forked from luck/tmp_suning_uos_patched
92b9781658
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
1157 lines
32 KiB
C
1157 lines
32 KiB
C
/*
|
|
* linux/fs/ext4/ialloc.c
|
|
*
|
|
* Copyright (C) 1992, 1993, 1994, 1995
|
|
* Remy Card (card@masi.ibp.fr)
|
|
* Laboratoire MASI - Institut Blaise Pascal
|
|
* Universite Pierre et Marie Curie (Paris VI)
|
|
*
|
|
* BSD ufs-inspired inode and directory allocation by
|
|
* Stephen Tweedie (sct@redhat.com), 1993
|
|
* Big-endian to little-endian byte-swapping/bitmaps by
|
|
* David S. Miller (davem@caip.rutgers.edu), 1995
|
|
*/
|
|
|
|
#include <linux/time.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/jbd2.h>
|
|
#include <linux/stat.h>
|
|
#include <linux/string.h>
|
|
#include <linux/quotaops.h>
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/random.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/blkdev.h>
|
|
#include <asm/byteorder.h>
|
|
|
|
#include "ext4.h"
|
|
#include "ext4_jbd2.h"
|
|
#include "xattr.h"
|
|
#include "acl.h"
|
|
|
|
#include <trace/events/ext4.h>
|
|
|
|
/*
|
|
* ialloc.c contains the inodes allocation and deallocation routines
|
|
*/
|
|
|
|
/*
|
|
* The free inodes are managed by bitmaps. A file system contains several
|
|
* blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
|
|
* block for inodes, N blocks for the inode table and data blocks.
|
|
*
|
|
* The file system contains group descriptors which are located after the
|
|
* super block. Each descriptor contains the number of the bitmap block and
|
|
* the free blocks count in the block.
|
|
*/
|
|
|
|
/*
|
|
* To avoid calling the atomic setbit hundreds or thousands of times, we only
|
|
* need to use it within a single byte (to ensure we get endianness right).
|
|
* We can use memset for the rest of the bitmap as there are no other users.
|
|
*/
|
|
void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
|
|
{
|
|
int i;
|
|
|
|
if (start_bit >= end_bit)
|
|
return;
|
|
|
|
ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
|
|
for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
|
|
ext4_set_bit(i, bitmap);
|
|
if (i < end_bit)
|
|
memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
|
|
}
|
|
|
|
/* Initializes an uninitialized inode bitmap */
|
|
static unsigned ext4_init_inode_bitmap(struct super_block *sb,
|
|
struct buffer_head *bh,
|
|
ext4_group_t block_group,
|
|
struct ext4_group_desc *gdp)
|
|
{
|
|
struct ext4_sb_info *sbi = EXT4_SB(sb);
|
|
|
|
J_ASSERT_BH(bh, buffer_locked(bh));
|
|
|
|
/* If checksum is bad mark all blocks and inodes use to prevent
|
|
* allocation, essentially implementing a per-group read-only flag. */
|
|
if (!ext4_group_desc_csum_verify(sbi, block_group, gdp)) {
|
|
ext4_error(sb, "Checksum bad for group %u", block_group);
|
|
ext4_free_group_clusters_set(sb, gdp, 0);
|
|
ext4_free_inodes_set(sb, gdp, 0);
|
|
ext4_itable_unused_set(sb, gdp, 0);
|
|
memset(bh->b_data, 0xff, sb->s_blocksize);
|
|
return 0;
|
|
}
|
|
|
|
memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
|
|
ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8,
|
|
bh->b_data);
|
|
|
|
return EXT4_INODES_PER_GROUP(sb);
|
|
}
|
|
|
|
void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
|
|
{
|
|
if (uptodate) {
|
|
set_buffer_uptodate(bh);
|
|
set_bitmap_uptodate(bh);
|
|
}
|
|
unlock_buffer(bh);
|
|
put_bh(bh);
|
|
}
|
|
|
|
/*
|
|
* Read the inode allocation bitmap for a given block_group, reading
|
|
* into the specified slot in the superblock's bitmap cache.
|
|
*
|
|
* Return buffer_head of bitmap on success or NULL.
|
|
*/
|
|
static struct buffer_head *
|
|
ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
|
|
{
|
|
struct ext4_group_desc *desc;
|
|
struct buffer_head *bh = NULL;
|
|
ext4_fsblk_t bitmap_blk;
|
|
|
|
desc = ext4_get_group_desc(sb, block_group, NULL);
|
|
if (!desc)
|
|
return NULL;
|
|
|
|
bitmap_blk = ext4_inode_bitmap(sb, desc);
|
|
bh = sb_getblk(sb, bitmap_blk);
|
|
if (unlikely(!bh)) {
|
|
ext4_error(sb, "Cannot read inode bitmap - "
|
|
"block_group = %u, inode_bitmap = %llu",
|
|
block_group, bitmap_blk);
|
|
return NULL;
|
|
}
|
|
if (bitmap_uptodate(bh))
|
|
return bh;
|
|
|
|
lock_buffer(bh);
|
|
if (bitmap_uptodate(bh)) {
|
|
unlock_buffer(bh);
|
|
return bh;
|
|
}
|
|
|
|
ext4_lock_group(sb, block_group);
|
|
if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
|
|
ext4_init_inode_bitmap(sb, bh, block_group, desc);
|
|
set_bitmap_uptodate(bh);
|
|
set_buffer_uptodate(bh);
|
|
ext4_unlock_group(sb, block_group);
|
|
unlock_buffer(bh);
|
|
return bh;
|
|
}
|
|
ext4_unlock_group(sb, block_group);
|
|
|
|
if (buffer_uptodate(bh)) {
|
|
/*
|
|
* if not uninit if bh is uptodate,
|
|
* bitmap is also uptodate
|
|
*/
|
|
set_bitmap_uptodate(bh);
|
|
unlock_buffer(bh);
|
|
return bh;
|
|
}
|
|
/*
|
|
* submit the buffer_head for reading
|
|
*/
|
|
trace_ext4_load_inode_bitmap(sb, block_group);
|
|
bh->b_end_io = ext4_end_bitmap_read;
|
|
get_bh(bh);
|
|
submit_bh(READ, bh);
|
|
wait_on_buffer(bh);
|
|
if (!buffer_uptodate(bh)) {
|
|
put_bh(bh);
|
|
ext4_error(sb, "Cannot read inode bitmap - "
|
|
"block_group = %u, inode_bitmap = %llu",
|
|
block_group, bitmap_blk);
|
|
return NULL;
|
|
}
|
|
return bh;
|
|
}
|
|
|
|
/*
|
|
* NOTE! When we get the inode, we're the only people
|
|
* that have access to it, and as such there are no
|
|
* race conditions we have to worry about. The inode
|
|
* is not on the hash-lists, and it cannot be reached
|
|
* through the filesystem because the directory entry
|
|
* has been deleted earlier.
|
|
*
|
|
* HOWEVER: we must make sure that we get no aliases,
|
|
* which means that we have to call "clear_inode()"
|
|
* _before_ we mark the inode not in use in the inode
|
|
* bitmaps. Otherwise a newly created file might use
|
|
* the same inode number (not actually the same pointer
|
|
* though), and then we'd have two inodes sharing the
|
|
* same inode number and space on the harddisk.
|
|
*/
|
|
void ext4_free_inode(handle_t *handle, struct inode *inode)
|
|
{
|
|
struct super_block *sb = inode->i_sb;
|
|
int is_directory;
|
|
unsigned long ino;
|
|
struct buffer_head *bitmap_bh = NULL;
|
|
struct buffer_head *bh2;
|
|
ext4_group_t block_group;
|
|
unsigned long bit;
|
|
struct ext4_group_desc *gdp;
|
|
struct ext4_super_block *es;
|
|
struct ext4_sb_info *sbi;
|
|
int fatal = 0, err, count, cleared;
|
|
|
|
if (!sb) {
|
|
printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
|
|
"nonexistent device\n", __func__, __LINE__);
|
|
return;
|
|
}
|
|
if (atomic_read(&inode->i_count) > 1) {
|
|
ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
|
|
__func__, __LINE__, inode->i_ino,
|
|
atomic_read(&inode->i_count));
|
|
return;
|
|
}
|
|
if (inode->i_nlink) {
|
|
ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
|
|
__func__, __LINE__, inode->i_ino, inode->i_nlink);
|
|
return;
|
|
}
|
|
sbi = EXT4_SB(sb);
|
|
|
|
ino = inode->i_ino;
|
|
ext4_debug("freeing inode %lu\n", ino);
|
|
trace_ext4_free_inode(inode);
|
|
|
|
/*
|
|
* Note: we must free any quota before locking the superblock,
|
|
* as writing the quota to disk may need the lock as well.
|
|
*/
|
|
dquot_initialize(inode);
|
|
ext4_xattr_delete_inode(handle, inode);
|
|
dquot_free_inode(inode);
|
|
dquot_drop(inode);
|
|
|
|
is_directory = S_ISDIR(inode->i_mode);
|
|
|
|
/* Do this BEFORE marking the inode not in use or returning an error */
|
|
ext4_clear_inode(inode);
|
|
|
|
es = EXT4_SB(sb)->s_es;
|
|
if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
|
|
ext4_error(sb, "reserved or nonexistent inode %lu", ino);
|
|
goto error_return;
|
|
}
|
|
block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
|
|
bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
|
|
bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
|
|
if (!bitmap_bh)
|
|
goto error_return;
|
|
|
|
BUFFER_TRACE(bitmap_bh, "get_write_access");
|
|
fatal = ext4_journal_get_write_access(handle, bitmap_bh);
|
|
if (fatal)
|
|
goto error_return;
|
|
|
|
fatal = -ESRCH;
|
|
gdp = ext4_get_group_desc(sb, block_group, &bh2);
|
|
if (gdp) {
|
|
BUFFER_TRACE(bh2, "get_write_access");
|
|
fatal = ext4_journal_get_write_access(handle, bh2);
|
|
}
|
|
ext4_lock_group(sb, block_group);
|
|
cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
|
|
if (fatal || !cleared) {
|
|
ext4_unlock_group(sb, block_group);
|
|
goto out;
|
|
}
|
|
|
|
count = ext4_free_inodes_count(sb, gdp) + 1;
|
|
ext4_free_inodes_set(sb, gdp, count);
|
|
if (is_directory) {
|
|
count = ext4_used_dirs_count(sb, gdp) - 1;
|
|
ext4_used_dirs_set(sb, gdp, count);
|
|
percpu_counter_dec(&sbi->s_dirs_counter);
|
|
}
|
|
gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
|
|
ext4_unlock_group(sb, block_group);
|
|
|
|
percpu_counter_inc(&sbi->s_freeinodes_counter);
|
|
if (sbi->s_log_groups_per_flex) {
|
|
ext4_group_t f = ext4_flex_group(sbi, block_group);
|
|
|
|
atomic_inc(&sbi->s_flex_groups[f].free_inodes);
|
|
if (is_directory)
|
|
atomic_dec(&sbi->s_flex_groups[f].used_dirs);
|
|
}
|
|
BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
|
|
fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
|
|
out:
|
|
if (cleared) {
|
|
BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
|
|
err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
|
|
if (!fatal)
|
|
fatal = err;
|
|
ext4_mark_super_dirty(sb);
|
|
} else
|
|
ext4_error(sb, "bit already cleared for inode %lu", ino);
|
|
|
|
error_return:
|
|
brelse(bitmap_bh);
|
|
ext4_std_error(sb, fatal);
|
|
}
|
|
|
|
struct orlov_stats {
|
|
__u32 free_inodes;
|
|
__u32 free_clusters;
|
|
__u32 used_dirs;
|
|
};
|
|
|
|
/*
|
|
* Helper function for Orlov's allocator; returns critical information
|
|
* for a particular block group or flex_bg. If flex_size is 1, then g
|
|
* is a block group number; otherwise it is flex_bg number.
|
|
*/
|
|
static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
|
|
int flex_size, struct orlov_stats *stats)
|
|
{
|
|
struct ext4_group_desc *desc;
|
|
struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
|
|
|
|
if (flex_size > 1) {
|
|
stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
|
|
stats->free_clusters = atomic_read(&flex_group[g].free_clusters);
|
|
stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
|
|
return;
|
|
}
|
|
|
|
desc = ext4_get_group_desc(sb, g, NULL);
|
|
if (desc) {
|
|
stats->free_inodes = ext4_free_inodes_count(sb, desc);
|
|
stats->free_clusters = ext4_free_group_clusters(sb, desc);
|
|
stats->used_dirs = ext4_used_dirs_count(sb, desc);
|
|
} else {
|
|
stats->free_inodes = 0;
|
|
stats->free_clusters = 0;
|
|
stats->used_dirs = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Orlov's allocator for directories.
|
|
*
|
|
* We always try to spread first-level directories.
|
|
*
|
|
* If there are blockgroups with both free inodes and free blocks counts
|
|
* not worse than average we return one with smallest directory count.
|
|
* Otherwise we simply return a random group.
|
|
*
|
|
* For the rest rules look so:
|
|
*
|
|
* It's OK to put directory into a group unless
|
|
* it has too many directories already (max_dirs) or
|
|
* it has too few free inodes left (min_inodes) or
|
|
* it has too few free blocks left (min_blocks) or
|
|
* Parent's group is preferred, if it doesn't satisfy these
|
|
* conditions we search cyclically through the rest. If none
|
|
* of the groups look good we just look for a group with more
|
|
* free inodes than average (starting at parent's group).
|
|
*/
|
|
|
|
static int find_group_orlov(struct super_block *sb, struct inode *parent,
|
|
ext4_group_t *group, umode_t mode,
|
|
const struct qstr *qstr)
|
|
{
|
|
ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
|
|
struct ext4_sb_info *sbi = EXT4_SB(sb);
|
|
ext4_group_t real_ngroups = ext4_get_groups_count(sb);
|
|
int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
|
|
unsigned int freei, avefreei, grp_free;
|
|
ext4_fsblk_t freeb, avefreec;
|
|
unsigned int ndirs;
|
|
int max_dirs, min_inodes;
|
|
ext4_grpblk_t min_clusters;
|
|
ext4_group_t i, grp, g, ngroups;
|
|
struct ext4_group_desc *desc;
|
|
struct orlov_stats stats;
|
|
int flex_size = ext4_flex_bg_size(sbi);
|
|
struct dx_hash_info hinfo;
|
|
|
|
ngroups = real_ngroups;
|
|
if (flex_size > 1) {
|
|
ngroups = (real_ngroups + flex_size - 1) >>
|
|
sbi->s_log_groups_per_flex;
|
|
parent_group >>= sbi->s_log_groups_per_flex;
|
|
}
|
|
|
|
freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
|
|
avefreei = freei / ngroups;
|
|
freeb = EXT4_C2B(sbi,
|
|
percpu_counter_read_positive(&sbi->s_freeclusters_counter));
|
|
avefreec = freeb;
|
|
do_div(avefreec, ngroups);
|
|
ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
|
|
|
|
if (S_ISDIR(mode) &&
|
|
((parent == sb->s_root->d_inode) ||
|
|
(ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
|
|
int best_ndir = inodes_per_group;
|
|
int ret = -1;
|
|
|
|
if (qstr) {
|
|
hinfo.hash_version = DX_HASH_HALF_MD4;
|
|
hinfo.seed = sbi->s_hash_seed;
|
|
ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
|
|
grp = hinfo.hash;
|
|
} else
|
|
get_random_bytes(&grp, sizeof(grp));
|
|
parent_group = (unsigned)grp % ngroups;
|
|
for (i = 0; i < ngroups; i++) {
|
|
g = (parent_group + i) % ngroups;
|
|
get_orlov_stats(sb, g, flex_size, &stats);
|
|
if (!stats.free_inodes)
|
|
continue;
|
|
if (stats.used_dirs >= best_ndir)
|
|
continue;
|
|
if (stats.free_inodes < avefreei)
|
|
continue;
|
|
if (stats.free_clusters < avefreec)
|
|
continue;
|
|
grp = g;
|
|
ret = 0;
|
|
best_ndir = stats.used_dirs;
|
|
}
|
|
if (ret)
|
|
goto fallback;
|
|
found_flex_bg:
|
|
if (flex_size == 1) {
|
|
*group = grp;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We pack inodes at the beginning of the flexgroup's
|
|
* inode tables. Block allocation decisions will do
|
|
* something similar, although regular files will
|
|
* start at 2nd block group of the flexgroup. See
|
|
* ext4_ext_find_goal() and ext4_find_near().
|
|
*/
|
|
grp *= flex_size;
|
|
for (i = 0; i < flex_size; i++) {
|
|
if (grp+i >= real_ngroups)
|
|
break;
|
|
desc = ext4_get_group_desc(sb, grp+i, NULL);
|
|
if (desc && ext4_free_inodes_count(sb, desc)) {
|
|
*group = grp+i;
|
|
return 0;
|
|
}
|
|
}
|
|
goto fallback;
|
|
}
|
|
|
|
max_dirs = ndirs / ngroups + inodes_per_group / 16;
|
|
min_inodes = avefreei - inodes_per_group*flex_size / 4;
|
|
if (min_inodes < 1)
|
|
min_inodes = 1;
|
|
min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
|
|
|
|
/*
|
|
* Start looking in the flex group where we last allocated an
|
|
* inode for this parent directory
|
|
*/
|
|
if (EXT4_I(parent)->i_last_alloc_group != ~0) {
|
|
parent_group = EXT4_I(parent)->i_last_alloc_group;
|
|
if (flex_size > 1)
|
|
parent_group >>= sbi->s_log_groups_per_flex;
|
|
}
|
|
|
|
for (i = 0; i < ngroups; i++) {
|
|
grp = (parent_group + i) % ngroups;
|
|
get_orlov_stats(sb, grp, flex_size, &stats);
|
|
if (stats.used_dirs >= max_dirs)
|
|
continue;
|
|
if (stats.free_inodes < min_inodes)
|
|
continue;
|
|
if (stats.free_clusters < min_clusters)
|
|
continue;
|
|
goto found_flex_bg;
|
|
}
|
|
|
|
fallback:
|
|
ngroups = real_ngroups;
|
|
avefreei = freei / ngroups;
|
|
fallback_retry:
|
|
parent_group = EXT4_I(parent)->i_block_group;
|
|
for (i = 0; i < ngroups; i++) {
|
|
grp = (parent_group + i) % ngroups;
|
|
desc = ext4_get_group_desc(sb, grp, NULL);
|
|
grp_free = ext4_free_inodes_count(sb, desc);
|
|
if (desc && grp_free && grp_free >= avefreei) {
|
|
*group = grp;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (avefreei) {
|
|
/*
|
|
* The free-inodes counter is approximate, and for really small
|
|
* filesystems the above test can fail to find any blockgroups
|
|
*/
|
|
avefreei = 0;
|
|
goto fallback_retry;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
static int find_group_other(struct super_block *sb, struct inode *parent,
|
|
ext4_group_t *group, umode_t mode)
|
|
{
|
|
ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
|
|
ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
|
|
struct ext4_group_desc *desc;
|
|
int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
|
|
|
|
/*
|
|
* Try to place the inode is the same flex group as its
|
|
* parent. If we can't find space, use the Orlov algorithm to
|
|
* find another flex group, and store that information in the
|
|
* parent directory's inode information so that use that flex
|
|
* group for future allocations.
|
|
*/
|
|
if (flex_size > 1) {
|
|
int retry = 0;
|
|
|
|
try_again:
|
|
parent_group &= ~(flex_size-1);
|
|
last = parent_group + flex_size;
|
|
if (last > ngroups)
|
|
last = ngroups;
|
|
for (i = parent_group; i < last; i++) {
|
|
desc = ext4_get_group_desc(sb, i, NULL);
|
|
if (desc && ext4_free_inodes_count(sb, desc)) {
|
|
*group = i;
|
|
return 0;
|
|
}
|
|
}
|
|
if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
|
|
retry = 1;
|
|
parent_group = EXT4_I(parent)->i_last_alloc_group;
|
|
goto try_again;
|
|
}
|
|
/*
|
|
* If this didn't work, use the Orlov search algorithm
|
|
* to find a new flex group; we pass in the mode to
|
|
* avoid the topdir algorithms.
|
|
*/
|
|
*group = parent_group + flex_size;
|
|
if (*group > ngroups)
|
|
*group = 0;
|
|
return find_group_orlov(sb, parent, group, mode, NULL);
|
|
}
|
|
|
|
/*
|
|
* Try to place the inode in its parent directory
|
|
*/
|
|
*group = parent_group;
|
|
desc = ext4_get_group_desc(sb, *group, NULL);
|
|
if (desc && ext4_free_inodes_count(sb, desc) &&
|
|
ext4_free_group_clusters(sb, desc))
|
|
return 0;
|
|
|
|
/*
|
|
* We're going to place this inode in a different blockgroup from its
|
|
* parent. We want to cause files in a common directory to all land in
|
|
* the same blockgroup. But we want files which are in a different
|
|
* directory which shares a blockgroup with our parent to land in a
|
|
* different blockgroup.
|
|
*
|
|
* So add our directory's i_ino into the starting point for the hash.
|
|
*/
|
|
*group = (*group + parent->i_ino) % ngroups;
|
|
|
|
/*
|
|
* Use a quadratic hash to find a group with a free inode and some free
|
|
* blocks.
|
|
*/
|
|
for (i = 1; i < ngroups; i <<= 1) {
|
|
*group += i;
|
|
if (*group >= ngroups)
|
|
*group -= ngroups;
|
|
desc = ext4_get_group_desc(sb, *group, NULL);
|
|
if (desc && ext4_free_inodes_count(sb, desc) &&
|
|
ext4_free_group_clusters(sb, desc))
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* That failed: try linear search for a free inode, even if that group
|
|
* has no free blocks.
|
|
*/
|
|
*group = parent_group;
|
|
for (i = 0; i < ngroups; i++) {
|
|
if (++*group >= ngroups)
|
|
*group = 0;
|
|
desc = ext4_get_group_desc(sb, *group, NULL);
|
|
if (desc && ext4_free_inodes_count(sb, desc))
|
|
return 0;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* There are two policies for allocating an inode. If the new inode is
|
|
* a directory, then a forward search is made for a block group with both
|
|
* free space and a low directory-to-inode ratio; if that fails, then of
|
|
* the groups with above-average free space, that group with the fewest
|
|
* directories already is chosen.
|
|
*
|
|
* For other inodes, search forward from the parent directory's block
|
|
* group to find a free inode.
|
|
*/
|
|
struct inode *ext4_new_inode(handle_t *handle, struct inode *dir, umode_t mode,
|
|
const struct qstr *qstr, __u32 goal, uid_t *owner)
|
|
{
|
|
struct super_block *sb;
|
|
struct buffer_head *inode_bitmap_bh = NULL;
|
|
struct buffer_head *group_desc_bh;
|
|
ext4_group_t ngroups, group = 0;
|
|
unsigned long ino = 0;
|
|
struct inode *inode;
|
|
struct ext4_group_desc *gdp = NULL;
|
|
struct ext4_inode_info *ei;
|
|
struct ext4_sb_info *sbi;
|
|
int ret2, err = 0;
|
|
struct inode *ret;
|
|
ext4_group_t i;
|
|
ext4_group_t flex_group;
|
|
|
|
/* Cannot create files in a deleted directory */
|
|
if (!dir || !dir->i_nlink)
|
|
return ERR_PTR(-EPERM);
|
|
|
|
sb = dir->i_sb;
|
|
ngroups = ext4_get_groups_count(sb);
|
|
trace_ext4_request_inode(dir, mode);
|
|
inode = new_inode(sb);
|
|
if (!inode)
|
|
return ERR_PTR(-ENOMEM);
|
|
ei = EXT4_I(inode);
|
|
sbi = EXT4_SB(sb);
|
|
|
|
if (!goal)
|
|
goal = sbi->s_inode_goal;
|
|
|
|
if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
|
|
group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
|
|
ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
|
|
ret2 = 0;
|
|
goto got_group;
|
|
}
|
|
|
|
if (S_ISDIR(mode))
|
|
ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
|
|
else
|
|
ret2 = find_group_other(sb, dir, &group, mode);
|
|
|
|
got_group:
|
|
EXT4_I(dir)->i_last_alloc_group = group;
|
|
err = -ENOSPC;
|
|
if (ret2 == -1)
|
|
goto out;
|
|
|
|
/*
|
|
* Normally we will only go through one pass of this loop,
|
|
* unless we get unlucky and it turns out the group we selected
|
|
* had its last inode grabbed by someone else.
|
|
*/
|
|
for (i = 0; i < ngroups; i++, ino = 0) {
|
|
err = -EIO;
|
|
|
|
gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
|
|
if (!gdp)
|
|
goto fail;
|
|
|
|
brelse(inode_bitmap_bh);
|
|
inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
|
|
if (!inode_bitmap_bh)
|
|
goto fail;
|
|
|
|
repeat_in_this_group:
|
|
ino = ext4_find_next_zero_bit((unsigned long *)
|
|
inode_bitmap_bh->b_data,
|
|
EXT4_INODES_PER_GROUP(sb), ino);
|
|
if (ino >= EXT4_INODES_PER_GROUP(sb)) {
|
|
if (++group == ngroups)
|
|
group = 0;
|
|
continue;
|
|
}
|
|
if (group == 0 && (ino+1) < EXT4_FIRST_INO(sb)) {
|
|
ext4_error(sb, "reserved inode found cleared - "
|
|
"inode=%lu", ino + 1);
|
|
continue;
|
|
}
|
|
ext4_lock_group(sb, group);
|
|
ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
|
|
ext4_unlock_group(sb, group);
|
|
ino++; /* the inode bitmap is zero-based */
|
|
if (!ret2)
|
|
goto got; /* we grabbed the inode! */
|
|
if (ino < EXT4_INODES_PER_GROUP(sb))
|
|
goto repeat_in_this_group;
|
|
}
|
|
err = -ENOSPC;
|
|
goto out;
|
|
|
|
got:
|
|
/* We may have to initialize the block bitmap if it isn't already */
|
|
if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM) &&
|
|
gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
|
|
struct buffer_head *block_bitmap_bh;
|
|
|
|
block_bitmap_bh = ext4_read_block_bitmap(sb, group);
|
|
BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
|
|
err = ext4_journal_get_write_access(handle, block_bitmap_bh);
|
|
if (err) {
|
|
brelse(block_bitmap_bh);
|
|
goto fail;
|
|
}
|
|
|
|
BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
|
|
err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
|
|
brelse(block_bitmap_bh);
|
|
|
|
/* recheck and clear flag under lock if we still need to */
|
|
ext4_lock_group(sb, group);
|
|
if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
|
|
gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
|
|
ext4_free_group_clusters_set(sb, gdp,
|
|
ext4_free_clusters_after_init(sb, group, gdp));
|
|
gdp->bg_checksum = ext4_group_desc_csum(sbi, group,
|
|
gdp);
|
|
}
|
|
ext4_unlock_group(sb, group);
|
|
|
|
if (err)
|
|
goto fail;
|
|
}
|
|
|
|
BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
|
|
err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
|
|
if (err)
|
|
goto fail;
|
|
|
|
BUFFER_TRACE(group_desc_bh, "get_write_access");
|
|
err = ext4_journal_get_write_access(handle, group_desc_bh);
|
|
if (err)
|
|
goto fail;
|
|
|
|
/* Update the relevant bg descriptor fields */
|
|
if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
|
|
int free;
|
|
struct ext4_group_info *grp = ext4_get_group_info(sb, group);
|
|
|
|
down_read(&grp->alloc_sem); /* protect vs itable lazyinit */
|
|
ext4_lock_group(sb, group); /* while we modify the bg desc */
|
|
free = EXT4_INODES_PER_GROUP(sb) -
|
|
ext4_itable_unused_count(sb, gdp);
|
|
if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
|
|
gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
|
|
free = 0;
|
|
}
|
|
/*
|
|
* Check the relative inode number against the last used
|
|
* relative inode number in this group. if it is greater
|
|
* we need to update the bg_itable_unused count
|
|
*/
|
|
if (ino > free)
|
|
ext4_itable_unused_set(sb, gdp,
|
|
(EXT4_INODES_PER_GROUP(sb) - ino));
|
|
up_read(&grp->alloc_sem);
|
|
}
|
|
ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
|
|
if (S_ISDIR(mode)) {
|
|
ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
|
|
if (sbi->s_log_groups_per_flex) {
|
|
ext4_group_t f = ext4_flex_group(sbi, group);
|
|
|
|
atomic_inc(&sbi->s_flex_groups[f].used_dirs);
|
|
}
|
|
}
|
|
if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
|
|
gdp->bg_checksum = ext4_group_desc_csum(sbi, group, gdp);
|
|
ext4_unlock_group(sb, group);
|
|
}
|
|
|
|
BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
|
|
err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
|
|
if (err)
|
|
goto fail;
|
|
|
|
BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
|
|
err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
|
|
if (err)
|
|
goto fail;
|
|
|
|
percpu_counter_dec(&sbi->s_freeinodes_counter);
|
|
if (S_ISDIR(mode))
|
|
percpu_counter_inc(&sbi->s_dirs_counter);
|
|
ext4_mark_super_dirty(sb);
|
|
|
|
if (sbi->s_log_groups_per_flex) {
|
|
flex_group = ext4_flex_group(sbi, group);
|
|
atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
|
|
}
|
|
if (owner) {
|
|
inode->i_mode = mode;
|
|
inode->i_uid = owner[0];
|
|
inode->i_gid = owner[1];
|
|
} else if (test_opt(sb, GRPID)) {
|
|
inode->i_mode = mode;
|
|
inode->i_uid = current_fsuid();
|
|
inode->i_gid = dir->i_gid;
|
|
} else
|
|
inode_init_owner(inode, dir, mode);
|
|
|
|
inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
|
|
/* This is the optimal IO size (for stat), not the fs block size */
|
|
inode->i_blocks = 0;
|
|
inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =
|
|
ext4_current_time(inode);
|
|
|
|
memset(ei->i_data, 0, sizeof(ei->i_data));
|
|
ei->i_dir_start_lookup = 0;
|
|
ei->i_disksize = 0;
|
|
|
|
/* Don't inherit extent flag from directory, amongst others. */
|
|
ei->i_flags =
|
|
ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
|
|
ei->i_file_acl = 0;
|
|
ei->i_dtime = 0;
|
|
ei->i_block_group = group;
|
|
ei->i_last_alloc_group = ~0;
|
|
|
|
ext4_set_inode_flags(inode);
|
|
if (IS_DIRSYNC(inode))
|
|
ext4_handle_sync(handle);
|
|
if (insert_inode_locked(inode) < 0) {
|
|
/*
|
|
* Likely a bitmap corruption causing inode to be allocated
|
|
* twice.
|
|
*/
|
|
err = -EIO;
|
|
goto fail;
|
|
}
|
|
spin_lock(&sbi->s_next_gen_lock);
|
|
inode->i_generation = sbi->s_next_generation++;
|
|
spin_unlock(&sbi->s_next_gen_lock);
|
|
|
|
ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
|
|
ext4_set_inode_state(inode, EXT4_STATE_NEW);
|
|
|
|
ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize;
|
|
|
|
ret = inode;
|
|
dquot_initialize(inode);
|
|
err = dquot_alloc_inode(inode);
|
|
if (err)
|
|
goto fail_drop;
|
|
|
|
err = ext4_init_acl(handle, inode, dir);
|
|
if (err)
|
|
goto fail_free_drop;
|
|
|
|
err = ext4_init_security(handle, inode, dir, qstr);
|
|
if (err)
|
|
goto fail_free_drop;
|
|
|
|
if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
|
|
/* set extent flag only for directory, file and normal symlink*/
|
|
if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
|
|
ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
|
|
ext4_ext_tree_init(handle, inode);
|
|
}
|
|
}
|
|
|
|
if (ext4_handle_valid(handle)) {
|
|
ei->i_sync_tid = handle->h_transaction->t_tid;
|
|
ei->i_datasync_tid = handle->h_transaction->t_tid;
|
|
}
|
|
|
|
err = ext4_mark_inode_dirty(handle, inode);
|
|
if (err) {
|
|
ext4_std_error(sb, err);
|
|
goto fail_free_drop;
|
|
}
|
|
|
|
ext4_debug("allocating inode %lu\n", inode->i_ino);
|
|
trace_ext4_allocate_inode(inode, dir, mode);
|
|
goto really_out;
|
|
fail:
|
|
ext4_std_error(sb, err);
|
|
out:
|
|
iput(inode);
|
|
ret = ERR_PTR(err);
|
|
really_out:
|
|
brelse(inode_bitmap_bh);
|
|
return ret;
|
|
|
|
fail_free_drop:
|
|
dquot_free_inode(inode);
|
|
|
|
fail_drop:
|
|
dquot_drop(inode);
|
|
inode->i_flags |= S_NOQUOTA;
|
|
clear_nlink(inode);
|
|
unlock_new_inode(inode);
|
|
iput(inode);
|
|
brelse(inode_bitmap_bh);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
/* Verify that we are loading a valid orphan from disk */
|
|
struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
|
|
{
|
|
unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
|
|
ext4_group_t block_group;
|
|
int bit;
|
|
struct buffer_head *bitmap_bh;
|
|
struct inode *inode = NULL;
|
|
long err = -EIO;
|
|
|
|
/* Error cases - e2fsck has already cleaned up for us */
|
|
if (ino > max_ino) {
|
|
ext4_warning(sb, "bad orphan ino %lu! e2fsck was run?", ino);
|
|
goto error;
|
|
}
|
|
|
|
block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
|
|
bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
|
|
bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
|
|
if (!bitmap_bh) {
|
|
ext4_warning(sb, "inode bitmap error for orphan %lu", ino);
|
|
goto error;
|
|
}
|
|
|
|
/* Having the inode bit set should be a 100% indicator that this
|
|
* is a valid orphan (no e2fsck run on fs). Orphans also include
|
|
* inodes that were being truncated, so we can't check i_nlink==0.
|
|
*/
|
|
if (!ext4_test_bit(bit, bitmap_bh->b_data))
|
|
goto bad_orphan;
|
|
|
|
inode = ext4_iget(sb, ino);
|
|
if (IS_ERR(inode))
|
|
goto iget_failed;
|
|
|
|
/*
|
|
* If the orphans has i_nlinks > 0 then it should be able to be
|
|
* truncated, otherwise it won't be removed from the orphan list
|
|
* during processing and an infinite loop will result.
|
|
*/
|
|
if (inode->i_nlink && !ext4_can_truncate(inode))
|
|
goto bad_orphan;
|
|
|
|
if (NEXT_ORPHAN(inode) > max_ino)
|
|
goto bad_orphan;
|
|
brelse(bitmap_bh);
|
|
return inode;
|
|
|
|
iget_failed:
|
|
err = PTR_ERR(inode);
|
|
inode = NULL;
|
|
bad_orphan:
|
|
ext4_warning(sb, "bad orphan inode %lu! e2fsck was run?", ino);
|
|
printk(KERN_NOTICE "ext4_test_bit(bit=%d, block=%llu) = %d\n",
|
|
bit, (unsigned long long)bitmap_bh->b_blocknr,
|
|
ext4_test_bit(bit, bitmap_bh->b_data));
|
|
printk(KERN_NOTICE "inode=%p\n", inode);
|
|
if (inode) {
|
|
printk(KERN_NOTICE "is_bad_inode(inode)=%d\n",
|
|
is_bad_inode(inode));
|
|
printk(KERN_NOTICE "NEXT_ORPHAN(inode)=%u\n",
|
|
NEXT_ORPHAN(inode));
|
|
printk(KERN_NOTICE "max_ino=%lu\n", max_ino);
|
|
printk(KERN_NOTICE "i_nlink=%u\n", inode->i_nlink);
|
|
/* Avoid freeing blocks if we got a bad deleted inode */
|
|
if (inode->i_nlink == 0)
|
|
inode->i_blocks = 0;
|
|
iput(inode);
|
|
}
|
|
brelse(bitmap_bh);
|
|
error:
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
unsigned long ext4_count_free_inodes(struct super_block *sb)
|
|
{
|
|
unsigned long desc_count;
|
|
struct ext4_group_desc *gdp;
|
|
ext4_group_t i, ngroups = ext4_get_groups_count(sb);
|
|
#ifdef EXT4FS_DEBUG
|
|
struct ext4_super_block *es;
|
|
unsigned long bitmap_count, x;
|
|
struct buffer_head *bitmap_bh = NULL;
|
|
|
|
es = EXT4_SB(sb)->s_es;
|
|
desc_count = 0;
|
|
bitmap_count = 0;
|
|
gdp = NULL;
|
|
for (i = 0; i < ngroups; i++) {
|
|
gdp = ext4_get_group_desc(sb, i, NULL);
|
|
if (!gdp)
|
|
continue;
|
|
desc_count += ext4_free_inodes_count(sb, gdp);
|
|
brelse(bitmap_bh);
|
|
bitmap_bh = ext4_read_inode_bitmap(sb, i);
|
|
if (!bitmap_bh)
|
|
continue;
|
|
|
|
x = ext4_count_free(bitmap_bh, EXT4_INODES_PER_GROUP(sb) / 8);
|
|
printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
|
|
(unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
|
|
bitmap_count += x;
|
|
}
|
|
brelse(bitmap_bh);
|
|
printk(KERN_DEBUG "ext4_count_free_inodes: "
|
|
"stored = %u, computed = %lu, %lu\n",
|
|
le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
|
|
return desc_count;
|
|
#else
|
|
desc_count = 0;
|
|
for (i = 0; i < ngroups; i++) {
|
|
gdp = ext4_get_group_desc(sb, i, NULL);
|
|
if (!gdp)
|
|
continue;
|
|
desc_count += ext4_free_inodes_count(sb, gdp);
|
|
cond_resched();
|
|
}
|
|
return desc_count;
|
|
#endif
|
|
}
|
|
|
|
/* Called at mount-time, super-block is locked */
|
|
unsigned long ext4_count_dirs(struct super_block * sb)
|
|
{
|
|
unsigned long count = 0;
|
|
ext4_group_t i, ngroups = ext4_get_groups_count(sb);
|
|
|
|
for (i = 0; i < ngroups; i++) {
|
|
struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
|
|
if (!gdp)
|
|
continue;
|
|
count += ext4_used_dirs_count(sb, gdp);
|
|
}
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* Zeroes not yet zeroed inode table - just write zeroes through the whole
|
|
* inode table. Must be called without any spinlock held. The only place
|
|
* where it is called from on active part of filesystem is ext4lazyinit
|
|
* thread, so we do not need any special locks, however we have to prevent
|
|
* inode allocation from the current group, so we take alloc_sem lock, to
|
|
* block ext4_new_inode() until we are finished.
|
|
*/
|
|
int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
|
|
int barrier)
|
|
{
|
|
struct ext4_group_info *grp = ext4_get_group_info(sb, group);
|
|
struct ext4_sb_info *sbi = EXT4_SB(sb);
|
|
struct ext4_group_desc *gdp = NULL;
|
|
struct buffer_head *group_desc_bh;
|
|
handle_t *handle;
|
|
ext4_fsblk_t blk;
|
|
int num, ret = 0, used_blks = 0;
|
|
|
|
/* This should not happen, but just to be sure check this */
|
|
if (sb->s_flags & MS_RDONLY) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
|
|
gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
|
|
if (!gdp)
|
|
goto out;
|
|
|
|
/*
|
|
* We do not need to lock this, because we are the only one
|
|
* handling this flag.
|
|
*/
|
|
if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
|
|
goto out;
|
|
|
|
handle = ext4_journal_start_sb(sb, 1);
|
|
if (IS_ERR(handle)) {
|
|
ret = PTR_ERR(handle);
|
|
goto out;
|
|
}
|
|
|
|
down_write(&grp->alloc_sem);
|
|
/*
|
|
* If inode bitmap was already initialized there may be some
|
|
* used inodes so we need to skip blocks with used inodes in
|
|
* inode table.
|
|
*/
|
|
if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
|
|
used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
|
|
ext4_itable_unused_count(sb, gdp)),
|
|
sbi->s_inodes_per_block);
|
|
|
|
if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) {
|
|
ext4_error(sb, "Something is wrong with group %u: "
|
|
"used itable blocks: %d; "
|
|
"itable unused count: %u",
|
|
group, used_blks,
|
|
ext4_itable_unused_count(sb, gdp));
|
|
ret = 1;
|
|
goto err_out;
|
|
}
|
|
|
|
blk = ext4_inode_table(sb, gdp) + used_blks;
|
|
num = sbi->s_itb_per_group - used_blks;
|
|
|
|
BUFFER_TRACE(group_desc_bh, "get_write_access");
|
|
ret = ext4_journal_get_write_access(handle,
|
|
group_desc_bh);
|
|
if (ret)
|
|
goto err_out;
|
|
|
|
/*
|
|
* Skip zeroout if the inode table is full. But we set the ZEROED
|
|
* flag anyway, because obviously, when it is full it does not need
|
|
* further zeroing.
|
|
*/
|
|
if (unlikely(num == 0))
|
|
goto skip_zeroout;
|
|
|
|
ext4_debug("going to zero out inode table in group %d\n",
|
|
group);
|
|
ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
|
|
if (ret < 0)
|
|
goto err_out;
|
|
if (barrier)
|
|
blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
|
|
|
|
skip_zeroout:
|
|
ext4_lock_group(sb, group);
|
|
gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
|
|
gdp->bg_checksum = ext4_group_desc_csum(sbi, group, gdp);
|
|
ext4_unlock_group(sb, group);
|
|
|
|
BUFFER_TRACE(group_desc_bh,
|
|
"call ext4_handle_dirty_metadata");
|
|
ret = ext4_handle_dirty_metadata(handle, NULL,
|
|
group_desc_bh);
|
|
|
|
err_out:
|
|
up_write(&grp->alloc_sem);
|
|
ext4_journal_stop(handle);
|
|
out:
|
|
return ret;
|
|
}
|