forked from luck/tmp_suning_uos_patched
5a0e3ad6af
percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
382 lines
6.8 KiB
C
382 lines
6.8 KiB
C
/*
|
|
* linux/arch/m68k/sun3/sun3dvma.c
|
|
*
|
|
* Copyright (C) 2000 Sam Creasey
|
|
*
|
|
* Contains common routines for sun3/sun3x DVMA management.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/list.h>
|
|
|
|
#include <asm/page.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/dvma.h>
|
|
|
|
#undef DVMA_DEBUG
|
|
|
|
#ifdef CONFIG_SUN3X
|
|
extern void dvma_unmap_iommu(unsigned long baddr, int len);
|
|
#else
|
|
static inline void dvma_unmap_iommu(unsigned long a, int b)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_SUN3
|
|
extern void sun3_dvma_init(void);
|
|
#endif
|
|
|
|
static unsigned long iommu_use[IOMMU_TOTAL_ENTRIES];
|
|
|
|
#define dvma_index(baddr) ((baddr - DVMA_START) >> DVMA_PAGE_SHIFT)
|
|
|
|
#define dvma_entry_use(baddr) (iommu_use[dvma_index(baddr)])
|
|
|
|
struct hole {
|
|
unsigned long start;
|
|
unsigned long end;
|
|
unsigned long size;
|
|
struct list_head list;
|
|
};
|
|
|
|
static struct list_head hole_list;
|
|
static struct list_head hole_cache;
|
|
static struct hole initholes[64];
|
|
|
|
#ifdef DVMA_DEBUG
|
|
|
|
static unsigned long dvma_allocs;
|
|
static unsigned long dvma_frees;
|
|
static unsigned long long dvma_alloc_bytes;
|
|
static unsigned long long dvma_free_bytes;
|
|
|
|
static void print_use(void)
|
|
{
|
|
|
|
int i;
|
|
int j = 0;
|
|
|
|
printk("dvma entry usage:\n");
|
|
|
|
for(i = 0; i < IOMMU_TOTAL_ENTRIES; i++) {
|
|
if(!iommu_use[i])
|
|
continue;
|
|
|
|
j++;
|
|
|
|
printk("dvma entry: %08lx len %08lx\n",
|
|
( i << DVMA_PAGE_SHIFT) + DVMA_START,
|
|
iommu_use[i]);
|
|
}
|
|
|
|
printk("%d entries in use total\n", j);
|
|
|
|
printk("allocation/free calls: %lu/%lu\n", dvma_allocs, dvma_frees);
|
|
printk("allocation/free bytes: %Lx/%Lx\n", dvma_alloc_bytes,
|
|
dvma_free_bytes);
|
|
}
|
|
|
|
static void print_holes(struct list_head *holes)
|
|
{
|
|
|
|
struct list_head *cur;
|
|
struct hole *hole;
|
|
|
|
printk("listing dvma holes\n");
|
|
list_for_each(cur, holes) {
|
|
hole = list_entry(cur, struct hole, list);
|
|
|
|
if((hole->start == 0) && (hole->end == 0) && (hole->size == 0))
|
|
continue;
|
|
|
|
printk("hole: start %08lx end %08lx size %08lx\n", hole->start, hole->end, hole->size);
|
|
}
|
|
|
|
printk("end of hole listing...\n");
|
|
|
|
}
|
|
#endif /* DVMA_DEBUG */
|
|
|
|
static inline int refill(void)
|
|
{
|
|
|
|
struct hole *hole;
|
|
struct hole *prev = NULL;
|
|
struct list_head *cur;
|
|
int ret = 0;
|
|
|
|
list_for_each(cur, &hole_list) {
|
|
hole = list_entry(cur, struct hole, list);
|
|
|
|
if(!prev) {
|
|
prev = hole;
|
|
continue;
|
|
}
|
|
|
|
if(hole->end == prev->start) {
|
|
hole->size += prev->size;
|
|
hole->end = prev->end;
|
|
list_move(&(prev->list), &hole_cache);
|
|
ret++;
|
|
}
|
|
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline struct hole *rmcache(void)
|
|
{
|
|
struct hole *ret;
|
|
|
|
if(list_empty(&hole_cache)) {
|
|
if(!refill()) {
|
|
printk("out of dvma hole cache!\n");
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
ret = list_entry(hole_cache.next, struct hole, list);
|
|
list_del(&(ret->list));
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
static inline unsigned long get_baddr(int len, unsigned long align)
|
|
{
|
|
|
|
struct list_head *cur;
|
|
struct hole *hole;
|
|
|
|
if(list_empty(&hole_list)) {
|
|
#ifdef DVMA_DEBUG
|
|
printk("out of dvma holes! (printing hole cache)\n");
|
|
print_holes(&hole_cache);
|
|
print_use();
|
|
#endif
|
|
BUG();
|
|
}
|
|
|
|
list_for_each(cur, &hole_list) {
|
|
unsigned long newlen;
|
|
|
|
hole = list_entry(cur, struct hole, list);
|
|
|
|
if(align > DVMA_PAGE_SIZE)
|
|
newlen = len + ((hole->end - len) & (align-1));
|
|
else
|
|
newlen = len;
|
|
|
|
if(hole->size > newlen) {
|
|
hole->end -= newlen;
|
|
hole->size -= newlen;
|
|
dvma_entry_use(hole->end) = newlen;
|
|
#ifdef DVMA_DEBUG
|
|
dvma_allocs++;
|
|
dvma_alloc_bytes += newlen;
|
|
#endif
|
|
return hole->end;
|
|
} else if(hole->size == newlen) {
|
|
list_move(&(hole->list), &hole_cache);
|
|
dvma_entry_use(hole->start) = newlen;
|
|
#ifdef DVMA_DEBUG
|
|
dvma_allocs++;
|
|
dvma_alloc_bytes += newlen;
|
|
#endif
|
|
return hole->start;
|
|
}
|
|
|
|
}
|
|
|
|
printk("unable to find dvma hole!\n");
|
|
BUG();
|
|
return 0;
|
|
}
|
|
|
|
static inline int free_baddr(unsigned long baddr)
|
|
{
|
|
|
|
unsigned long len;
|
|
struct hole *hole;
|
|
struct list_head *cur;
|
|
unsigned long orig_baddr;
|
|
|
|
orig_baddr = baddr;
|
|
len = dvma_entry_use(baddr);
|
|
dvma_entry_use(baddr) = 0;
|
|
baddr &= DVMA_PAGE_MASK;
|
|
dvma_unmap_iommu(baddr, len);
|
|
|
|
#ifdef DVMA_DEBUG
|
|
dvma_frees++;
|
|
dvma_free_bytes += len;
|
|
#endif
|
|
|
|
list_for_each(cur, &hole_list) {
|
|
hole = list_entry(cur, struct hole, list);
|
|
|
|
if(hole->end == baddr) {
|
|
hole->end += len;
|
|
hole->size += len;
|
|
return 0;
|
|
} else if(hole->start == (baddr + len)) {
|
|
hole->start = baddr;
|
|
hole->size += len;
|
|
return 0;
|
|
}
|
|
|
|
}
|
|
|
|
hole = rmcache();
|
|
|
|
hole->start = baddr;
|
|
hole->end = baddr + len;
|
|
hole->size = len;
|
|
|
|
// list_add_tail(&(hole->list), cur);
|
|
list_add(&(hole->list), cur);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
void dvma_init(void)
|
|
{
|
|
|
|
struct hole *hole;
|
|
int i;
|
|
|
|
INIT_LIST_HEAD(&hole_list);
|
|
INIT_LIST_HEAD(&hole_cache);
|
|
|
|
/* prepare the hole cache */
|
|
for(i = 0; i < 64; i++)
|
|
list_add(&(initholes[i].list), &hole_cache);
|
|
|
|
hole = rmcache();
|
|
hole->start = DVMA_START;
|
|
hole->end = DVMA_END;
|
|
hole->size = DVMA_SIZE;
|
|
|
|
list_add(&(hole->list), &hole_list);
|
|
|
|
memset(iommu_use, 0, sizeof(iommu_use));
|
|
|
|
dvma_unmap_iommu(DVMA_START, DVMA_SIZE);
|
|
|
|
#ifdef CONFIG_SUN3
|
|
sun3_dvma_init();
|
|
#endif
|
|
|
|
}
|
|
|
|
inline unsigned long dvma_map_align(unsigned long kaddr, int len, int align)
|
|
{
|
|
|
|
unsigned long baddr;
|
|
unsigned long off;
|
|
|
|
if(!len)
|
|
len = 0x800;
|
|
|
|
if(!kaddr || !len) {
|
|
// printk("error: kaddr %lx len %x\n", kaddr, len);
|
|
// *(int *)4 = 0;
|
|
return 0;
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
printk("dvma_map request %08lx bytes from %08lx\n",
|
|
len, kaddr);
|
|
#endif
|
|
off = kaddr & ~DVMA_PAGE_MASK;
|
|
kaddr &= PAGE_MASK;
|
|
len += off;
|
|
len = ((len + (DVMA_PAGE_SIZE-1)) & DVMA_PAGE_MASK);
|
|
|
|
if(align == 0)
|
|
align = DVMA_PAGE_SIZE;
|
|
else
|
|
align = ((align + (DVMA_PAGE_SIZE-1)) & DVMA_PAGE_MASK);
|
|
|
|
baddr = get_baddr(len, align);
|
|
// printk("using baddr %lx\n", baddr);
|
|
|
|
if(!dvma_map_iommu(kaddr, baddr, len))
|
|
return (baddr + off);
|
|
|
|
printk("dvma_map failed kaddr %lx baddr %lx len %x\n", kaddr, baddr, len);
|
|
BUG();
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(dvma_map_align);
|
|
|
|
void dvma_unmap(void *baddr)
|
|
{
|
|
unsigned long addr;
|
|
|
|
addr = (unsigned long)baddr;
|
|
/* check if this is a vme mapping */
|
|
if(!(addr & 0x00f00000))
|
|
addr |= 0xf00000;
|
|
|
|
free_baddr(addr);
|
|
|
|
return;
|
|
|
|
}
|
|
EXPORT_SYMBOL(dvma_unmap);
|
|
|
|
void *dvma_malloc_align(unsigned long len, unsigned long align)
|
|
{
|
|
unsigned long kaddr;
|
|
unsigned long baddr;
|
|
unsigned long vaddr;
|
|
|
|
if(!len)
|
|
return NULL;
|
|
|
|
#ifdef DEBUG
|
|
printk("dvma_malloc request %lx bytes\n", len);
|
|
#endif
|
|
len = ((len + (DVMA_PAGE_SIZE-1)) & DVMA_PAGE_MASK);
|
|
|
|
if((kaddr = __get_free_pages(GFP_ATOMIC, get_order(len))) == 0)
|
|
return NULL;
|
|
|
|
if((baddr = (unsigned long)dvma_map_align(kaddr, len, align)) == 0) {
|
|
free_pages(kaddr, get_order(len));
|
|
return NULL;
|
|
}
|
|
|
|
vaddr = dvma_btov(baddr);
|
|
|
|
if(dvma_map_cpu(kaddr, vaddr, len) < 0) {
|
|
dvma_unmap((void *)baddr);
|
|
free_pages(kaddr, get_order(len));
|
|
return NULL;
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
printk("mapped %08lx bytes %08lx kern -> %08lx bus\n",
|
|
len, kaddr, baddr);
|
|
#endif
|
|
|
|
return (void *)vaddr;
|
|
|
|
}
|
|
EXPORT_SYMBOL(dvma_malloc_align);
|
|
|
|
void dvma_free(void *vaddr)
|
|
{
|
|
|
|
return;
|
|
|
|
}
|
|
EXPORT_SYMBOL(dvma_free);
|