kernel_optimize_test/crypto/cryptd.c
Huang Ying 505fd21d61 crypto: cryptd - Use nivcipher in cryptd_alloc_ablkcipher
Use crypto_alloc_base() instead of crypto_alloc_ablkcipher() to
allocate underlying tfm in cryptd_alloc_ablkcipher. Because
crypto_alloc_ablkcipher() prefer GENIV encapsulated crypto instead of
raw one, while cryptd_alloc_ablkcipher needed the raw one.

Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2009-06-02 14:04:13 +10:00

649 lines
17 KiB
C

/*
* Software async crypto daemon.
*
* Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
*/
#include <crypto/algapi.h>
#include <crypto/internal/hash.h>
#include <crypto/cryptd.h>
#include <crypto/crypto_wq.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/scatterlist.h>
#include <linux/sched.h>
#include <linux/slab.h>
#define CRYPTD_MAX_CPU_QLEN 100
struct cryptd_cpu_queue {
struct crypto_queue queue;
struct work_struct work;
};
struct cryptd_queue {
struct cryptd_cpu_queue *cpu_queue;
};
struct cryptd_instance_ctx {
struct crypto_spawn spawn;
struct cryptd_queue *queue;
};
struct cryptd_blkcipher_ctx {
struct crypto_blkcipher *child;
};
struct cryptd_blkcipher_request_ctx {
crypto_completion_t complete;
};
struct cryptd_hash_ctx {
struct crypto_hash *child;
};
struct cryptd_hash_request_ctx {
crypto_completion_t complete;
};
static void cryptd_queue_worker(struct work_struct *work);
static int cryptd_init_queue(struct cryptd_queue *queue,
unsigned int max_cpu_qlen)
{
int cpu;
struct cryptd_cpu_queue *cpu_queue;
queue->cpu_queue = alloc_percpu(struct cryptd_cpu_queue);
if (!queue->cpu_queue)
return -ENOMEM;
for_each_possible_cpu(cpu) {
cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
INIT_WORK(&cpu_queue->work, cryptd_queue_worker);
}
return 0;
}
static void cryptd_fini_queue(struct cryptd_queue *queue)
{
int cpu;
struct cryptd_cpu_queue *cpu_queue;
for_each_possible_cpu(cpu) {
cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
BUG_ON(cpu_queue->queue.qlen);
}
free_percpu(queue->cpu_queue);
}
static int cryptd_enqueue_request(struct cryptd_queue *queue,
struct crypto_async_request *request)
{
int cpu, err;
struct cryptd_cpu_queue *cpu_queue;
cpu = get_cpu();
cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
err = crypto_enqueue_request(&cpu_queue->queue, request);
queue_work_on(cpu, kcrypto_wq, &cpu_queue->work);
put_cpu();
return err;
}
/* Called in workqueue context, do one real cryption work (via
* req->complete) and reschedule itself if there are more work to
* do. */
static void cryptd_queue_worker(struct work_struct *work)
{
struct cryptd_cpu_queue *cpu_queue;
struct crypto_async_request *req, *backlog;
cpu_queue = container_of(work, struct cryptd_cpu_queue, work);
/* Only handle one request at a time to avoid hogging crypto
* workqueue. preempt_disable/enable is used to prevent
* being preempted by cryptd_enqueue_request() */
preempt_disable();
backlog = crypto_get_backlog(&cpu_queue->queue);
req = crypto_dequeue_request(&cpu_queue->queue);
preempt_enable();
if (!req)
return;
if (backlog)
backlog->complete(backlog, -EINPROGRESS);
req->complete(req, 0);
if (cpu_queue->queue.qlen)
queue_work(kcrypto_wq, &cpu_queue->work);
}
static inline struct cryptd_queue *cryptd_get_queue(struct crypto_tfm *tfm)
{
struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
return ictx->queue;
}
static int cryptd_blkcipher_setkey(struct crypto_ablkcipher *parent,
const u8 *key, unsigned int keylen)
{
struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(parent);
struct crypto_blkcipher *child = ctx->child;
int err;
crypto_blkcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
crypto_blkcipher_set_flags(child, crypto_ablkcipher_get_flags(parent) &
CRYPTO_TFM_REQ_MASK);
err = crypto_blkcipher_setkey(child, key, keylen);
crypto_ablkcipher_set_flags(parent, crypto_blkcipher_get_flags(child) &
CRYPTO_TFM_RES_MASK);
return err;
}
static void cryptd_blkcipher_crypt(struct ablkcipher_request *req,
struct crypto_blkcipher *child,
int err,
int (*crypt)(struct blkcipher_desc *desc,
struct scatterlist *dst,
struct scatterlist *src,
unsigned int len))
{
struct cryptd_blkcipher_request_ctx *rctx;
struct blkcipher_desc desc;
rctx = ablkcipher_request_ctx(req);
if (unlikely(err == -EINPROGRESS))
goto out;
desc.tfm = child;
desc.info = req->info;
desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
err = crypt(&desc, req->dst, req->src, req->nbytes);
req->base.complete = rctx->complete;
out:
local_bh_disable();
rctx->complete(&req->base, err);
local_bh_enable();
}
static void cryptd_blkcipher_encrypt(struct crypto_async_request *req, int err)
{
struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(req->tfm);
struct crypto_blkcipher *child = ctx->child;
cryptd_blkcipher_crypt(ablkcipher_request_cast(req), child, err,
crypto_blkcipher_crt(child)->encrypt);
}
static void cryptd_blkcipher_decrypt(struct crypto_async_request *req, int err)
{
struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(req->tfm);
struct crypto_blkcipher *child = ctx->child;
cryptd_blkcipher_crypt(ablkcipher_request_cast(req), child, err,
crypto_blkcipher_crt(child)->decrypt);
}
static int cryptd_blkcipher_enqueue(struct ablkcipher_request *req,
crypto_completion_t complete)
{
struct cryptd_blkcipher_request_ctx *rctx = ablkcipher_request_ctx(req);
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
struct cryptd_queue *queue;
queue = cryptd_get_queue(crypto_ablkcipher_tfm(tfm));
rctx->complete = req->base.complete;
req->base.complete = complete;
return cryptd_enqueue_request(queue, &req->base);
}
static int cryptd_blkcipher_encrypt_enqueue(struct ablkcipher_request *req)
{
return cryptd_blkcipher_enqueue(req, cryptd_blkcipher_encrypt);
}
static int cryptd_blkcipher_decrypt_enqueue(struct ablkcipher_request *req)
{
return cryptd_blkcipher_enqueue(req, cryptd_blkcipher_decrypt);
}
static int cryptd_blkcipher_init_tfm(struct crypto_tfm *tfm)
{
struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
struct crypto_spawn *spawn = &ictx->spawn;
struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(tfm);
struct crypto_blkcipher *cipher;
cipher = crypto_spawn_blkcipher(spawn);
if (IS_ERR(cipher))
return PTR_ERR(cipher);
ctx->child = cipher;
tfm->crt_ablkcipher.reqsize =
sizeof(struct cryptd_blkcipher_request_ctx);
return 0;
}
static void cryptd_blkcipher_exit_tfm(struct crypto_tfm *tfm)
{
struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(tfm);
crypto_free_blkcipher(ctx->child);
}
static struct crypto_instance *cryptd_alloc_instance(struct crypto_alg *alg,
struct cryptd_queue *queue)
{
struct crypto_instance *inst;
struct cryptd_instance_ctx *ctx;
int err;
inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
if (!inst) {
inst = ERR_PTR(-ENOMEM);
goto out;
}
err = -ENAMETOOLONG;
if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
"cryptd(%s)", alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
goto out_free_inst;
ctx = crypto_instance_ctx(inst);
err = crypto_init_spawn(&ctx->spawn, alg, inst,
CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_ASYNC);
if (err)
goto out_free_inst;
ctx->queue = queue;
memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
inst->alg.cra_priority = alg->cra_priority + 50;
inst->alg.cra_blocksize = alg->cra_blocksize;
inst->alg.cra_alignmask = alg->cra_alignmask;
out:
return inst;
out_free_inst:
kfree(inst);
inst = ERR_PTR(err);
goto out;
}
static struct crypto_instance *cryptd_alloc_blkcipher(
struct rtattr **tb, struct cryptd_queue *queue)
{
struct crypto_instance *inst;
struct crypto_alg *alg;
alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_BLKCIPHER,
CRYPTO_ALG_TYPE_MASK);
if (IS_ERR(alg))
return ERR_CAST(alg);
inst = cryptd_alloc_instance(alg, queue);
if (IS_ERR(inst))
goto out_put_alg;
inst->alg.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC;
inst->alg.cra_type = &crypto_ablkcipher_type;
inst->alg.cra_ablkcipher.ivsize = alg->cra_blkcipher.ivsize;
inst->alg.cra_ablkcipher.min_keysize = alg->cra_blkcipher.min_keysize;
inst->alg.cra_ablkcipher.max_keysize = alg->cra_blkcipher.max_keysize;
inst->alg.cra_ablkcipher.geniv = alg->cra_blkcipher.geniv;
inst->alg.cra_ctxsize = sizeof(struct cryptd_blkcipher_ctx);
inst->alg.cra_init = cryptd_blkcipher_init_tfm;
inst->alg.cra_exit = cryptd_blkcipher_exit_tfm;
inst->alg.cra_ablkcipher.setkey = cryptd_blkcipher_setkey;
inst->alg.cra_ablkcipher.encrypt = cryptd_blkcipher_encrypt_enqueue;
inst->alg.cra_ablkcipher.decrypt = cryptd_blkcipher_decrypt_enqueue;
out_put_alg:
crypto_mod_put(alg);
return inst;
}
static int cryptd_hash_init_tfm(struct crypto_tfm *tfm)
{
struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
struct crypto_spawn *spawn = &ictx->spawn;
struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
struct crypto_hash *cipher;
cipher = crypto_spawn_hash(spawn);
if (IS_ERR(cipher))
return PTR_ERR(cipher);
ctx->child = cipher;
tfm->crt_ahash.reqsize =
sizeof(struct cryptd_hash_request_ctx);
return 0;
}
static void cryptd_hash_exit_tfm(struct crypto_tfm *tfm)
{
struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
crypto_free_hash(ctx->child);
}
static int cryptd_hash_setkey(struct crypto_ahash *parent,
const u8 *key, unsigned int keylen)
{
struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(parent);
struct crypto_hash *child = ctx->child;
int err;
crypto_hash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
crypto_hash_set_flags(child, crypto_ahash_get_flags(parent) &
CRYPTO_TFM_REQ_MASK);
err = crypto_hash_setkey(child, key, keylen);
crypto_ahash_set_flags(parent, crypto_hash_get_flags(child) &
CRYPTO_TFM_RES_MASK);
return err;
}
static int cryptd_hash_enqueue(struct ahash_request *req,
crypto_completion_t complete)
{
struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct cryptd_queue *queue =
cryptd_get_queue(crypto_ahash_tfm(tfm));
rctx->complete = req->base.complete;
req->base.complete = complete;
return cryptd_enqueue_request(queue, &req->base);
}
static void cryptd_hash_init(struct crypto_async_request *req_async, int err)
{
struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
struct crypto_hash *child = ctx->child;
struct ahash_request *req = ahash_request_cast(req_async);
struct cryptd_hash_request_ctx *rctx;
struct hash_desc desc;
rctx = ahash_request_ctx(req);
if (unlikely(err == -EINPROGRESS))
goto out;
desc.tfm = child;
desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
err = crypto_hash_crt(child)->init(&desc);
req->base.complete = rctx->complete;
out:
local_bh_disable();
rctx->complete(&req->base, err);
local_bh_enable();
}
static int cryptd_hash_init_enqueue(struct ahash_request *req)
{
return cryptd_hash_enqueue(req, cryptd_hash_init);
}
static void cryptd_hash_update(struct crypto_async_request *req_async, int err)
{
struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
struct crypto_hash *child = ctx->child;
struct ahash_request *req = ahash_request_cast(req_async);
struct cryptd_hash_request_ctx *rctx;
struct hash_desc desc;
rctx = ahash_request_ctx(req);
if (unlikely(err == -EINPROGRESS))
goto out;
desc.tfm = child;
desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
err = crypto_hash_crt(child)->update(&desc,
req->src,
req->nbytes);
req->base.complete = rctx->complete;
out:
local_bh_disable();
rctx->complete(&req->base, err);
local_bh_enable();
}
static int cryptd_hash_update_enqueue(struct ahash_request *req)
{
return cryptd_hash_enqueue(req, cryptd_hash_update);
}
static void cryptd_hash_final(struct crypto_async_request *req_async, int err)
{
struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
struct crypto_hash *child = ctx->child;
struct ahash_request *req = ahash_request_cast(req_async);
struct cryptd_hash_request_ctx *rctx;
struct hash_desc desc;
rctx = ahash_request_ctx(req);
if (unlikely(err == -EINPROGRESS))
goto out;
desc.tfm = child;
desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
err = crypto_hash_crt(child)->final(&desc, req->result);
req->base.complete = rctx->complete;
out:
local_bh_disable();
rctx->complete(&req->base, err);
local_bh_enable();
}
static int cryptd_hash_final_enqueue(struct ahash_request *req)
{
return cryptd_hash_enqueue(req, cryptd_hash_final);
}
static void cryptd_hash_digest(struct crypto_async_request *req_async, int err)
{
struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
struct crypto_hash *child = ctx->child;
struct ahash_request *req = ahash_request_cast(req_async);
struct cryptd_hash_request_ctx *rctx;
struct hash_desc desc;
rctx = ahash_request_ctx(req);
if (unlikely(err == -EINPROGRESS))
goto out;
desc.tfm = child;
desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
err = crypto_hash_crt(child)->digest(&desc,
req->src,
req->nbytes,
req->result);
req->base.complete = rctx->complete;
out:
local_bh_disable();
rctx->complete(&req->base, err);
local_bh_enable();
}
static int cryptd_hash_digest_enqueue(struct ahash_request *req)
{
return cryptd_hash_enqueue(req, cryptd_hash_digest);
}
static struct crypto_instance *cryptd_alloc_hash(
struct rtattr **tb, struct cryptd_queue *queue)
{
struct crypto_instance *inst;
struct crypto_alg *alg;
alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_HASH,
CRYPTO_ALG_TYPE_HASH_MASK);
if (IS_ERR(alg))
return ERR_PTR(PTR_ERR(alg));
inst = cryptd_alloc_instance(alg, queue);
if (IS_ERR(inst))
goto out_put_alg;
inst->alg.cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC;
inst->alg.cra_type = &crypto_ahash_type;
inst->alg.cra_ahash.digestsize = alg->cra_hash.digestsize;
inst->alg.cra_ctxsize = sizeof(struct cryptd_hash_ctx);
inst->alg.cra_init = cryptd_hash_init_tfm;
inst->alg.cra_exit = cryptd_hash_exit_tfm;
inst->alg.cra_ahash.init = cryptd_hash_init_enqueue;
inst->alg.cra_ahash.update = cryptd_hash_update_enqueue;
inst->alg.cra_ahash.final = cryptd_hash_final_enqueue;
inst->alg.cra_ahash.setkey = cryptd_hash_setkey;
inst->alg.cra_ahash.digest = cryptd_hash_digest_enqueue;
out_put_alg:
crypto_mod_put(alg);
return inst;
}
static struct cryptd_queue queue;
static struct crypto_instance *cryptd_alloc(struct rtattr **tb)
{
struct crypto_attr_type *algt;
algt = crypto_get_attr_type(tb);
if (IS_ERR(algt))
return ERR_CAST(algt);
switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
case CRYPTO_ALG_TYPE_BLKCIPHER:
return cryptd_alloc_blkcipher(tb, &queue);
case CRYPTO_ALG_TYPE_DIGEST:
return cryptd_alloc_hash(tb, &queue);
}
return ERR_PTR(-EINVAL);
}
static void cryptd_free(struct crypto_instance *inst)
{
struct cryptd_instance_ctx *ctx = crypto_instance_ctx(inst);
crypto_drop_spawn(&ctx->spawn);
kfree(inst);
}
static struct crypto_template cryptd_tmpl = {
.name = "cryptd",
.alloc = cryptd_alloc,
.free = cryptd_free,
.module = THIS_MODULE,
};
struct cryptd_ablkcipher *cryptd_alloc_ablkcipher(const char *alg_name,
u32 type, u32 mask)
{
char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
struct crypto_tfm *tfm;
if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
"cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
return ERR_PTR(-EINVAL);
type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
type |= CRYPTO_ALG_TYPE_BLKCIPHER;
mask &= ~CRYPTO_ALG_TYPE_MASK;
mask |= (CRYPTO_ALG_GENIV | CRYPTO_ALG_TYPE_BLKCIPHER_MASK);
tfm = crypto_alloc_base(cryptd_alg_name, type, mask);
if (IS_ERR(tfm))
return ERR_CAST(tfm);
if (tfm->__crt_alg->cra_module != THIS_MODULE) {
crypto_free_tfm(tfm);
return ERR_PTR(-EINVAL);
}
return __cryptd_ablkcipher_cast(__crypto_ablkcipher_cast(tfm));
}
EXPORT_SYMBOL_GPL(cryptd_alloc_ablkcipher);
struct crypto_blkcipher *cryptd_ablkcipher_child(struct cryptd_ablkcipher *tfm)
{
struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(&tfm->base);
return ctx->child;
}
EXPORT_SYMBOL_GPL(cryptd_ablkcipher_child);
void cryptd_free_ablkcipher(struct cryptd_ablkcipher *tfm)
{
crypto_free_ablkcipher(&tfm->base);
}
EXPORT_SYMBOL_GPL(cryptd_free_ablkcipher);
static int __init cryptd_init(void)
{
int err;
err = cryptd_init_queue(&queue, CRYPTD_MAX_CPU_QLEN);
if (err)
return err;
err = crypto_register_template(&cryptd_tmpl);
if (err)
cryptd_fini_queue(&queue);
return err;
}
static void __exit cryptd_exit(void)
{
cryptd_fini_queue(&queue);
crypto_unregister_template(&cryptd_tmpl);
}
module_init(cryptd_init);
module_exit(cryptd_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Software async crypto daemon");