpu(buf[1]);
tr->new_role = le32_to_cpu(buf[2]);
if (!policydb_role_isvalid(p, tr->role) ||
!policydb_type_isvalid(p, tr->type) ||
!policydb_role_isvalid(p, tr->new_role)) {
rc = -EINVAL;
goto bad;
}
ltr = tr;
}
rc = next_entry(buf, fp, sizeof(u32));
if (rc < 0)
goto bad;
nel = le32_to_cpu(buf[0]);
lra = NULL;
for (i = 0; i < nel; i++) {
ra = kzalloc(sizeof(*ra), GFP_KERNEL);
if (!ra) {
rc = -ENOMEM;
goto bad;
}
if (lra)
lra->next = ra;
else
p->role_allow = ra;
rc = next_entry(buf, fp, sizeof(u32)*2);
if (rc < 0)
goto bad;
ra->role = le32_to_cpu(buf[0]);
ra->new_role = le32_to_cpu(buf[1]);
if (!policydb_role_isvalid(p, ra->role) ||
!policydb_role_isvalid(p, ra->new_role)) {
rc = -EINVAL;
goto bad;
}
lra = ra;
}
rc = policydb_index_classes(p);
if (rc)
goto bad;
rc = policydb_index_others(p);
if (rc)
goto bad;
p->process_class = string_to_security_class(p, "process");
if (!p->process_class)
goto bad;
p->process_trans_perms = string_to_av_perm(p, p->process_class,
"transition");
p->process_trans_perms |= string_to_av_perm(p, p->process_class,
"dyntransition");
if (!p->process_trans_perms)
goto bad;
rc = ocontext_read(p, info, fp);
if (rc)
goto bad;
rc = genfs_read(p, fp);
if (rc)
goto bad;
rc = range_read(p, fp);
if (rc)
goto bad;
rc = -ENOMEM;
p->type_attr_map_array = flex_array_alloc(sizeof(struct ebitmap),
p->p_types.nprim,
GFP_KERNEL | __GFP_ZERO);
if (!p->type_attr_map_array)
goto bad;
/* preallocate so we don't have to worry about the put ever failing */
rc = flex_array_prealloc(p->type_attr_map_array, 0, p->p_types.nprim - 1,
GFP_KERNEL | __GFP_ZERO);
if (rc)
goto bad;
for (i = 0; i < p->p_types.nprim; i++) {
struct ebitmap *e = flex_array_get(p->type_attr_map_array, i);
BUG_ON(!e);
ebitmap_init(e);
if (p->policyvers >= POLICYDB_VERSION_AVTAB) {
rc = ebitmap_read(e, fp);
if (rc)
goto bad;
}
/* add the type itself as the degenerate case */
rc = ebitmap_set_bit(e, i, 1);
if (rc)
goto bad;
}
rc = policydb_bounds_sanity_check(p);
if (rc)
goto bad;
rc = 0;
out:
return rc;
bad:
if (!rc)
rc = -EINVAL;
policydb_destroy(p);
goto out;
}
/*
* Write a MLS level structure to a policydb binary
* representation file.
*/
static int mls_write_level(struct mls_level *l, void *fp)
{
__le32 buf[1];
int rc;
buf[0] = cpu_to_le32(l->sens);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
rc = ebitmap_write(&l->cat, fp);
if (rc)
return rc;
return 0;
}
/*
* Write a MLS range structure to a policydb binary
* representation file.
*/
static int mls_write_range_helper(struct mls_range *r, void *fp)
{
__le32 buf[3];
size_t items;
int rc, eq;
eq = mls_level_eq(&r->level[1], &r->level[0]);
if (eq)
items = 2;
else
items = 3;
buf[0] = cpu_to_le32(items-1);
buf[1] = cpu_to_le32(r->level[0].sens);
if (!eq)
buf[2] = cpu_to_le32(r->level[1].sens);
BUG_ON(items > (sizeof(buf)/sizeof(buf[0])));
rc = put_entry(buf, sizeof(u32), items, fp);
if (rc)
return rc;
rc = ebitmap_write(&r->level[0].cat, fp);
if (rc)
return rc;
if (!eq) {
rc = ebitmap_write(&r->level[1].cat, fp);
if (rc)
return rc;
}
return 0;
}
static int sens_write(void *vkey, void *datum, void *ptr)
{
char *key = vkey;
struct level_datum *levdatum = datum;
struct policy_data *pd = ptr;
void *fp = pd->fp;
__le32 buf[2];
size_t len;
int rc;
len = strlen(key);
buf[0] = cpu_to_le32(len);
buf[1] = cpu_to_le32(levdatum->isalias);
rc = put_entry(buf, sizeof(u32), 2, fp);
if (rc)
return rc;
rc = put_entry(key, 1, len, fp);
if (rc)
return rc;
rc = mls_write_level(levdatum->level, fp);
if (rc)
return rc;
return 0;
}
static int cat_write(void *vkey, void *datum, void *ptr)
{
char *key = vkey;
struct cat_datum *catdatum = datum;
struct policy_data *pd = ptr;
void *fp = pd->fp;
__le32 buf[3];
size_t len;
int rc;
len = strlen(key);
buf[0] = cpu_to_le32(len);
buf[1] = cpu_to_le32(catdatum->value);
buf[2] = cpu_to_le32(catdatum->isalias);
rc = put_entry(buf, sizeof(u32), 3, fp);
if (rc)
return rc;
rc = put_entry(key, 1, len, fp);
if (rc)
return rc;
return 0;
}
static int role_trans_write(struct role_trans *r, void *fp)
{
struct role_trans *tr;
u32 buf[3];
size_t nel;
int rc;
nel = 0;
for (tr = r; tr; tr = tr->next)
nel++;
buf[0] = cpu_to_le32(nel);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
for (tr = r; tr; tr = tr->next) {
buf[0] = cpu_to_le32(tr->role);
buf[1] = cpu_to_le32(tr->type);
buf[2] = cpu_to_le32(tr->new_role);
rc = put_entry(buf, sizeof(u32), 3, fp);
if (rc)
return rc;
}
return 0;
}
static int role_allow_write(struct role_allow *r, void *fp)
{
struct role_allow *ra;
u32 buf[2];
size_t nel;
int rc;
nel = 0;
for (ra = r; ra; ra = ra->next)
nel++;
buf[0] = cpu_to_le32(nel);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
for (ra = r; ra; ra = ra->next) {
buf[0] = cpu_to_le32(ra->role);
buf[1] = cpu_to_le32(ra->new_role);
rc = put_entry(buf, sizeof(u32), 2, fp);
if (rc)
return rc;
}
return 0;
}
/*
* Write a security context structure
* to a policydb binary representation file.
*/
static int context_write(struct policydb *p, struct context *c,
void *fp)
{
int rc;
__le32 buf[3];
buf[0] = cpu_to_le32(c->user);
buf[1] = cpu_to_le32(c->role);
buf[2] = cpu_to_le32(c->type);
rc = put_entry(buf, sizeof(u32), 3, fp);
if (rc)
return rc;
rc = mls_write_range_helper(&c->range, fp);
if (rc)
return rc;
return 0;
}
/*
* The following *_write functions are used to
* write the symbol data to a policy database
* binary representation file.
*/
static int perm_write(void *vkey, void *datum, void *fp)
{
char *key = vkey;
struct perm_datum *perdatum = datum;
__le32 buf[2];
size_t len;
int rc;
len = strlen(key);
buf[0] = cpu_to_le32(len);
buf[1] = cpu_to_le32(perdatum->value);
rc = put_entry(buf, sizeof(u32), 2, fp);
if (rc)
return rc;
rc = put_entry(key, 1, len, fp);
if (rc)
return rc;
return 0;
}
static int common_write(void *vkey, void *datum, void *ptr)
{
char *key = vkey;
struct common_datum *comdatum = datum;
struct policy_data *pd = ptr;
void *fp = pd->fp;
__le32 buf[4];
size_t len;
int rc;
len = strlen(key);
buf[0] = cpu_to_le32(len);
buf[1] = cpu_to_le32(comdatum->value);
buf[2] = cpu_to_le32(comdatum->permissions.nprim);
buf[3] = cpu_to_le32(comdatum->permissions.table->nel);
rc = put_entry(buf, sizeof(u32), 4, fp);
if (rc)
return rc;
rc = put_entry(key, 1, len, fp);
if (rc)
return rc;
rc = hashtab_map(comdatum->permissions.table, perm_write, fp);
if (rc)
return rc;
return 0;
}
static int write_cons_helper(struct policydb *p, struct constraint_node *node,
void *fp)
{
struct constraint_node *c;
struct constraint_expr *e;
__le32 buf[3];
u32 nel;
int rc;
for (c = node; c; c = c->next) {
nel = 0;
for (e = c->expr; e; e = e->next)
nel++;
buf[0] = cpu_to_le32(c->permissions);
buf[1] = cpu_to_le32(nel);
rc = put_entry(buf, sizeof(u32), 2, fp);
if (rc)
return rc;
for (e = c->expr; e; e = e->next) {
buf[0] = cpu_to_le32(e->expr_type);
buf[1] = cpu_to_le32(e->attr);
buf[2] = cpu_to_le32(e->op);
rc = put_entry(buf, sizeof(u32), 3, fp);
if (rc)
return rc;
switch (e->expr_type) {
case CEXPR_NAMES:
rc = ebitmap_write(&e->names, fp);
if (rc)
return rc;
break;
default:
break;
}
}
}
return 0;
}
static int class_write(void *vkey, void *datum, void *ptr)
{
char *key = vkey;
struct class_datum *cladatum = datum;
struct policy_data *pd = ptr;
void *fp = pd->fp;
struct policydb *p = pd->p;
struct constraint_node *c;
__le32 buf[6];
u32 ncons;
size_t len, len2;
int rc;
len = strlen(key);
if (cladatum->comkey)
len2 = strlen(cladatum->comkey);
else
len2 = 0;
ncons = 0;
for (c = cladatum->constraints; c; c = c->next)
ncons++;
buf[0] = cpu_to_le32(len);
buf[1] = cpu_to_le32(len2);
buf[2] = cpu_to_le32(cladatum->value);
buf[3] = cpu_to_le32(cladatum->permissions.nprim);
if (cladatum->permissions.table)
buf[4] = cpu_to_le32(cladatum->permissions.table->nel);
else
buf[4] = 0;
buf[5] = cpu_to_le32(ncons);
rc = put_entry(buf, sizeof(u32), 6, fp);
if (rc)
return rc;
rc = put_entry(key, 1, len, fp);
if (rc)
return rc;
if (cladatum->comkey) {
rc = put_entry(cladatum->comkey, 1, len2, fp);
if (rc)
return rc;
}
rc = hashtab_map(cladatum->permissions.table, perm_write, fp);
if (rc)
return rc;
rc = write_cons_helper(p, cladatum->constraints, fp);
if (rc)
return rc;
/* write out the validatetrans rule */
ncons = 0;
for (c = cladatum->validatetrans; c; c = c->next)
ncons++;
buf[0] = cpu_to_le32(ncons);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
rc = write_cons_helper(p, cladatum->validatetrans, fp);
if (rc)
return rc;
return 0;
}
static int role_write(void *vkey, void *datum, void *ptr)
{
char *key = vkey;
struct role_datum *role = datum;
struct policy_data *pd = ptr;
void *fp = pd->fp;
struct policydb *p = pd->p;
__le32 buf[3];
size_t items, len;
int rc;
len = strlen(key);
items = 0;
buf[items++] = cpu_to_le32(len);
buf[items++] = cpu_to_le32(role->value);
if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
buf[items++] = cpu_to_le32(role->bounds);
BUG_ON(items > (sizeof(buf)/sizeof(buf[0])));
rc = put_entry(buf, sizeof(u32), items, fp);
if (rc)
return rc;
rc = put_entry(key, 1, len, fp);
if (rc)
return rc;
rc = ebitmap_write(&role->dominates, fp);
if (rc)
return rc;
rc = ebitmap_write(&role->types, fp);
if (rc)
return rc;
return 0;
}
static int type_write(void *vkey, void *datum, void *ptr)
{
char *key = vkey;
struct type_datum *typdatum = datum;
struct policy_data *pd = ptr;
struct policydb *p = pd->p;
void *fp = pd->fp;
__le32 buf[4];
int rc;
size_t items, len;
len = strlen(key);
items = 0;
buf[items++] = cpu_to_le32(len);
buf[items++] = cpu_to_le32(typdatum->value);
if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) {
u32 properties = 0;
if (typdatum->primary)
properties |= TYPEDATUM_PROPERTY_PRIMARY;
if (typdatum->attribute)
properties |= TYPEDATUM_PROPERTY_ATTRIBUTE;
buf[items++] = cpu_to_le32(properties);
buf[items++] = cpu_to_le32(typdatum->bounds);
} else {
buf[items++] = cpu_to_le32(typdatum->primary);
}
BUG_ON(items > (sizeof(buf) / sizeof(buf[0])));
rc = put_entry(buf, sizeof(u32), items, fp);
if (rc)
return rc;
rc = put_entry(key, 1, len, fp);
if (rc)
return rc;
return 0;
}
static int user_write(void *vkey, void *datum, void *ptr)
{
char *key = vkey;
struct user_datum *usrdatum = datum;
struct policy_data *pd = ptr;
struct policydb *p = pd->p;
void *fp = pd->fp;
__le32 buf[3];
size_t items, len;
int rc;
len = strlen(key);
items = 0;
buf[items++] = cpu_to_le32(len);
buf[items++] = cpu_to_le32(usrdatum->value);
if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
buf[items++] = cpu_to_le32(usrdatum->bounds);
BUG_ON(items > (sizeof(buf) / sizeof(buf[0])));
rc = put_entry(buf, sizeof(u32), items, fp);
if (rc)
return rc;
rc = put_entry(key, 1, len, fp);
if (rc)
return rc;
rc = ebitmap_write(&usrdatum->roles, fp);
if (rc)
return rc;
rc = mls_write_range_helper(&usrdatum->range, fp);
if (rc)
return rc;
rc = mls_write_level(&usrdatum->dfltlevel, fp);
if (rc)
return rc;
return 0;
}
static int (*write_f[SYM_NUM]) (void *key, void *datum,
void *datap) =
{
common_write,
class_write,
role_write,
type_write,
user_write,
cond_write_bool,
sens_write,
cat_write,
};
static int ocontext_write(struct policydb *p, struct policydb_compat_info *info,
void *fp)
{
unsigned int i, j, rc;
size_t nel, len;
__le32 buf[3];
u32 nodebuf[8];
struct ocontext *c;
for (i = 0; i < info->ocon_num; i++) {
nel = 0;
for (c = p->ocontexts[i]; c; c = c->next)
nel++;
buf[0] = cpu_to_le32(nel);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
for (c = p->ocontexts[i]; c; c = c->next) {
switch (i) {
case OCON_ISID:
buf[0] = cpu_to_le32(c->sid[0]);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
rc = context_write(p, &c->context[0], fp);
if (rc)
return rc;
break;
case OCON_FS:
case OCON_NETIF:
len = strlen(c->u.name);
buf[0] = cpu_to_le32(len);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
rc = put_entry(c->u.name, 1, len, fp);
if (rc)
return rc;
rc = context_write(p, &c->context[0], fp);
if (rc)
return rc;
rc = context_write(p, &c->context[1], fp);
if (rc)
return rc;
break;
case OCON_PORT:
buf[0] = cpu_to_le32(c->u.port.protocol);
buf[1] = cpu_to_le32(c->u.port.low_port);
buf[2] = cpu_to_le32(c->u.port.high_port);
rc = put_entry(buf, sizeof(u32), 3, fp);
if (rc)
return rc;
rc = context_write(p, &c->context[0], fp);
if (rc)
return rc;
break;
case OCON_NODE:
nodebuf[0] = c->u.node.addr; /* network order */
nodebuf[1] = c->u.node.mask; /* network order */
rc = put_entry(nodebuf, sizeof(u32), 2, fp);
if (rc)
return rc;
rc = context_write(p, &c->context[0], fp);
if (rc)
return rc;
break;
case OCON_FSUSE:
buf[0] = cpu_to_le32(c->v.behavior);
len = strlen(c->u.name);
buf[1] = cpu_to_le32(len);
rc = put_entry(buf, sizeof(u32), 2, fp);
if (rc)
return rc;
rc = put_entry(c->u.name, 1, len, fp);
if (rc)
return rc;
rc = context_write(p, &c->context[0], fp);
if (rc)
return rc;
break;
case OCON_NODE6:
for (j = 0; j < 4; j++)
nodebuf[j] = c->u.node6.addr[j]; /* network order */
for (j = 0; j < 4; j++)
nodebuf[j + 4] = c->u.node6.mask[j]; /* network order */
rc = put_entry(nodebuf, sizeof(u32), 8, fp);
if (rc)
return rc;
rc = context_write(p, &c->context[0], fp);
if (rc)
return rc;
break;
}
}
}
return 0;
}
static int genfs_write(struct policydb *p, void *fp)
{
struct genfs *genfs;
struct ocontext *c;
size_t len;
__le32 buf[1];
int rc;
len = 0;
for (genfs = p->genfs; genfs; genfs = genfs->next)
len++;
buf[0] = cpu_to_le32(len);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
for (genfs = p->genfs; genfs; genfs = genfs->next) {
len = strlen(genfs->fstype);
buf[0] = cpu_to_le32(len);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
rc = put_entry(genfs->fstype, 1, len, fp);
if (rc)
return rc;
len = 0;
for (c = genfs->head; c; c = c->next)
len++;
buf[0] = cpu_to_le32(len);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
for (c = genfs->head; c; c = c->next) {
len = strlen(c->u.name);
buf[0] = cpu_to_le32(len);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
rc = put_entry(c->u.name, 1, len, fp);
if (rc)
return rc;
buf[0] = cpu_to_le32(c->v.sclass);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
rc = context_write(p, &c->context[0], fp);
if (rc)
return rc;
}
}
return 0;
}
static int range_count(void *key, void *data, void *ptr)
{
int *cnt = ptr;
*cnt = *cnt + 1;
return 0;
}
static int range_write_helper(void *key, void *data, void *ptr)
{
__le32 buf[2];
struct range_trans *rt = key;
struct mls_range *r = data;
struct policy_data *pd = ptr;
void *fp = pd->fp;
struct policydb *p = pd->p;
int rc;
buf[0] = cpu_to_le32(rt->source_type);
buf[1] = cpu_to_le32(rt->target_type);
rc = put_entry(buf, sizeof(u32), 2, fp);
if (rc)
return rc;
if (p->policyvers >= POLICYDB_VERSION_RANGETRANS) {
buf[0] = cpu_to_le32(rt->target_class);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
}
rc = mls_write_range_helper(r, fp);
if (rc)
return rc;
return 0;
}
static int range_write(struct policydb *p, void *fp)
{
size_t nel;
__le32 buf[1];
int rc;
struct policy_data pd;
pd.p = p;
pd.fp = fp;
/* count the number of entries in the hashtab */
nel = 0;
rc = hashtab_map(p->range_tr, range_count, &nel);
if (rc)
return rc;
buf[0] = cpu_to_le32(nel);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
/* actually write all of the entries */
rc = hashtab_map(p->range_tr, range_write_helper, &pd);
if (rc)
return rc;
return 0;
}
/*
* Write the configuration data in a policy database
* structure to a policy database binary representation
* file.
*/
int policydb_write(struct policydb *p, void *fp)
{
unsigned int i, num_syms;
int rc;
__le32 buf[4];
u32 config;
size_t len;
struct policydb_compat_info *info;
/*
* refuse to write policy older than compressed avtab
* to simplify the writer. There are other tests dropped
* since we assume this throughout the writer code. Be
* careful if you ever try to remove this restriction
*/
if (p->policyvers < POLICYDB_VERSION_AVTAB) {
printk(KERN_ERR "SELinux: refusing to write policy version %d."
" Because it is less than version %d\n", p->policyvers,
POLICYDB_VERSION_AVTAB);
return -EINVAL;
}
config = 0;
if (p->mls_enabled)
config |= POLICYDB_CONFIG_MLS;
if (p->reject_unknown)
config |= REJECT_UNKNOWN;
if (p->allow_unknown)
config |= ALLOW_UNKNOWN;
/* Write the magic number and string identifiers. */
buf[0] = cpu_to_le32(POLICYDB_MAGIC);
len = strlen(POLICYDB_STRING);
buf[1] = cpu_to_le32(len);
rc = put_entry(buf, sizeof(u32), 2, fp);
if (rc)
return rc;
rc = put_entry(POLICYDB_STRING, 1, len, fp);
if (rc)
return rc;
/* Write the version, config, and table sizes. */
info = policydb_lookup_compat(p->policyvers);
if (!info) {
printk(KERN_ERR "SELinux: compatibility lookup failed for policy "
"version %d", p->policyvers);
return rc;
}
buf[0] = cpu_to_le32(p->policyvers);
buf[1] = cpu_to_le32(config);
buf[2] = cpu_to_le32(info->sym_num);
buf[3] = cpu_to_le32(info->ocon_num);
rc = put_entry(buf, sizeof(u32), 4, fp);
if (rc)
return rc;
if (p->policyvers >= POLICYDB_VERSION_POLCAP) {
rc = ebitmap_write(&p->policycaps, fp);
if (rc)
return rc;
}
if (p->policyvers >= POLICYDB_VERSION_PERMISSIVE) {
rc = ebitmap_write(&p->permissive_map, fp);
if (rc)
return rc;
}
num_syms = info->sym_num;
for (i = 0; i < num_syms; i++) {
struct policy_data pd;
pd.fp = fp;
pd.p = p;
buf[0] = cpu_to_le32(p->symtab[i].nprim);
buf[1] = cpu_to_le32(p->symtab[i].table->nel);
rc = put_entry(buf, sizeof(u32), 2, fp);
if (rc)
return rc;
rc = hashtab_map(p->symtab[i].table, write_f[i], &pd);
if (rc)
return rc;
}
rc = avtab_write(p, &p->te_avtab, fp);
if (rc)
return rc;
rc = cond_write_list(p, p->cond_list, fp);
if (rc)
return rc;
rc = role_trans_write(p->role_tr, fp);
if (rc)
return rc;
rc = role_allow_write(p->role_allow, fp);
if (rc)
return rc;
rc = ocontext_write(p, info, fp);
if (rc)
return rc;
rc = genfs_write(p, fp);
if (rc)
return rc;
rc = range_write(p, fp);
if (rc)
return rc;
for (i = 0; i < p->p_types.nprim; i++) {
struct ebitmap *e = flex_array_get(p->type_attr_map_array, i);
BUG_ON(!e);
rc = ebitmap_write(e, fp);
if (rc)
return rc;
}
return 0;
}