forked from luck/tmp_suning_uos_patched
1da177e4c3
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
441 lines
10 KiB
C
441 lines
10 KiB
C
/*
|
|
* Real Time Clock interface for PPC64.
|
|
*
|
|
* Based on rtc.c by Paul Gortmaker
|
|
*
|
|
* This driver allows use of the real time clock
|
|
* from user space. It exports the /dev/rtc
|
|
* interface supporting various ioctl() and also the
|
|
* /proc/driver/rtc pseudo-file for status information.
|
|
*
|
|
* Interface does not support RTC interrupts nor an alarm.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
* 1.0 Mike Corrigan: IBM iSeries rtc support
|
|
* 1.1 Dave Engebretsen: IBM pSeries rtc support
|
|
*/
|
|
|
|
#define RTC_VERSION "1.1"
|
|
|
|
#include <linux/config.h>
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/types.h>
|
|
#include <linux/miscdevice.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/fcntl.h>
|
|
#include <linux/mc146818rtc.h>
|
|
#include <linux/init.h>
|
|
#include <linux/poll.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/bcd.h>
|
|
#include <linux/interrupt.h>
|
|
|
|
#include <asm/io.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/system.h>
|
|
#include <asm/time.h>
|
|
#include <asm/rtas.h>
|
|
|
|
#include <asm/iSeries/LparData.h>
|
|
#include <asm/iSeries/mf.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/iSeries/ItSpCommArea.h>
|
|
|
|
extern int piranha_simulator;
|
|
|
|
/*
|
|
* We sponge a minor off of the misc major. No need slurping
|
|
* up another valuable major dev number for this. If you add
|
|
* an ioctl, make sure you don't conflict with SPARC's RTC
|
|
* ioctls.
|
|
*/
|
|
|
|
static ssize_t rtc_read(struct file *file, char __user *buf,
|
|
size_t count, loff_t *ppos);
|
|
|
|
static int rtc_ioctl(struct inode *inode, struct file *file,
|
|
unsigned int cmd, unsigned long arg);
|
|
|
|
static int rtc_read_proc(char *page, char **start, off_t off,
|
|
int count, int *eof, void *data);
|
|
|
|
/*
|
|
* If this driver ever becomes modularised, it will be really nice
|
|
* to make the epoch retain its value across module reload...
|
|
*/
|
|
|
|
static unsigned long epoch = 1900; /* year corresponding to 0x00 */
|
|
|
|
static const unsigned char days_in_mo[] =
|
|
{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
|
|
|
|
/*
|
|
* Now all the various file operations that we export.
|
|
*/
|
|
|
|
static ssize_t rtc_read(struct file *file, char __user *buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
return -EIO;
|
|
}
|
|
|
|
static int rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
|
|
unsigned long arg)
|
|
{
|
|
struct rtc_time wtime;
|
|
|
|
switch (cmd) {
|
|
case RTC_RD_TIME: /* Read the time/date from RTC */
|
|
{
|
|
memset(&wtime, 0, sizeof(struct rtc_time));
|
|
ppc_md.get_rtc_time(&wtime);
|
|
break;
|
|
}
|
|
case RTC_SET_TIME: /* Set the RTC */
|
|
{
|
|
struct rtc_time rtc_tm;
|
|
unsigned char mon, day, hrs, min, sec, leap_yr;
|
|
unsigned int yrs;
|
|
|
|
if (!capable(CAP_SYS_TIME))
|
|
return -EACCES;
|
|
|
|
if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg,
|
|
sizeof(struct rtc_time)))
|
|
return -EFAULT;
|
|
|
|
yrs = rtc_tm.tm_year;
|
|
mon = rtc_tm.tm_mon + 1; /* tm_mon starts at zero */
|
|
day = rtc_tm.tm_mday;
|
|
hrs = rtc_tm.tm_hour;
|
|
min = rtc_tm.tm_min;
|
|
sec = rtc_tm.tm_sec;
|
|
|
|
if (yrs < 70)
|
|
return -EINVAL;
|
|
|
|
leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
|
|
|
|
if ((mon > 12) || (day == 0))
|
|
return -EINVAL;
|
|
|
|
if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
|
|
return -EINVAL;
|
|
|
|
if ((hrs >= 24) || (min >= 60) || (sec >= 60))
|
|
return -EINVAL;
|
|
|
|
if ( yrs > 169 )
|
|
return -EINVAL;
|
|
|
|
ppc_md.set_rtc_time(&rtc_tm);
|
|
|
|
return 0;
|
|
}
|
|
case RTC_EPOCH_READ: /* Read the epoch. */
|
|
{
|
|
return put_user (epoch, (unsigned long __user *)arg);
|
|
}
|
|
case RTC_EPOCH_SET: /* Set the epoch. */
|
|
{
|
|
/*
|
|
* There were no RTC clocks before 1900.
|
|
*/
|
|
if (arg < 1900)
|
|
return -EINVAL;
|
|
|
|
if (!capable(CAP_SYS_TIME))
|
|
return -EACCES;
|
|
|
|
epoch = arg;
|
|
return 0;
|
|
}
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
return copy_to_user((void __user *)arg, &wtime, sizeof wtime) ? -EFAULT : 0;
|
|
}
|
|
|
|
static int rtc_open(struct inode *inode, struct file *file)
|
|
{
|
|
nonseekable_open(inode, file);
|
|
return 0;
|
|
}
|
|
|
|
static int rtc_release(struct inode *inode, struct file *file)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The various file operations we support.
|
|
*/
|
|
static struct file_operations rtc_fops = {
|
|
.owner = THIS_MODULE,
|
|
.llseek = no_llseek,
|
|
.read = rtc_read,
|
|
.ioctl = rtc_ioctl,
|
|
.open = rtc_open,
|
|
.release = rtc_release,
|
|
};
|
|
|
|
static struct miscdevice rtc_dev = {
|
|
.minor = RTC_MINOR,
|
|
.name = "rtc",
|
|
.fops = &rtc_fops
|
|
};
|
|
|
|
static int __init rtc_init(void)
|
|
{
|
|
int retval;
|
|
|
|
retval = misc_register(&rtc_dev);
|
|
if(retval < 0)
|
|
return retval;
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
if (create_proc_read_entry("driver/rtc", 0, NULL, rtc_read_proc, NULL)
|
|
== NULL) {
|
|
misc_deregister(&rtc_dev);
|
|
return -ENOMEM;
|
|
}
|
|
#endif
|
|
|
|
printk(KERN_INFO "i/pSeries Real Time Clock Driver v" RTC_VERSION "\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __exit rtc_exit (void)
|
|
{
|
|
remove_proc_entry ("driver/rtc", NULL);
|
|
misc_deregister(&rtc_dev);
|
|
}
|
|
|
|
module_init(rtc_init);
|
|
module_exit(rtc_exit);
|
|
|
|
/*
|
|
* Info exported via "/proc/driver/rtc".
|
|
*/
|
|
|
|
static int rtc_proc_output (char *buf)
|
|
{
|
|
|
|
char *p;
|
|
struct rtc_time tm;
|
|
|
|
p = buf;
|
|
|
|
ppc_md.get_rtc_time(&tm);
|
|
|
|
/*
|
|
* There is no way to tell if the luser has the RTC set for local
|
|
* time or for Universal Standard Time (GMT). Probably local though.
|
|
*/
|
|
p += sprintf(p,
|
|
"rtc_time\t: %02d:%02d:%02d\n"
|
|
"rtc_date\t: %04d-%02d-%02d\n"
|
|
"rtc_epoch\t: %04lu\n",
|
|
tm.tm_hour, tm.tm_min, tm.tm_sec,
|
|
tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch);
|
|
|
|
p += sprintf(p,
|
|
"DST_enable\t: no\n"
|
|
"BCD\t\t: yes\n"
|
|
"24hr\t\t: yes\n" );
|
|
|
|
return p - buf;
|
|
}
|
|
|
|
static int rtc_read_proc(char *page, char **start, off_t off,
|
|
int count, int *eof, void *data)
|
|
{
|
|
int len = rtc_proc_output (page);
|
|
if (len <= off+count) *eof = 1;
|
|
*start = page + off;
|
|
len -= off;
|
|
if (len>count) len = count;
|
|
if (len<0) len = 0;
|
|
return len;
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_ISERIES
|
|
/*
|
|
* Get the RTC from the virtual service processor
|
|
* This requires flowing LpEvents to the primary partition
|
|
*/
|
|
void iSeries_get_rtc_time(struct rtc_time *rtc_tm)
|
|
{
|
|
if (piranha_simulator)
|
|
return;
|
|
|
|
mf_get_rtc(rtc_tm);
|
|
rtc_tm->tm_mon--;
|
|
}
|
|
|
|
/*
|
|
* Set the RTC in the virtual service processor
|
|
* This requires flowing LpEvents to the primary partition
|
|
*/
|
|
int iSeries_set_rtc_time(struct rtc_time *tm)
|
|
{
|
|
mf_set_rtc(tm);
|
|
return 0;
|
|
}
|
|
|
|
void iSeries_get_boot_time(struct rtc_time *tm)
|
|
{
|
|
unsigned long time;
|
|
static unsigned long lastsec = 1;
|
|
|
|
u32 dataWord1 = *((u32 *)(&xSpCommArea.xBcdTimeAtIplStart));
|
|
u32 dataWord2 = *(((u32 *)&(xSpCommArea.xBcdTimeAtIplStart)) + 1);
|
|
int year = 1970;
|
|
int year1 = ( dataWord1 >> 24 ) & 0x000000FF;
|
|
int year2 = ( dataWord1 >> 16 ) & 0x000000FF;
|
|
int sec = ( dataWord1 >> 8 ) & 0x000000FF;
|
|
int min = dataWord1 & 0x000000FF;
|
|
int hour = ( dataWord2 >> 24 ) & 0x000000FF;
|
|
int day = ( dataWord2 >> 8 ) & 0x000000FF;
|
|
int mon = dataWord2 & 0x000000FF;
|
|
|
|
if ( piranha_simulator )
|
|
return;
|
|
|
|
BCD_TO_BIN(sec);
|
|
BCD_TO_BIN(min);
|
|
BCD_TO_BIN(hour);
|
|
BCD_TO_BIN(day);
|
|
BCD_TO_BIN(mon);
|
|
BCD_TO_BIN(year1);
|
|
BCD_TO_BIN(year2);
|
|
year = year1 * 100 + year2;
|
|
|
|
time = mktime(year, mon, day, hour, min, sec);
|
|
time += ( jiffies / HZ );
|
|
|
|
/* Now THIS is a nasty hack!
|
|
* It ensures that the first two calls get different answers.
|
|
* That way the loop in init_time (time.c) will not think
|
|
* the clock is stuck.
|
|
*/
|
|
if ( lastsec ) {
|
|
time -= lastsec;
|
|
--lastsec;
|
|
}
|
|
|
|
to_tm(time, tm);
|
|
tm->tm_year -= 1900;
|
|
tm->tm_mon -= 1;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_PPC_RTAS
|
|
#define MAX_RTC_WAIT 5000 /* 5 sec */
|
|
#define RTAS_CLOCK_BUSY (-2)
|
|
void pSeries_get_boot_time(struct rtc_time *rtc_tm)
|
|
{
|
|
int ret[8];
|
|
int error, wait_time;
|
|
unsigned long max_wait_tb;
|
|
|
|
max_wait_tb = __get_tb() + tb_ticks_per_usec * 1000 * MAX_RTC_WAIT;
|
|
do {
|
|
error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret);
|
|
if (error == RTAS_CLOCK_BUSY || rtas_is_extended_busy(error)) {
|
|
wait_time = rtas_extended_busy_delay_time(error);
|
|
/* This is boot time so we spin. */
|
|
udelay(wait_time*1000);
|
|
error = RTAS_CLOCK_BUSY;
|
|
}
|
|
} while (error == RTAS_CLOCK_BUSY && (__get_tb() < max_wait_tb));
|
|
|
|
if (error != 0 && printk_ratelimit()) {
|
|
printk(KERN_WARNING "error: reading the clock failed (%d)\n",
|
|
error);
|
|
return;
|
|
}
|
|
|
|
rtc_tm->tm_sec = ret[5];
|
|
rtc_tm->tm_min = ret[4];
|
|
rtc_tm->tm_hour = ret[3];
|
|
rtc_tm->tm_mday = ret[2];
|
|
rtc_tm->tm_mon = ret[1] - 1;
|
|
rtc_tm->tm_year = ret[0] - 1900;
|
|
}
|
|
|
|
/* NOTE: get_rtc_time will get an error if executed in interrupt context
|
|
* and if a delay is needed to read the clock. In this case we just
|
|
* silently return without updating rtc_tm.
|
|
*/
|
|
void pSeries_get_rtc_time(struct rtc_time *rtc_tm)
|
|
{
|
|
int ret[8];
|
|
int error, wait_time;
|
|
unsigned long max_wait_tb;
|
|
|
|
max_wait_tb = __get_tb() + tb_ticks_per_usec * 1000 * MAX_RTC_WAIT;
|
|
do {
|
|
error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret);
|
|
if (error == RTAS_CLOCK_BUSY || rtas_is_extended_busy(error)) {
|
|
if (in_interrupt() && printk_ratelimit()) {
|
|
printk(KERN_WARNING "error: reading clock would delay interrupt\n");
|
|
return; /* delay not allowed */
|
|
}
|
|
wait_time = rtas_extended_busy_delay_time(error);
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
schedule_timeout(wait_time);
|
|
error = RTAS_CLOCK_BUSY;
|
|
}
|
|
} while (error == RTAS_CLOCK_BUSY && (__get_tb() < max_wait_tb));
|
|
|
|
if (error != 0 && printk_ratelimit()) {
|
|
printk(KERN_WARNING "error: reading the clock failed (%d)\n",
|
|
error);
|
|
return;
|
|
}
|
|
|
|
rtc_tm->tm_sec = ret[5];
|
|
rtc_tm->tm_min = ret[4];
|
|
rtc_tm->tm_hour = ret[3];
|
|
rtc_tm->tm_mday = ret[2];
|
|
rtc_tm->tm_mon = ret[1] - 1;
|
|
rtc_tm->tm_year = ret[0] - 1900;
|
|
}
|
|
|
|
int pSeries_set_rtc_time(struct rtc_time *tm)
|
|
{
|
|
int error, wait_time;
|
|
unsigned long max_wait_tb;
|
|
|
|
max_wait_tb = __get_tb() + tb_ticks_per_usec * 1000 * MAX_RTC_WAIT;
|
|
do {
|
|
error = rtas_call(rtas_token("set-time-of-day"), 7, 1, NULL,
|
|
tm->tm_year + 1900, tm->tm_mon + 1,
|
|
tm->tm_mday, tm->tm_hour, tm->tm_min,
|
|
tm->tm_sec, 0);
|
|
if (error == RTAS_CLOCK_BUSY || rtas_is_extended_busy(error)) {
|
|
if (in_interrupt())
|
|
return 1; /* probably decrementer */
|
|
wait_time = rtas_extended_busy_delay_time(error);
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
schedule_timeout(wait_time);
|
|
error = RTAS_CLOCK_BUSY;
|
|
}
|
|
} while (error == RTAS_CLOCK_BUSY && (__get_tb() < max_wait_tb));
|
|
|
|
if (error != 0 && printk_ratelimit())
|
|
printk(KERN_WARNING "error: setting the clock failed (%d)\n",
|
|
error);
|
|
|
|
return 0;
|
|
}
|
|
#endif
|