forked from luck/tmp_suning_uos_patched
e64bd13408
It turns out that init_new_thread_signals is always called with altstack == 1, so we can eliminate the parameter. Signed-off-by: Jeff Dike <jdike@addtoit.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
462 lines
12 KiB
C
462 lines
12 KiB
C
/*
|
|
* Copyright (C) 2002 Jeff Dike (jdike@karaya.com)
|
|
* Licensed under the GPL
|
|
*/
|
|
|
|
#include "linux/sched.h"
|
|
#include "linux/signal.h"
|
|
#include "linux/kernel.h"
|
|
#include "linux/interrupt.h"
|
|
#include "linux/ptrace.h"
|
|
#include "asm/system.h"
|
|
#include "asm/pgalloc.h"
|
|
#include "asm/ptrace.h"
|
|
#include "asm/tlbflush.h"
|
|
#include "irq_user.h"
|
|
#include "kern_util.h"
|
|
#include "user_util.h"
|
|
#include "os.h"
|
|
#include "kern.h"
|
|
#include "sigcontext.h"
|
|
#include "mem_user.h"
|
|
#include "tlb.h"
|
|
#include "mode.h"
|
|
#include "mode_kern.h"
|
|
#include "init.h"
|
|
#include "tt.h"
|
|
|
|
void switch_to_tt(void *prev, void *next)
|
|
{
|
|
struct task_struct *from, *to, *prev_sched;
|
|
unsigned long flags;
|
|
int err, vtalrm, alrm, prof, cpu;
|
|
char c;
|
|
|
|
from = prev;
|
|
to = next;
|
|
|
|
cpu = task_thread_info(from)->cpu;
|
|
if(cpu == 0)
|
|
forward_interrupts(to->thread.mode.tt.extern_pid);
|
|
#ifdef CONFIG_SMP
|
|
forward_ipi(cpu_data[cpu].ipi_pipe[0], to->thread.mode.tt.extern_pid);
|
|
#endif
|
|
local_irq_save(flags);
|
|
|
|
vtalrm = change_sig(SIGVTALRM, 0);
|
|
alrm = change_sig(SIGALRM, 0);
|
|
prof = change_sig(SIGPROF, 0);
|
|
|
|
forward_pending_sigio(to->thread.mode.tt.extern_pid);
|
|
|
|
c = 0;
|
|
|
|
/* Notice that here we "up" the semaphore on which "to" is waiting, and
|
|
* below (the read) we wait on this semaphore (which is implemented by
|
|
* switch_pipe) and go sleeping. Thus, after that, we have resumed in
|
|
* "to", and can't use any more the value of "from" (which is outdated),
|
|
* nor the value in "to" (since it was the task which stole us the CPU,
|
|
* which we don't care about). */
|
|
|
|
err = os_write_file(to->thread.mode.tt.switch_pipe[1], &c, sizeof(c));
|
|
if(err != sizeof(c))
|
|
panic("write of switch_pipe failed, err = %d", -err);
|
|
|
|
if(from->thread.mode.tt.switch_pipe[0] == -1)
|
|
os_kill_process(os_getpid(), 0);
|
|
|
|
err = os_read_file(from->thread.mode.tt.switch_pipe[0], &c, sizeof(c));
|
|
if(err != sizeof(c))
|
|
panic("read of switch_pipe failed, errno = %d", -err);
|
|
|
|
/* If the process that we have just scheduled away from has exited,
|
|
* then it needs to be killed here. The reason is that, even though
|
|
* it will kill itself when it next runs, that may be too late. Its
|
|
* stack will be freed, possibly before then, and if that happens,
|
|
* we have a use-after-free situation. So, it gets killed here
|
|
* in case it has not already killed itself.
|
|
*/
|
|
prev_sched = current->thread.prev_sched;
|
|
if(prev_sched->thread.mode.tt.switch_pipe[0] == -1)
|
|
os_kill_process(prev_sched->thread.mode.tt.extern_pid, 1);
|
|
|
|
change_sig(SIGVTALRM, vtalrm);
|
|
change_sig(SIGALRM, alrm);
|
|
change_sig(SIGPROF, prof);
|
|
|
|
arch_switch_to_tt(prev_sched, current);
|
|
|
|
flush_tlb_all();
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
void release_thread_tt(struct task_struct *task)
|
|
{
|
|
int pid = task->thread.mode.tt.extern_pid;
|
|
|
|
/*
|
|
* We first have to kill the other process, before
|
|
* closing its switch_pipe. Else it might wake up
|
|
* and receive "EOF" before we could kill it.
|
|
*/
|
|
if(os_getpid() != pid)
|
|
os_kill_process(pid, 0);
|
|
|
|
os_close_file(task->thread.mode.tt.switch_pipe[0]);
|
|
os_close_file(task->thread.mode.tt.switch_pipe[1]);
|
|
/* use switch_pipe as flag: thread is released */
|
|
task->thread.mode.tt.switch_pipe[0] = -1;
|
|
}
|
|
|
|
void suspend_new_thread(int fd)
|
|
{
|
|
int err;
|
|
char c;
|
|
|
|
os_stop_process(os_getpid());
|
|
err = os_read_file(fd, &c, sizeof(c));
|
|
if(err != sizeof(c))
|
|
panic("read failed in suspend_new_thread, err = %d", -err);
|
|
}
|
|
|
|
void schedule_tail(struct task_struct *prev);
|
|
|
|
static void new_thread_handler(int sig)
|
|
{
|
|
unsigned long disable;
|
|
int (*fn)(void *);
|
|
void *arg;
|
|
|
|
fn = current->thread.request.u.thread.proc;
|
|
arg = current->thread.request.u.thread.arg;
|
|
|
|
UPT_SC(¤t->thread.regs.regs) = (void *) (&sig + 1);
|
|
disable = (1 << (SIGVTALRM - 1)) | (1 << (SIGALRM - 1)) |
|
|
(1 << (SIGIO - 1)) | (1 << (SIGPROF - 1));
|
|
SC_SIGMASK(UPT_SC(¤t->thread.regs.regs)) &= ~disable;
|
|
|
|
suspend_new_thread(current->thread.mode.tt.switch_pipe[0]);
|
|
|
|
force_flush_all();
|
|
if(current->thread.prev_sched != NULL)
|
|
schedule_tail(current->thread.prev_sched);
|
|
current->thread.prev_sched = NULL;
|
|
|
|
init_new_thread_signals();
|
|
enable_timer();
|
|
free_page(current->thread.temp_stack);
|
|
set_cmdline("(kernel thread)");
|
|
|
|
change_sig(SIGUSR1, 1);
|
|
change_sig(SIGPROF, 1);
|
|
local_irq_enable();
|
|
if(!run_kernel_thread(fn, arg, ¤t->thread.exec_buf))
|
|
do_exit(0);
|
|
|
|
/* XXX No set_user_mode here because a newly execed process will
|
|
* immediately segfault on its non-existent IP, coming straight back
|
|
* to the signal handler, which will call set_user_mode on its way
|
|
* out. This should probably change since it's confusing.
|
|
*/
|
|
}
|
|
|
|
static int new_thread_proc(void *stack)
|
|
{
|
|
/* local_irq_disable is needed to block out signals until this thread is
|
|
* properly scheduled. Otherwise, the tracing thread will get mighty
|
|
* upset about any signals that arrive before that.
|
|
* This has the complication that it sets the saved signal mask in
|
|
* the sigcontext to block signals. This gets restored when this
|
|
* thread (or a descendant, since they get a copy of this sigcontext)
|
|
* returns to userspace.
|
|
* So, this is compensated for elsewhere.
|
|
* XXX There is still a small window until local_irq_disable() actually
|
|
* finishes where signals are possible - shouldn't be a problem in
|
|
* practice since SIGIO hasn't been forwarded here yet, and the
|
|
* local_irq_disable should finish before a SIGVTALRM has time to be
|
|
* delivered.
|
|
*/
|
|
|
|
local_irq_disable();
|
|
init_new_thread_stack(stack, new_thread_handler);
|
|
os_usr1_process(os_getpid());
|
|
change_sig(SIGUSR1, 1);
|
|
return(0);
|
|
}
|
|
|
|
/* Signal masking - signals are blocked at the start of fork_tramp. They
|
|
* are re-enabled when finish_fork_handler is entered by fork_tramp hitting
|
|
* itself with a SIGUSR1. set_user_mode has to be run with SIGUSR1 off,
|
|
* so it is blocked before it's called. They are re-enabled on sigreturn
|
|
* despite the fact that they were blocked when the SIGUSR1 was issued because
|
|
* copy_thread copies the parent's sigcontext, including the signal mask
|
|
* onto the signal frame.
|
|
*/
|
|
|
|
void finish_fork_handler(int sig)
|
|
{
|
|
UPT_SC(¤t->thread.regs.regs) = (void *) (&sig + 1);
|
|
suspend_new_thread(current->thread.mode.tt.switch_pipe[0]);
|
|
|
|
force_flush_all();
|
|
if(current->thread.prev_sched != NULL)
|
|
schedule_tail(current->thread.prev_sched);
|
|
current->thread.prev_sched = NULL;
|
|
|
|
enable_timer();
|
|
change_sig(SIGVTALRM, 1);
|
|
local_irq_enable();
|
|
if(current->mm != current->parent->mm)
|
|
protect_memory(uml_reserved, high_physmem - uml_reserved, 1,
|
|
1, 0, 1);
|
|
task_protections((unsigned long) current_thread);
|
|
|
|
free_page(current->thread.temp_stack);
|
|
local_irq_disable();
|
|
change_sig(SIGUSR1, 0);
|
|
set_user_mode(current);
|
|
}
|
|
|
|
int fork_tramp(void *stack)
|
|
{
|
|
local_irq_disable();
|
|
arch_init_thread();
|
|
init_new_thread_stack(stack, finish_fork_handler);
|
|
|
|
os_usr1_process(os_getpid());
|
|
change_sig(SIGUSR1, 1);
|
|
return(0);
|
|
}
|
|
|
|
int copy_thread_tt(int nr, unsigned long clone_flags, unsigned long sp,
|
|
unsigned long stack_top, struct task_struct * p,
|
|
struct pt_regs *regs)
|
|
{
|
|
int (*tramp)(void *);
|
|
int new_pid, err;
|
|
unsigned long stack;
|
|
|
|
if(current->thread.forking)
|
|
tramp = fork_tramp;
|
|
else {
|
|
tramp = new_thread_proc;
|
|
p->thread.request.u.thread = current->thread.request.u.thread;
|
|
}
|
|
|
|
err = os_pipe(p->thread.mode.tt.switch_pipe, 1, 1);
|
|
if(err < 0){
|
|
printk("copy_thread : pipe failed, err = %d\n", -err);
|
|
return(err);
|
|
}
|
|
|
|
stack = alloc_stack(0, 0);
|
|
if(stack == 0){
|
|
printk(KERN_ERR "copy_thread : failed to allocate "
|
|
"temporary stack\n");
|
|
return(-ENOMEM);
|
|
}
|
|
|
|
clone_flags &= CLONE_VM;
|
|
p->thread.temp_stack = stack;
|
|
new_pid = start_fork_tramp(task_stack_page(p), stack, clone_flags, tramp);
|
|
if(new_pid < 0){
|
|
printk(KERN_ERR "copy_thread : clone failed - errno = %d\n",
|
|
-new_pid);
|
|
return(new_pid);
|
|
}
|
|
|
|
if(current->thread.forking){
|
|
sc_to_sc(UPT_SC(&p->thread.regs.regs), UPT_SC(®s->regs));
|
|
SC_SET_SYSCALL_RETURN(UPT_SC(&p->thread.regs.regs), 0);
|
|
if(sp != 0)
|
|
SC_SP(UPT_SC(&p->thread.regs.regs)) = sp;
|
|
}
|
|
p->thread.mode.tt.extern_pid = new_pid;
|
|
|
|
current->thread.request.op = OP_FORK;
|
|
current->thread.request.u.fork.pid = new_pid;
|
|
os_usr1_process(os_getpid());
|
|
|
|
/* Enable the signal and then disable it to ensure that it is handled
|
|
* here, and nowhere else.
|
|
*/
|
|
change_sig(SIGUSR1, 1);
|
|
|
|
change_sig(SIGUSR1, 0);
|
|
err = 0;
|
|
return(err);
|
|
}
|
|
|
|
void reboot_tt(void)
|
|
{
|
|
current->thread.request.op = OP_REBOOT;
|
|
os_usr1_process(os_getpid());
|
|
change_sig(SIGUSR1, 1);
|
|
}
|
|
|
|
void halt_tt(void)
|
|
{
|
|
current->thread.request.op = OP_HALT;
|
|
os_usr1_process(os_getpid());
|
|
change_sig(SIGUSR1, 1);
|
|
}
|
|
|
|
void kill_off_processes_tt(void)
|
|
{
|
|
struct task_struct *p;
|
|
int me;
|
|
|
|
me = os_getpid();
|
|
for_each_process(p){
|
|
if(p->thread.mode.tt.extern_pid != me)
|
|
os_kill_process(p->thread.mode.tt.extern_pid, 0);
|
|
}
|
|
if(init_task.thread.mode.tt.extern_pid != me)
|
|
os_kill_process(init_task.thread.mode.tt.extern_pid, 0);
|
|
}
|
|
|
|
void initial_thread_cb_tt(void (*proc)(void *), void *arg)
|
|
{
|
|
if(os_getpid() == tracing_pid){
|
|
(*proc)(arg);
|
|
}
|
|
else {
|
|
current->thread.request.op = OP_CB;
|
|
current->thread.request.u.cb.proc = proc;
|
|
current->thread.request.u.cb.arg = arg;
|
|
os_usr1_process(os_getpid());
|
|
change_sig(SIGUSR1, 1);
|
|
|
|
change_sig(SIGUSR1, 0);
|
|
}
|
|
}
|
|
|
|
int do_proc_op(void *t, int proc_id)
|
|
{
|
|
struct task_struct *task;
|
|
struct thread_struct *thread;
|
|
int op, pid;
|
|
|
|
task = t;
|
|
thread = &task->thread;
|
|
op = thread->request.op;
|
|
switch(op){
|
|
case OP_NONE:
|
|
case OP_TRACE_ON:
|
|
break;
|
|
case OP_EXEC:
|
|
pid = thread->request.u.exec.pid;
|
|
do_exec(thread->mode.tt.extern_pid, pid);
|
|
thread->mode.tt.extern_pid = pid;
|
|
cpu_tasks[task_thread_info(task)->cpu].pid = pid;
|
|
break;
|
|
case OP_FORK:
|
|
attach_process(thread->request.u.fork.pid);
|
|
break;
|
|
case OP_CB:
|
|
(*thread->request.u.cb.proc)(thread->request.u.cb.arg);
|
|
break;
|
|
case OP_REBOOT:
|
|
case OP_HALT:
|
|
break;
|
|
default:
|
|
tracer_panic("Bad op in do_proc_op");
|
|
break;
|
|
}
|
|
thread->request.op = OP_NONE;
|
|
return(op);
|
|
}
|
|
|
|
void init_idle_tt(void)
|
|
{
|
|
default_idle();
|
|
}
|
|
|
|
extern void start_kernel(void);
|
|
|
|
static int start_kernel_proc(void *unused)
|
|
{
|
|
int pid;
|
|
|
|
block_signals();
|
|
pid = os_getpid();
|
|
|
|
cpu_tasks[0].pid = pid;
|
|
cpu_tasks[0].task = current;
|
|
#ifdef CONFIG_SMP
|
|
cpu_online_map = cpumask_of_cpu(0);
|
|
#endif
|
|
if(debug) os_stop_process(pid);
|
|
start_kernel();
|
|
return(0);
|
|
}
|
|
|
|
void set_tracing(void *task, int tracing)
|
|
{
|
|
((struct task_struct *) task)->thread.mode.tt.tracing = tracing;
|
|
}
|
|
|
|
int is_tracing(void *t)
|
|
{
|
|
return (((struct task_struct *) t)->thread.mode.tt.tracing);
|
|
}
|
|
|
|
int set_user_mode(void *t)
|
|
{
|
|
struct task_struct *task;
|
|
|
|
task = t ? t : current;
|
|
if(task->thread.mode.tt.tracing)
|
|
return(1);
|
|
task->thread.request.op = OP_TRACE_ON;
|
|
os_usr1_process(os_getpid());
|
|
return(0);
|
|
}
|
|
|
|
void set_init_pid(int pid)
|
|
{
|
|
int err;
|
|
|
|
init_task.thread.mode.tt.extern_pid = pid;
|
|
err = os_pipe(init_task.thread.mode.tt.switch_pipe, 1, 1);
|
|
if(err)
|
|
panic("Can't create switch pipe for init_task, errno = %d",
|
|
-err);
|
|
}
|
|
|
|
int start_uml_tt(void)
|
|
{
|
|
void *sp;
|
|
int pages;
|
|
|
|
pages = (1 << CONFIG_KERNEL_STACK_ORDER);
|
|
sp = task_stack_page(&init_task) +
|
|
pages * PAGE_SIZE - sizeof(unsigned long);
|
|
return(tracer(start_kernel_proc, sp));
|
|
}
|
|
|
|
int external_pid_tt(struct task_struct *task)
|
|
{
|
|
return(task->thread.mode.tt.extern_pid);
|
|
}
|
|
|
|
int thread_pid_tt(struct task_struct *task)
|
|
{
|
|
return(task->thread.mode.tt.extern_pid);
|
|
}
|
|
|
|
int is_valid_pid(int pid)
|
|
{
|
|
struct task_struct *task;
|
|
|
|
read_lock(&tasklist_lock);
|
|
for_each_process(task){
|
|
if(task->thread.mode.tt.extern_pid == pid){
|
|
read_unlock(&tasklist_lock);
|
|
return(1);
|
|
}
|
|
}
|
|
read_unlock(&tasklist_lock);
|
|
return(0);
|
|
}
|