kernel_optimize_test/include/linux/bpf.h
John Fastabend 4f738adba3 bpf: create tcp_bpf_ulp allowing BPF to monitor socket TX/RX data
This implements a BPF ULP layer to allow policy enforcement and
monitoring at the socket layer. In order to support this a new
program type BPF_PROG_TYPE_SK_MSG is used to run the policy at
the sendmsg/sendpage hook. To attach the policy to sockets a
sockmap is used with a new program attach type BPF_SK_MSG_VERDICT.

Similar to previous sockmap usages when a sock is added to a
sockmap, via a map update, if the map contains a BPF_SK_MSG_VERDICT
program type attached then the BPF ULP layer is created on the
socket and the attached BPF_PROG_TYPE_SK_MSG program is run for
every msg in sendmsg case and page/offset in sendpage case.

BPF_PROG_TYPE_SK_MSG Semantics/API:

BPF_PROG_TYPE_SK_MSG supports only two return codes SK_PASS and
SK_DROP. Returning SK_DROP free's the copied data in the sendmsg
case and in the sendpage case leaves the data untouched. Both cases
return -EACESS to the user. Returning SK_PASS will allow the msg to
be sent.

In the sendmsg case data is copied into kernel space buffers before
running the BPF program. The kernel space buffers are stored in a
scatterlist object where each element is a kernel memory buffer.
Some effort is made to coalesce data from the sendmsg call here.
For example a sendmsg call with many one byte iov entries will
likely be pushed into a single entry. The BPF program is run with
data pointers (start/end) pointing to the first sg element.

In the sendpage case data is not copied. We opt not to copy the
data by default here, because the BPF infrastructure does not
know what bytes will be needed nor when they will be needed. So
copying all bytes may be wasteful. Because of this the initial
start/end data pointers are (0,0). Meaning no data can be read or
written. This avoids reading data that may be modified by the
user. A new helper is added later in this series if reading and
writing the data is needed. The helper call will do a copy by
default so that the page is exclusively owned by the BPF call.

The verdict from the BPF_PROG_TYPE_SK_MSG applies to the entire msg
in the sendmsg() case and the entire page/offset in the sendpage case.
This avoids ambiguity on how to handle mixed return codes in the
sendmsg case. Again a helper is added later in the series if
a verdict needs to apply to multiple system calls and/or only
a subpart of the currently being processed message.

The helper msg_redirect_map() can be used to select the socket to
send the data on. This is used similar to existing redirect use
cases. This allows policy to redirect msgs.

Pseudo code simple example:

The basic logic to attach a program to a socket is as follows,

  // load the programs
  bpf_prog_load(SOCKMAP_TCP_MSG_PROG, BPF_PROG_TYPE_SK_MSG,
		&obj, &msg_prog);

  // lookup the sockmap
  bpf_map_msg = bpf_object__find_map_by_name(obj, "my_sock_map");

  // get fd for sockmap
  map_fd_msg = bpf_map__fd(bpf_map_msg);

  // attach program to sockmap
  bpf_prog_attach(msg_prog, map_fd_msg, BPF_SK_MSG_VERDICT, 0);

Adding sockets to the map is done in the normal way,

  // Add a socket 'fd' to sockmap at location 'i'
  bpf_map_update_elem(map_fd_msg, &i, fd, BPF_ANY);

After the above any socket attached to "my_sock_map", in this case
'fd', will run the BPF msg verdict program (msg_prog) on every
sendmsg and sendpage system call.

For a complete example see BPF selftests or sockmap samples.

Implementation notes:

It seemed the simplest, to me at least, to use a refcnt to ensure
psock is not lost across the sendmsg copy into the sg, the bpf program
running on the data in sg_data, and the final pass to the TCP stack.
Some performance testing may show a better method to do this and avoid
the refcnt cost, but for now use the simpler method.

Another item that will come after basic support is in place is
supporting MSG_MORE flag. At the moment we call sendpages even if
the MSG_MORE flag is set. An enhancement would be to collect the
pages into a larger scatterlist and pass down the stack. Notice that
bpf_tcp_sendmsg() could support this with some additional state saved
across sendmsg calls. I built the code to support this without having
to do refactoring work. Other features TBD include ZEROCOPY and the
TCP_RECV_QUEUE/TCP_NO_QUEUE support. This will follow initial series
shortly.

Future work could improve size limits on the scatterlist rings used
here. Currently, we use MAX_SKB_FRAGS simply because this was being
used already in the TLS case. Future work could extend the kernel sk
APIs to tune this depending on workload. This is a trade-off
between memory usage and throughput performance.

Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: David S. Miller <davem@davemloft.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-19 21:14:38 +01:00

683 lines
21 KiB
C

/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation.
*/
#ifndef _LINUX_BPF_H
#define _LINUX_BPF_H 1
#include <uapi/linux/bpf.h>
#include <linux/workqueue.h>
#include <linux/file.h>
#include <linux/percpu.h>
#include <linux/err.h>
#include <linux/rbtree_latch.h>
#include <linux/numa.h>
#include <linux/wait.h>
struct bpf_verifier_env;
struct perf_event;
struct bpf_prog;
struct bpf_map;
struct sock;
/* map is generic key/value storage optionally accesible by eBPF programs */
struct bpf_map_ops {
/* funcs callable from userspace (via syscall) */
int (*map_alloc_check)(union bpf_attr *attr);
struct bpf_map *(*map_alloc)(union bpf_attr *attr);
void (*map_release)(struct bpf_map *map, struct file *map_file);
void (*map_free)(struct bpf_map *map);
int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key);
/* funcs callable from userspace and from eBPF programs */
void *(*map_lookup_elem)(struct bpf_map *map, void *key);
int (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags);
int (*map_delete_elem)(struct bpf_map *map, void *key);
/* funcs called by prog_array and perf_event_array map */
void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file,
int fd);
void (*map_fd_put_ptr)(void *ptr);
u32 (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf);
u32 (*map_fd_sys_lookup_elem)(void *ptr);
};
struct bpf_map {
/* 1st cacheline with read-mostly members of which some
* are also accessed in fast-path (e.g. ops, max_entries).
*/
const struct bpf_map_ops *ops ____cacheline_aligned;
struct bpf_map *inner_map_meta;
#ifdef CONFIG_SECURITY
void *security;
#endif
enum bpf_map_type map_type;
u32 key_size;
u32 value_size;
u32 max_entries;
u32 map_flags;
u32 pages;
u32 id;
int numa_node;
bool unpriv_array;
/* 7 bytes hole */
/* 2nd cacheline with misc members to avoid false sharing
* particularly with refcounting.
*/
struct user_struct *user ____cacheline_aligned;
atomic_t refcnt;
atomic_t usercnt;
struct work_struct work;
char name[BPF_OBJ_NAME_LEN];
};
struct bpf_offloaded_map;
struct bpf_map_dev_ops {
int (*map_get_next_key)(struct bpf_offloaded_map *map,
void *key, void *next_key);
int (*map_lookup_elem)(struct bpf_offloaded_map *map,
void *key, void *value);
int (*map_update_elem)(struct bpf_offloaded_map *map,
void *key, void *value, u64 flags);
int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key);
};
struct bpf_offloaded_map {
struct bpf_map map;
struct net_device *netdev;
const struct bpf_map_dev_ops *dev_ops;
void *dev_priv;
struct list_head offloads;
};
static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map)
{
return container_of(map, struct bpf_offloaded_map, map);
}
extern const struct bpf_map_ops bpf_map_offload_ops;
/* function argument constraints */
enum bpf_arg_type {
ARG_DONTCARE = 0, /* unused argument in helper function */
/* the following constraints used to prototype
* bpf_map_lookup/update/delete_elem() functions
*/
ARG_CONST_MAP_PTR, /* const argument used as pointer to bpf_map */
ARG_PTR_TO_MAP_KEY, /* pointer to stack used as map key */
ARG_PTR_TO_MAP_VALUE, /* pointer to stack used as map value */
/* the following constraints used to prototype bpf_memcmp() and other
* functions that access data on eBPF program stack
*/
ARG_PTR_TO_MEM, /* pointer to valid memory (stack, packet, map value) */
ARG_PTR_TO_MEM_OR_NULL, /* pointer to valid memory or NULL */
ARG_PTR_TO_UNINIT_MEM, /* pointer to memory does not need to be initialized,
* helper function must fill all bytes or clear
* them in error case.
*/
ARG_CONST_SIZE, /* number of bytes accessed from memory */
ARG_CONST_SIZE_OR_ZERO, /* number of bytes accessed from memory or 0 */
ARG_PTR_TO_CTX, /* pointer to context */
ARG_ANYTHING, /* any (initialized) argument is ok */
};
/* type of values returned from helper functions */
enum bpf_return_type {
RET_INTEGER, /* function returns integer */
RET_VOID, /* function doesn't return anything */
RET_PTR_TO_MAP_VALUE_OR_NULL, /* returns a pointer to map elem value or NULL */
};
/* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs
* to in-kernel helper functions and for adjusting imm32 field in BPF_CALL
* instructions after verifying
*/
struct bpf_func_proto {
u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
bool gpl_only;
bool pkt_access;
enum bpf_return_type ret_type;
enum bpf_arg_type arg1_type;
enum bpf_arg_type arg2_type;
enum bpf_arg_type arg3_type;
enum bpf_arg_type arg4_type;
enum bpf_arg_type arg5_type;
};
/* bpf_context is intentionally undefined structure. Pointer to bpf_context is
* the first argument to eBPF programs.
* For socket filters: 'struct bpf_context *' == 'struct sk_buff *'
*/
struct bpf_context;
enum bpf_access_type {
BPF_READ = 1,
BPF_WRITE = 2
};
/* types of values stored in eBPF registers */
/* Pointer types represent:
* pointer
* pointer + imm
* pointer + (u16) var
* pointer + (u16) var + imm
* if (range > 0) then [ptr, ptr + range - off) is safe to access
* if (id > 0) means that some 'var' was added
* if (off > 0) means that 'imm' was added
*/
enum bpf_reg_type {
NOT_INIT = 0, /* nothing was written into register */
SCALAR_VALUE, /* reg doesn't contain a valid pointer */
PTR_TO_CTX, /* reg points to bpf_context */
CONST_PTR_TO_MAP, /* reg points to struct bpf_map */
PTR_TO_MAP_VALUE, /* reg points to map element value */
PTR_TO_MAP_VALUE_OR_NULL,/* points to map elem value or NULL */
PTR_TO_STACK, /* reg == frame_pointer + offset */
PTR_TO_PACKET_META, /* skb->data - meta_len */
PTR_TO_PACKET, /* reg points to skb->data */
PTR_TO_PACKET_END, /* skb->data + headlen */
};
/* The information passed from prog-specific *_is_valid_access
* back to the verifier.
*/
struct bpf_insn_access_aux {
enum bpf_reg_type reg_type;
int ctx_field_size;
};
static inline void
bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size)
{
aux->ctx_field_size = size;
}
struct bpf_prog_ops {
int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr,
union bpf_attr __user *uattr);
};
struct bpf_verifier_ops {
/* return eBPF function prototype for verification */
const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id);
/* return true if 'size' wide access at offset 'off' within bpf_context
* with 'type' (read or write) is allowed
*/
bool (*is_valid_access)(int off, int size, enum bpf_access_type type,
struct bpf_insn_access_aux *info);
int (*gen_prologue)(struct bpf_insn *insn, bool direct_write,
const struct bpf_prog *prog);
u32 (*convert_ctx_access)(enum bpf_access_type type,
const struct bpf_insn *src,
struct bpf_insn *dst,
struct bpf_prog *prog, u32 *target_size);
};
struct bpf_prog_offload_ops {
int (*insn_hook)(struct bpf_verifier_env *env,
int insn_idx, int prev_insn_idx);
};
struct bpf_prog_offload {
struct bpf_prog *prog;
struct net_device *netdev;
void *dev_priv;
struct list_head offloads;
bool dev_state;
const struct bpf_prog_offload_ops *dev_ops;
void *jited_image;
u32 jited_len;
};
struct bpf_prog_aux {
atomic_t refcnt;
u32 used_map_cnt;
u32 max_ctx_offset;
u32 stack_depth;
u32 id;
u32 func_cnt;
bool offload_requested;
struct bpf_prog **func;
void *jit_data; /* JIT specific data. arch dependent */
struct latch_tree_node ksym_tnode;
struct list_head ksym_lnode;
const struct bpf_prog_ops *ops;
struct bpf_map **used_maps;
struct bpf_prog *prog;
struct user_struct *user;
u64 load_time; /* ns since boottime */
char name[BPF_OBJ_NAME_LEN];
#ifdef CONFIG_SECURITY
void *security;
#endif
struct bpf_prog_offload *offload;
union {
struct work_struct work;
struct rcu_head rcu;
};
};
struct bpf_array {
struct bpf_map map;
u32 elem_size;
u32 index_mask;
/* 'ownership' of prog_array is claimed by the first program that
* is going to use this map or by the first program which FD is stored
* in the map to make sure that all callers and callees have the same
* prog_type and JITed flag
*/
enum bpf_prog_type owner_prog_type;
bool owner_jited;
union {
char value[0] __aligned(8);
void *ptrs[0] __aligned(8);
void __percpu *pptrs[0] __aligned(8);
};
};
#define MAX_TAIL_CALL_CNT 32
struct bpf_event_entry {
struct perf_event *event;
struct file *perf_file;
struct file *map_file;
struct rcu_head rcu;
};
bool bpf_prog_array_compatible(struct bpf_array *array, const struct bpf_prog *fp);
int bpf_prog_calc_tag(struct bpf_prog *fp);
const struct bpf_func_proto *bpf_get_trace_printk_proto(void);
typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src,
unsigned long off, unsigned long len);
u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy);
int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr,
union bpf_attr __user *uattr);
int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr,
union bpf_attr __user *uattr);
/* an array of programs to be executed under rcu_lock.
*
* Typical usage:
* ret = BPF_PROG_RUN_ARRAY(&bpf_prog_array, ctx, BPF_PROG_RUN);
*
* the structure returned by bpf_prog_array_alloc() should be populated
* with program pointers and the last pointer must be NULL.
* The user has to keep refcnt on the program and make sure the program
* is removed from the array before bpf_prog_put().
* The 'struct bpf_prog_array *' should only be replaced with xchg()
* since other cpus are walking the array of pointers in parallel.
*/
struct bpf_prog_array {
struct rcu_head rcu;
struct bpf_prog *progs[0];
};
struct bpf_prog_array __rcu *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags);
void bpf_prog_array_free(struct bpf_prog_array __rcu *progs);
int bpf_prog_array_length(struct bpf_prog_array __rcu *progs);
int bpf_prog_array_copy_to_user(struct bpf_prog_array __rcu *progs,
__u32 __user *prog_ids, u32 cnt);
void bpf_prog_array_delete_safe(struct bpf_prog_array __rcu *progs,
struct bpf_prog *old_prog);
int bpf_prog_array_copy_info(struct bpf_prog_array __rcu *array,
__u32 __user *prog_ids, u32 request_cnt,
__u32 __user *prog_cnt);
int bpf_prog_array_copy(struct bpf_prog_array __rcu *old_array,
struct bpf_prog *exclude_prog,
struct bpf_prog *include_prog,
struct bpf_prog_array **new_array);
#define __BPF_PROG_RUN_ARRAY(array, ctx, func, check_non_null) \
({ \
struct bpf_prog **_prog, *__prog; \
struct bpf_prog_array *_array; \
u32 _ret = 1; \
rcu_read_lock(); \
_array = rcu_dereference(array); \
if (unlikely(check_non_null && !_array))\
goto _out; \
_prog = _array->progs; \
while ((__prog = READ_ONCE(*_prog))) { \
_ret &= func(__prog, ctx); \
_prog++; \
} \
_out: \
rcu_read_unlock(); \
_ret; \
})
#define BPF_PROG_RUN_ARRAY(array, ctx, func) \
__BPF_PROG_RUN_ARRAY(array, ctx, func, false)
#define BPF_PROG_RUN_ARRAY_CHECK(array, ctx, func) \
__BPF_PROG_RUN_ARRAY(array, ctx, func, true)
#ifdef CONFIG_BPF_SYSCALL
DECLARE_PER_CPU(int, bpf_prog_active);
extern const struct file_operations bpf_map_fops;
extern const struct file_operations bpf_prog_fops;
#define BPF_PROG_TYPE(_id, _name) \
extern const struct bpf_prog_ops _name ## _prog_ops; \
extern const struct bpf_verifier_ops _name ## _verifier_ops;
#define BPF_MAP_TYPE(_id, _ops) \
extern const struct bpf_map_ops _ops;
#include <linux/bpf_types.h>
#undef BPF_PROG_TYPE
#undef BPF_MAP_TYPE
extern const struct bpf_prog_ops bpf_offload_prog_ops;
extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops;
extern const struct bpf_verifier_ops xdp_analyzer_ops;
struct bpf_prog *bpf_prog_get(u32 ufd);
struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type,
bool attach_drv);
struct bpf_prog * __must_check bpf_prog_add(struct bpf_prog *prog, int i);
void bpf_prog_sub(struct bpf_prog *prog, int i);
struct bpf_prog * __must_check bpf_prog_inc(struct bpf_prog *prog);
struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog);
void bpf_prog_put(struct bpf_prog *prog);
int __bpf_prog_charge(struct user_struct *user, u32 pages);
void __bpf_prog_uncharge(struct user_struct *user, u32 pages);
void bpf_prog_free_id(struct bpf_prog *prog, bool do_idr_lock);
void bpf_map_free_id(struct bpf_map *map, bool do_idr_lock);
struct bpf_map *bpf_map_get_with_uref(u32 ufd);
struct bpf_map *__bpf_map_get(struct fd f);
struct bpf_map * __must_check bpf_map_inc(struct bpf_map *map, bool uref);
void bpf_map_put_with_uref(struct bpf_map *map);
void bpf_map_put(struct bpf_map *map);
int bpf_map_precharge_memlock(u32 pages);
void *bpf_map_area_alloc(size_t size, int numa_node);
void bpf_map_area_free(void *base);
void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr);
extern int sysctl_unprivileged_bpf_disabled;
int bpf_map_new_fd(struct bpf_map *map, int flags);
int bpf_prog_new_fd(struct bpf_prog *prog);
int bpf_obj_pin_user(u32 ufd, const char __user *pathname);
int bpf_obj_get_user(const char __user *pathname, int flags);
int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value);
int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value);
int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
u64 flags);
int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value,
u64 flags);
int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value);
int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file,
void *key, void *value, u64 map_flags);
int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
void bpf_fd_array_map_clear(struct bpf_map *map);
int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
void *key, void *value, u64 map_flags);
int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
int bpf_get_file_flag(int flags);
/* memcpy that is used with 8-byte aligned pointers, power-of-8 size and
* forced to use 'long' read/writes to try to atomically copy long counters.
* Best-effort only. No barriers here, since it _will_ race with concurrent
* updates from BPF programs. Called from bpf syscall and mostly used with
* size 8 or 16 bytes, so ask compiler to inline it.
*/
static inline void bpf_long_memcpy(void *dst, const void *src, u32 size)
{
const long *lsrc = src;
long *ldst = dst;
size /= sizeof(long);
while (size--)
*ldst++ = *lsrc++;
}
/* verify correctness of eBPF program */
int bpf_check(struct bpf_prog **fp, union bpf_attr *attr);
void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth);
/* Map specifics */
struct net_device *__dev_map_lookup_elem(struct bpf_map *map, u32 key);
void __dev_map_insert_ctx(struct bpf_map *map, u32 index);
void __dev_map_flush(struct bpf_map *map);
struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key);
void __cpu_map_insert_ctx(struct bpf_map *map, u32 index);
void __cpu_map_flush(struct bpf_map *map);
struct xdp_buff;
int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp,
struct net_device *dev_rx);
/* Return map's numa specified by userspace */
static inline int bpf_map_attr_numa_node(const union bpf_attr *attr)
{
return (attr->map_flags & BPF_F_NUMA_NODE) ?
attr->numa_node : NUMA_NO_NODE;
}
struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type);
#else /* !CONFIG_BPF_SYSCALL */
static inline struct bpf_prog *bpf_prog_get(u32 ufd)
{
return ERR_PTR(-EOPNOTSUPP);
}
static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd,
enum bpf_prog_type type,
bool attach_drv)
{
return ERR_PTR(-EOPNOTSUPP);
}
static inline struct bpf_prog * __must_check bpf_prog_add(struct bpf_prog *prog,
int i)
{
return ERR_PTR(-EOPNOTSUPP);
}
static inline void bpf_prog_sub(struct bpf_prog *prog, int i)
{
}
static inline void bpf_prog_put(struct bpf_prog *prog)
{
}
static inline struct bpf_prog * __must_check bpf_prog_inc(struct bpf_prog *prog)
{
return ERR_PTR(-EOPNOTSUPP);
}
static inline struct bpf_prog *__must_check
bpf_prog_inc_not_zero(struct bpf_prog *prog)
{
return ERR_PTR(-EOPNOTSUPP);
}
static inline int __bpf_prog_charge(struct user_struct *user, u32 pages)
{
return 0;
}
static inline void __bpf_prog_uncharge(struct user_struct *user, u32 pages)
{
}
static inline int bpf_obj_get_user(const char __user *pathname, int flags)
{
return -EOPNOTSUPP;
}
static inline struct net_device *__dev_map_lookup_elem(struct bpf_map *map,
u32 key)
{
return NULL;
}
static inline void __dev_map_insert_ctx(struct bpf_map *map, u32 index)
{
}
static inline void __dev_map_flush(struct bpf_map *map)
{
}
static inline
struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
{
return NULL;
}
static inline void __cpu_map_insert_ctx(struct bpf_map *map, u32 index)
{
}
static inline void __cpu_map_flush(struct bpf_map *map)
{
}
struct xdp_buff;
static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu,
struct xdp_buff *xdp,
struct net_device *dev_rx)
{
return 0;
}
static inline struct bpf_prog *bpf_prog_get_type_path(const char *name,
enum bpf_prog_type type)
{
return ERR_PTR(-EOPNOTSUPP);
}
#endif /* CONFIG_BPF_SYSCALL */
static inline struct bpf_prog *bpf_prog_get_type(u32 ufd,
enum bpf_prog_type type)
{
return bpf_prog_get_type_dev(ufd, type, false);
}
bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool);
int bpf_prog_offload_compile(struct bpf_prog *prog);
void bpf_prog_offload_destroy(struct bpf_prog *prog);
int bpf_prog_offload_info_fill(struct bpf_prog_info *info,
struct bpf_prog *prog);
int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map);
int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value);
int bpf_map_offload_update_elem(struct bpf_map *map,
void *key, void *value, u64 flags);
int bpf_map_offload_delete_elem(struct bpf_map *map, void *key);
int bpf_map_offload_get_next_key(struct bpf_map *map,
void *key, void *next_key);
bool bpf_offload_dev_match(struct bpf_prog *prog, struct bpf_map *map);
#if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL)
int bpf_prog_offload_init(struct bpf_prog *prog, union bpf_attr *attr);
static inline bool bpf_prog_is_dev_bound(struct bpf_prog_aux *aux)
{
return aux->offload_requested;
}
static inline bool bpf_map_is_dev_bound(struct bpf_map *map)
{
return unlikely(map->ops == &bpf_map_offload_ops);
}
struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr);
void bpf_map_offload_map_free(struct bpf_map *map);
#else
static inline int bpf_prog_offload_init(struct bpf_prog *prog,
union bpf_attr *attr)
{
return -EOPNOTSUPP;
}
static inline bool bpf_prog_is_dev_bound(struct bpf_prog_aux *aux)
{
return false;
}
static inline bool bpf_map_is_dev_bound(struct bpf_map *map)
{
return false;
}
static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr)
{
return ERR_PTR(-EOPNOTSUPP);
}
static inline void bpf_map_offload_map_free(struct bpf_map *map)
{
}
#endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */
#if defined(CONFIG_STREAM_PARSER) && defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_INET)
struct sock *__sock_map_lookup_elem(struct bpf_map *map, u32 key);
int sock_map_prog(struct bpf_map *map, struct bpf_prog *prog, u32 type);
#else
static inline struct sock *__sock_map_lookup_elem(struct bpf_map *map, u32 key)
{
return NULL;
}
static inline int sock_map_prog(struct bpf_map *map,
struct bpf_prog *prog,
u32 type)
{
return -EOPNOTSUPP;
}
#endif
/* verifier prototypes for helper functions called from eBPF programs */
extern const struct bpf_func_proto bpf_map_lookup_elem_proto;
extern const struct bpf_func_proto bpf_map_update_elem_proto;
extern const struct bpf_func_proto bpf_map_delete_elem_proto;
extern const struct bpf_func_proto bpf_get_prandom_u32_proto;
extern const struct bpf_func_proto bpf_get_smp_processor_id_proto;
extern const struct bpf_func_proto bpf_get_numa_node_id_proto;
extern const struct bpf_func_proto bpf_tail_call_proto;
extern const struct bpf_func_proto bpf_ktime_get_ns_proto;
extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto;
extern const struct bpf_func_proto bpf_get_current_uid_gid_proto;
extern const struct bpf_func_proto bpf_get_current_comm_proto;
extern const struct bpf_func_proto bpf_skb_vlan_push_proto;
extern const struct bpf_func_proto bpf_skb_vlan_pop_proto;
extern const struct bpf_func_proto bpf_get_stackid_proto;
extern const struct bpf_func_proto bpf_sock_map_update_proto;
/* Shared helpers among cBPF and eBPF. */
void bpf_user_rnd_init_once(void);
u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
#endif /* _LINUX_BPF_H */