forked from luck/tmp_suning_uos_patched
b0ee75561b
This introduces ntp_update_frequency() and deinlines ntp_clear() (as it's not performance critical). ntp_update_frequency() calculates the base tick length using tick_usec and adds a base adjustment, in case the frequency doesn't divide evenly by HZ. Signed-off-by: Roman Zippel <zippel@linux-m68k.org> Cc: john stultz <johnstul@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
428 lines
12 KiB
C
428 lines
12 KiB
C
/*
|
|
* linux/kernel/time/ntp.c
|
|
*
|
|
* NTP state machine interfaces and logic.
|
|
*
|
|
* This code was mainly moved from kernel/timer.c and kernel/time.c
|
|
* Please see those files for relevant copyright info and historical
|
|
* changelogs.
|
|
*/
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/time.h>
|
|
#include <linux/timex.h>
|
|
|
|
#include <asm/div64.h>
|
|
#include <asm/timex.h>
|
|
|
|
/*
|
|
* Timekeeping variables
|
|
*/
|
|
unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */
|
|
unsigned long tick_nsec; /* ACTHZ period (nsec) */
|
|
static u64 tick_length, tick_length_base;
|
|
|
|
/* Don't completely fail for HZ > 500. */
|
|
int tickadj = 500/HZ ? : 1; /* microsecs */
|
|
|
|
/*
|
|
* phase-lock loop variables
|
|
*/
|
|
/* TIME_ERROR prevents overwriting the CMOS clock */
|
|
int time_state = TIME_OK; /* clock synchronization status */
|
|
int time_status = STA_UNSYNC; /* clock status bits */
|
|
long time_offset; /* time adjustment (us) */
|
|
long time_constant = 2; /* pll time constant */
|
|
long time_tolerance = MAXFREQ; /* frequency tolerance (ppm) */
|
|
long time_precision = 1; /* clock precision (us) */
|
|
long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */
|
|
long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */
|
|
long time_freq = (((NSEC_PER_SEC + HZ/2) % HZ - HZ/2) << SHIFT_USEC) / NSEC_PER_USEC;
|
|
/* frequency offset (scaled ppm)*/
|
|
static long time_adj; /* tick adjust (scaled 1 / HZ) */
|
|
long time_reftime; /* time at last adjustment (s) */
|
|
long time_adjust;
|
|
long time_next_adjust;
|
|
|
|
/**
|
|
* ntp_clear - Clears the NTP state variables
|
|
*
|
|
* Must be called while holding a write on the xtime_lock
|
|
*/
|
|
void ntp_clear(void)
|
|
{
|
|
time_adjust = 0; /* stop active adjtime() */
|
|
time_status |= STA_UNSYNC;
|
|
time_maxerror = NTP_PHASE_LIMIT;
|
|
time_esterror = NTP_PHASE_LIMIT;
|
|
|
|
ntp_update_frequency();
|
|
|
|
tick_length = tick_length_base;
|
|
}
|
|
|
|
#define CLOCK_TICK_OVERFLOW (LATCH * HZ - CLOCK_TICK_RATE)
|
|
#define CLOCK_TICK_ADJUST (((s64)CLOCK_TICK_OVERFLOW * NSEC_PER_SEC) / (s64)CLOCK_TICK_RATE)
|
|
|
|
void ntp_update_frequency(void)
|
|
{
|
|
tick_length_base = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ) << TICK_LENGTH_SHIFT;
|
|
tick_length_base += (s64)CLOCK_TICK_ADJUST << TICK_LENGTH_SHIFT;
|
|
|
|
do_div(tick_length_base, HZ);
|
|
|
|
tick_nsec = tick_length_base >> TICK_LENGTH_SHIFT;
|
|
}
|
|
|
|
/*
|
|
* this routine handles the overflow of the microsecond field
|
|
*
|
|
* The tricky bits of code to handle the accurate clock support
|
|
* were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
|
|
* They were originally developed for SUN and DEC kernels.
|
|
* All the kudos should go to Dave for this stuff.
|
|
*/
|
|
void second_overflow(void)
|
|
{
|
|
long ltemp;
|
|
|
|
/* Bump the maxerror field */
|
|
time_maxerror += time_tolerance >> SHIFT_USEC;
|
|
if (time_maxerror > NTP_PHASE_LIMIT) {
|
|
time_maxerror = NTP_PHASE_LIMIT;
|
|
time_status |= STA_UNSYNC;
|
|
}
|
|
|
|
/*
|
|
* Leap second processing. If in leap-insert state at the end of the
|
|
* day, the system clock is set back one second; if in leap-delete
|
|
* state, the system clock is set ahead one second. The microtime()
|
|
* routine or external clock driver will insure that reported time is
|
|
* always monotonic. The ugly divides should be replaced.
|
|
*/
|
|
switch (time_state) {
|
|
case TIME_OK:
|
|
if (time_status & STA_INS)
|
|
time_state = TIME_INS;
|
|
else if (time_status & STA_DEL)
|
|
time_state = TIME_DEL;
|
|
break;
|
|
case TIME_INS:
|
|
if (xtime.tv_sec % 86400 == 0) {
|
|
xtime.tv_sec--;
|
|
wall_to_monotonic.tv_sec++;
|
|
/*
|
|
* The timer interpolator will make time change
|
|
* gradually instead of an immediate jump by one second
|
|
*/
|
|
time_interpolator_update(-NSEC_PER_SEC);
|
|
time_state = TIME_OOP;
|
|
clock_was_set();
|
|
printk(KERN_NOTICE "Clock: inserting leap second "
|
|
"23:59:60 UTC\n");
|
|
}
|
|
break;
|
|
case TIME_DEL:
|
|
if ((xtime.tv_sec + 1) % 86400 == 0) {
|
|
xtime.tv_sec++;
|
|
wall_to_monotonic.tv_sec--;
|
|
/*
|
|
* Use of time interpolator for a gradual change of
|
|
* time
|
|
*/
|
|
time_interpolator_update(NSEC_PER_SEC);
|
|
time_state = TIME_WAIT;
|
|
clock_was_set();
|
|
printk(KERN_NOTICE "Clock: deleting leap second "
|
|
"23:59:59 UTC\n");
|
|
}
|
|
break;
|
|
case TIME_OOP:
|
|
time_state = TIME_WAIT;
|
|
break;
|
|
case TIME_WAIT:
|
|
if (!(time_status & (STA_INS | STA_DEL)))
|
|
time_state = TIME_OK;
|
|
}
|
|
|
|
/*
|
|
* Compute the phase adjustment for the next second. In PLL mode, the
|
|
* offset is reduced by a fixed factor times the time constant. In FLL
|
|
* mode the offset is used directly. In either mode, the maximum phase
|
|
* adjustment for each second is clamped so as to spread the adjustment
|
|
* over not more than the number of seconds between updates.
|
|
*/
|
|
ltemp = time_offset;
|
|
if (!(time_status & STA_FLL))
|
|
ltemp = shift_right(ltemp, SHIFT_KG + time_constant);
|
|
ltemp = min(ltemp, (MAXPHASE / MINSEC) << SHIFT_UPDATE);
|
|
ltemp = max(ltemp, -(MAXPHASE / MINSEC) << SHIFT_UPDATE);
|
|
time_offset -= ltemp;
|
|
time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
|
|
|
|
/*
|
|
* Compute the frequency estimate and additional phase adjustment due
|
|
* to frequency error for the next second.
|
|
*/
|
|
ltemp = time_freq;
|
|
time_adj += shift_right(ltemp,(SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE));
|
|
|
|
#if HZ == 100
|
|
/*
|
|
* Compensate for (HZ==100) != (1 << SHIFT_HZ). Add 25% and 3.125% to
|
|
* get 128.125; => only 0.125% error (p. 14)
|
|
*/
|
|
time_adj += shift_right(time_adj, 2) + shift_right(time_adj, 5);
|
|
#endif
|
|
#if HZ == 250
|
|
/*
|
|
* Compensate for (HZ==250) != (1 << SHIFT_HZ). Add 1.5625% and
|
|
* 0.78125% to get 255.85938; => only 0.05% error (p. 14)
|
|
*/
|
|
time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
|
|
#endif
|
|
#if HZ == 1000
|
|
/*
|
|
* Compensate for (HZ==1000) != (1 << SHIFT_HZ). Add 1.5625% and
|
|
* 0.78125% to get 1023.4375; => only 0.05% error (p. 14)
|
|
*/
|
|
time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
|
|
#endif
|
|
tick_length = tick_length_base;
|
|
}
|
|
|
|
/*
|
|
* Returns how many microseconds we need to add to xtime this tick
|
|
* in doing an adjustment requested with adjtime.
|
|
*/
|
|
static long adjtime_adjustment(void)
|
|
{
|
|
long time_adjust_step;
|
|
|
|
time_adjust_step = time_adjust;
|
|
if (time_adjust_step) {
|
|
/*
|
|
* We are doing an adjtime thing. Prepare time_adjust_step to
|
|
* be within bounds. Note that a positive time_adjust means we
|
|
* want the clock to run faster.
|
|
*
|
|
* Limit the amount of the step to be in the range
|
|
* -tickadj .. +tickadj
|
|
*/
|
|
time_adjust_step = min(time_adjust_step, (long)tickadj);
|
|
time_adjust_step = max(time_adjust_step, (long)-tickadj);
|
|
}
|
|
return time_adjust_step;
|
|
}
|
|
|
|
/* in the NTP reference this is called "hardclock()" */
|
|
void update_ntp_one_tick(void)
|
|
{
|
|
long time_adjust_step;
|
|
|
|
time_adjust_step = adjtime_adjustment();
|
|
if (time_adjust_step)
|
|
/* Reduce by this step the amount of time left */
|
|
time_adjust -= time_adjust_step;
|
|
|
|
/* Changes by adjtime() do not take effect till next tick. */
|
|
if (time_next_adjust != 0) {
|
|
time_adjust = time_next_adjust;
|
|
time_next_adjust = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Return how long ticks are at the moment, that is, how much time
|
|
* update_wall_time_one_tick will add to xtime next time we call it
|
|
* (assuming no calls to do_adjtimex in the meantime).
|
|
* The return value is in fixed-point nanoseconds shifted by the
|
|
* specified number of bits to the right of the binary point.
|
|
* This function has no side-effects.
|
|
*/
|
|
u64 current_tick_length(void)
|
|
{
|
|
u64 ret;
|
|
|
|
/* calculate the finest interval NTP will allow.
|
|
* ie: nanosecond value shifted by (SHIFT_SCALE - 10)
|
|
*/
|
|
ret = tick_length;
|
|
ret += (u64)(adjtime_adjustment() * 1000) << TICK_LENGTH_SHIFT;
|
|
ret += (s64)time_adj << (TICK_LENGTH_SHIFT - (SHIFT_SCALE - 10));
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
void __attribute__ ((weak)) notify_arch_cmos_timer(void)
|
|
{
|
|
return;
|
|
}
|
|
|
|
/* adjtimex mainly allows reading (and writing, if superuser) of
|
|
* kernel time-keeping variables. used by xntpd.
|
|
*/
|
|
int do_adjtimex(struct timex *txc)
|
|
{
|
|
long ltemp, mtemp, save_adjust;
|
|
int result;
|
|
|
|
/* In order to modify anything, you gotta be super-user! */
|
|
if (txc->modes && !capable(CAP_SYS_TIME))
|
|
return -EPERM;
|
|
|
|
/* Now we validate the data before disabling interrupts */
|
|
|
|
if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT)
|
|
/* singleshot must not be used with any other mode bits */
|
|
if (txc->modes != ADJ_OFFSET_SINGLESHOT)
|
|
return -EINVAL;
|
|
|
|
if (txc->modes != ADJ_OFFSET_SINGLESHOT && (txc->modes & ADJ_OFFSET))
|
|
/* adjustment Offset limited to +- .512 seconds */
|
|
if (txc->offset <= - MAXPHASE || txc->offset >= MAXPHASE )
|
|
return -EINVAL;
|
|
|
|
/* if the quartz is off by more than 10% something is VERY wrong ! */
|
|
if (txc->modes & ADJ_TICK)
|
|
if (txc->tick < 900000/USER_HZ ||
|
|
txc->tick > 1100000/USER_HZ)
|
|
return -EINVAL;
|
|
|
|
write_seqlock_irq(&xtime_lock);
|
|
result = time_state; /* mostly `TIME_OK' */
|
|
|
|
/* Save for later - semantics of adjtime is to return old value */
|
|
save_adjust = time_next_adjust ? time_next_adjust : time_adjust;
|
|
|
|
#if 0 /* STA_CLOCKERR is never set yet */
|
|
time_status &= ~STA_CLOCKERR; /* reset STA_CLOCKERR */
|
|
#endif
|
|
/* If there are input parameters, then process them */
|
|
if (txc->modes)
|
|
{
|
|
if (txc->modes & ADJ_STATUS) /* only set allowed bits */
|
|
time_status = (txc->status & ~STA_RONLY) |
|
|
(time_status & STA_RONLY);
|
|
|
|
if (txc->modes & ADJ_FREQUENCY) { /* p. 22 */
|
|
if (txc->freq > MAXFREQ || txc->freq < -MAXFREQ) {
|
|
result = -EINVAL;
|
|
goto leave;
|
|
}
|
|
time_freq = txc->freq;
|
|
}
|
|
|
|
if (txc->modes & ADJ_MAXERROR) {
|
|
if (txc->maxerror < 0 || txc->maxerror >= NTP_PHASE_LIMIT) {
|
|
result = -EINVAL;
|
|
goto leave;
|
|
}
|
|
time_maxerror = txc->maxerror;
|
|
}
|
|
|
|
if (txc->modes & ADJ_ESTERROR) {
|
|
if (txc->esterror < 0 || txc->esterror >= NTP_PHASE_LIMIT) {
|
|
result = -EINVAL;
|
|
goto leave;
|
|
}
|
|
time_esterror = txc->esterror;
|
|
}
|
|
|
|
if (txc->modes & ADJ_TIMECONST) { /* p. 24 */
|
|
if (txc->constant < 0) { /* NTP v4 uses values > 6 */
|
|
result = -EINVAL;
|
|
goto leave;
|
|
}
|
|
time_constant = txc->constant;
|
|
}
|
|
|
|
if (txc->modes & ADJ_OFFSET) { /* values checked earlier */
|
|
if (txc->modes == ADJ_OFFSET_SINGLESHOT) {
|
|
/* adjtime() is independent from ntp_adjtime() */
|
|
if ((time_next_adjust = txc->offset) == 0)
|
|
time_adjust = 0;
|
|
}
|
|
else if (time_status & STA_PLL) {
|
|
ltemp = txc->offset;
|
|
|
|
/*
|
|
* Scale the phase adjustment and
|
|
* clamp to the operating range.
|
|
*/
|
|
if (ltemp > MAXPHASE)
|
|
time_offset = MAXPHASE << SHIFT_UPDATE;
|
|
else if (ltemp < -MAXPHASE)
|
|
time_offset = -(MAXPHASE << SHIFT_UPDATE);
|
|
else
|
|
time_offset = ltemp << SHIFT_UPDATE;
|
|
|
|
/*
|
|
* Select whether the frequency is to be controlled
|
|
* and in which mode (PLL or FLL). Clamp to the operating
|
|
* range. Ugly multiply/divide should be replaced someday.
|
|
*/
|
|
|
|
if (time_status & STA_FREQHOLD || time_reftime == 0)
|
|
time_reftime = xtime.tv_sec;
|
|
mtemp = xtime.tv_sec - time_reftime;
|
|
time_reftime = xtime.tv_sec;
|
|
if (time_status & STA_FLL) {
|
|
if (mtemp >= MINSEC) {
|
|
ltemp = (time_offset / mtemp) << (SHIFT_USEC -
|
|
SHIFT_UPDATE);
|
|
time_freq += shift_right(ltemp, SHIFT_KH);
|
|
} else /* calibration interval too short (p. 12) */
|
|
result = TIME_ERROR;
|
|
} else { /* PLL mode */
|
|
if (mtemp < MAXSEC) {
|
|
ltemp *= mtemp;
|
|
time_freq += shift_right(ltemp,(time_constant +
|
|
time_constant +
|
|
SHIFT_KF - SHIFT_USEC));
|
|
} else /* calibration interval too long (p. 12) */
|
|
result = TIME_ERROR;
|
|
}
|
|
time_freq = min(time_freq, time_tolerance);
|
|
time_freq = max(time_freq, -time_tolerance);
|
|
} /* STA_PLL */
|
|
} /* txc->modes & ADJ_OFFSET */
|
|
if (txc->modes & ADJ_TICK)
|
|
tick_usec = txc->tick;
|
|
|
|
if (txc->modes & ADJ_TICK)
|
|
ntp_update_frequency();
|
|
} /* txc->modes */
|
|
leave: if ((time_status & (STA_UNSYNC|STA_CLOCKERR)) != 0)
|
|
result = TIME_ERROR;
|
|
|
|
if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT)
|
|
txc->offset = save_adjust;
|
|
else {
|
|
txc->offset = shift_right(time_offset, SHIFT_UPDATE);
|
|
}
|
|
txc->freq = time_freq;
|
|
txc->maxerror = time_maxerror;
|
|
txc->esterror = time_esterror;
|
|
txc->status = time_status;
|
|
txc->constant = time_constant;
|
|
txc->precision = time_precision;
|
|
txc->tolerance = time_tolerance;
|
|
txc->tick = tick_usec;
|
|
|
|
/* PPS is not implemented, so these are zero */
|
|
txc->ppsfreq = 0;
|
|
txc->jitter = 0;
|
|
txc->shift = 0;
|
|
txc->stabil = 0;
|
|
txc->jitcnt = 0;
|
|
txc->calcnt = 0;
|
|
txc->errcnt = 0;
|
|
txc->stbcnt = 0;
|
|
write_sequnlock_irq(&xtime_lock);
|
|
do_gettimeofday(&txc->time);
|
|
notify_arch_cmos_timer();
|
|
return(result);
|
|
}
|