forked from luck/tmp_suning_uos_patched
6c5acd160a
Previously they would be only allocated before the kernel text at 1MB. This limited the maximum supported memory to 128GB. Now allow the e820 allocator to put them everywhere. Try to put them beyond any DMA zones to avoid filling them up. This should free some GFP_DMA memory compared to earlier kernels. Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
658 lines
17 KiB
C
658 lines
17 KiB
C
/*
|
|
* linux/arch/x86_64/mm/init.c
|
|
*
|
|
* Copyright (C) 1995 Linus Torvalds
|
|
* Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
|
|
* Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
|
|
*/
|
|
|
|
#include <linux/config.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/string.h>
|
|
#include <linux/types.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/init.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/dma-mapping.h>
|
|
|
|
#include <asm/processor.h>
|
|
#include <asm/system.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/dma.h>
|
|
#include <asm/fixmap.h>
|
|
#include <asm/e820.h>
|
|
#include <asm/apic.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/proto.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/dma-mapping.h>
|
|
#include <asm/swiotlb.h>
|
|
|
|
#ifndef Dprintk
|
|
#define Dprintk(x...)
|
|
#endif
|
|
|
|
struct dma_mapping_ops* dma_ops;
|
|
EXPORT_SYMBOL(dma_ops);
|
|
|
|
static unsigned long dma_reserve __initdata;
|
|
|
|
DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
|
|
|
|
/*
|
|
* NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
|
|
* physical space so we can cache the place of the first one and move
|
|
* around without checking the pgd every time.
|
|
*/
|
|
|
|
void show_mem(void)
|
|
{
|
|
long i, total = 0, reserved = 0;
|
|
long shared = 0, cached = 0;
|
|
pg_data_t *pgdat;
|
|
struct page *page;
|
|
|
|
printk(KERN_INFO "Mem-info:\n");
|
|
show_free_areas();
|
|
printk(KERN_INFO "Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
|
|
|
|
for_each_pgdat(pgdat) {
|
|
for (i = 0; i < pgdat->node_spanned_pages; ++i) {
|
|
page = pfn_to_page(pgdat->node_start_pfn + i);
|
|
total++;
|
|
if (PageReserved(page))
|
|
reserved++;
|
|
else if (PageSwapCache(page))
|
|
cached++;
|
|
else if (page_count(page))
|
|
shared += page_count(page) - 1;
|
|
}
|
|
}
|
|
printk(KERN_INFO "%lu pages of RAM\n", total);
|
|
printk(KERN_INFO "%lu reserved pages\n",reserved);
|
|
printk(KERN_INFO "%lu pages shared\n",shared);
|
|
printk(KERN_INFO "%lu pages swap cached\n",cached);
|
|
}
|
|
|
|
/* References to section boundaries */
|
|
|
|
int after_bootmem;
|
|
|
|
static void *spp_getpage(void)
|
|
{
|
|
void *ptr;
|
|
if (after_bootmem)
|
|
ptr = (void *) get_zeroed_page(GFP_ATOMIC);
|
|
else
|
|
ptr = alloc_bootmem_pages(PAGE_SIZE);
|
|
if (!ptr || ((unsigned long)ptr & ~PAGE_MASK))
|
|
panic("set_pte_phys: cannot allocate page data %s\n", after_bootmem?"after bootmem":"");
|
|
|
|
Dprintk("spp_getpage %p\n", ptr);
|
|
return ptr;
|
|
}
|
|
|
|
static void set_pte_phys(unsigned long vaddr,
|
|
unsigned long phys, pgprot_t prot)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte, new_pte;
|
|
|
|
Dprintk("set_pte_phys %lx to %lx\n", vaddr, phys);
|
|
|
|
pgd = pgd_offset_k(vaddr);
|
|
if (pgd_none(*pgd)) {
|
|
printk("PGD FIXMAP MISSING, it should be setup in head.S!\n");
|
|
return;
|
|
}
|
|
pud = pud_offset(pgd, vaddr);
|
|
if (pud_none(*pud)) {
|
|
pmd = (pmd_t *) spp_getpage();
|
|
set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | _PAGE_USER));
|
|
if (pmd != pmd_offset(pud, 0)) {
|
|
printk("PAGETABLE BUG #01! %p <-> %p\n", pmd, pmd_offset(pud,0));
|
|
return;
|
|
}
|
|
}
|
|
pmd = pmd_offset(pud, vaddr);
|
|
if (pmd_none(*pmd)) {
|
|
pte = (pte_t *) spp_getpage();
|
|
set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE | _PAGE_USER));
|
|
if (pte != pte_offset_kernel(pmd, 0)) {
|
|
printk("PAGETABLE BUG #02!\n");
|
|
return;
|
|
}
|
|
}
|
|
new_pte = pfn_pte(phys >> PAGE_SHIFT, prot);
|
|
|
|
pte = pte_offset_kernel(pmd, vaddr);
|
|
if (!pte_none(*pte) &&
|
|
pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
|
|
pte_ERROR(*pte);
|
|
set_pte(pte, new_pte);
|
|
|
|
/*
|
|
* It's enough to flush this one mapping.
|
|
* (PGE mappings get flushed as well)
|
|
*/
|
|
__flush_tlb_one(vaddr);
|
|
}
|
|
|
|
/* NOTE: this is meant to be run only at boot */
|
|
void __set_fixmap (enum fixed_addresses idx, unsigned long phys, pgprot_t prot)
|
|
{
|
|
unsigned long address = __fix_to_virt(idx);
|
|
|
|
if (idx >= __end_of_fixed_addresses) {
|
|
printk("Invalid __set_fixmap\n");
|
|
return;
|
|
}
|
|
set_pte_phys(address, phys, prot);
|
|
}
|
|
|
|
unsigned long __initdata table_start, table_end;
|
|
|
|
extern pmd_t temp_boot_pmds[];
|
|
|
|
static struct temp_map {
|
|
pmd_t *pmd;
|
|
void *address;
|
|
int allocated;
|
|
} temp_mappings[] __initdata = {
|
|
{ &temp_boot_pmds[0], (void *)(40UL * 1024 * 1024) },
|
|
{ &temp_boot_pmds[1], (void *)(42UL * 1024 * 1024) },
|
|
{}
|
|
};
|
|
|
|
static __init void *alloc_low_page(int *index, unsigned long *phys)
|
|
{
|
|
struct temp_map *ti;
|
|
int i;
|
|
unsigned long pfn = table_end++, paddr;
|
|
void *adr;
|
|
|
|
if (pfn >= end_pfn)
|
|
panic("alloc_low_page: ran out of memory");
|
|
for (i = 0; temp_mappings[i].allocated; i++) {
|
|
if (!temp_mappings[i].pmd)
|
|
panic("alloc_low_page: ran out of temp mappings");
|
|
}
|
|
ti = &temp_mappings[i];
|
|
paddr = (pfn << PAGE_SHIFT) & PMD_MASK;
|
|
set_pmd(ti->pmd, __pmd(paddr | _KERNPG_TABLE | _PAGE_PSE));
|
|
ti->allocated = 1;
|
|
__flush_tlb();
|
|
adr = ti->address + ((pfn << PAGE_SHIFT) & ~PMD_MASK);
|
|
*index = i;
|
|
*phys = pfn * PAGE_SIZE;
|
|
return adr;
|
|
}
|
|
|
|
static __init void unmap_low_page(int i)
|
|
{
|
|
struct temp_map *ti = &temp_mappings[i];
|
|
set_pmd(ti->pmd, __pmd(0));
|
|
ti->allocated = 0;
|
|
}
|
|
|
|
static void __init phys_pud_init(pud_t *pud, unsigned long address, unsigned long end)
|
|
{
|
|
long i, j;
|
|
|
|
i = pud_index(address);
|
|
pud = pud + i;
|
|
for (; i < PTRS_PER_PUD; pud++, i++) {
|
|
int map;
|
|
unsigned long paddr, pmd_phys;
|
|
pmd_t *pmd;
|
|
|
|
paddr = address + i*PUD_SIZE;
|
|
if (paddr >= end) {
|
|
for (; i < PTRS_PER_PUD; i++, pud++)
|
|
set_pud(pud, __pud(0));
|
|
break;
|
|
}
|
|
|
|
if (!e820_mapped(paddr, paddr+PUD_SIZE, 0)) {
|
|
set_pud(pud, __pud(0));
|
|
continue;
|
|
}
|
|
|
|
pmd = alloc_low_page(&map, &pmd_phys);
|
|
set_pud(pud, __pud(pmd_phys | _KERNPG_TABLE));
|
|
for (j = 0; j < PTRS_PER_PMD; pmd++, j++, paddr += PMD_SIZE) {
|
|
unsigned long pe;
|
|
|
|
if (paddr >= end) {
|
|
for (; j < PTRS_PER_PMD; j++, pmd++)
|
|
set_pmd(pmd, __pmd(0));
|
|
break;
|
|
}
|
|
pe = _PAGE_NX|_PAGE_PSE | _KERNPG_TABLE | _PAGE_GLOBAL | paddr;
|
|
pe &= __supported_pte_mask;
|
|
set_pmd(pmd, __pmd(pe));
|
|
}
|
|
unmap_low_page(map);
|
|
}
|
|
__flush_tlb();
|
|
}
|
|
|
|
static void __init find_early_table_space(unsigned long end)
|
|
{
|
|
unsigned long puds, pmds, tables, start;
|
|
|
|
puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
|
|
pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
|
|
tables = round_up(puds * sizeof(pud_t), PAGE_SIZE) +
|
|
round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
|
|
|
|
/* Put page tables beyond the DMA zones if possible.
|
|
RED-PEN might be better to spread them out more over
|
|
memory to avoid hotspots */
|
|
if (end > MAX_DMA32_PFN<<PAGE_SHIFT)
|
|
start = MAX_DMA32_PFN << PAGE_SHIFT;
|
|
else if (end > MAX_DMA_PFN << PAGE_SHIFT)
|
|
start = MAX_DMA_PFN << PAGE_SHIFT;
|
|
else
|
|
start = 0x8000;
|
|
|
|
table_start = find_e820_area(start, end, tables);
|
|
if (table_start == -1)
|
|
table_start = find_e820_area(0x8000, end, tables);
|
|
if (table_start == -1UL)
|
|
panic("Cannot find space for the kernel page tables");
|
|
|
|
table_start >>= PAGE_SHIFT;
|
|
table_end = table_start;
|
|
}
|
|
|
|
/* Setup the direct mapping of the physical memory at PAGE_OFFSET.
|
|
This runs before bootmem is initialized and gets pages directly from the
|
|
physical memory. To access them they are temporarily mapped. */
|
|
void __init init_memory_mapping(unsigned long start, unsigned long end)
|
|
{
|
|
unsigned long next;
|
|
|
|
Dprintk("init_memory_mapping\n");
|
|
|
|
/*
|
|
* Find space for the kernel direct mapping tables.
|
|
* Later we should allocate these tables in the local node of the memory
|
|
* mapped. Unfortunately this is done currently before the nodes are
|
|
* discovered.
|
|
*/
|
|
find_early_table_space(end);
|
|
|
|
start = (unsigned long)__va(start);
|
|
end = (unsigned long)__va(end);
|
|
|
|
for (; start < end; start = next) {
|
|
int map;
|
|
unsigned long pud_phys;
|
|
pud_t *pud = alloc_low_page(&map, &pud_phys);
|
|
next = start + PGDIR_SIZE;
|
|
if (next > end)
|
|
next = end;
|
|
phys_pud_init(pud, __pa(start), __pa(next));
|
|
set_pgd(pgd_offset_k(start), mk_kernel_pgd(pud_phys));
|
|
unmap_low_page(map);
|
|
}
|
|
|
|
asm volatile("movq %%cr4,%0" : "=r" (mmu_cr4_features));
|
|
__flush_tlb_all();
|
|
early_printk("kernel direct mapping tables upto %lx @ %lx-%lx\n", end,
|
|
table_start<<PAGE_SHIFT,
|
|
table_end<<PAGE_SHIFT);
|
|
}
|
|
|
|
void __cpuinit zap_low_mappings(int cpu)
|
|
{
|
|
if (cpu == 0) {
|
|
pgd_t *pgd = pgd_offset_k(0UL);
|
|
pgd_clear(pgd);
|
|
} else {
|
|
/*
|
|
* For AP's, zap the low identity mappings by changing the cr3
|
|
* to init_level4_pgt and doing local flush tlb all
|
|
*/
|
|
asm volatile("movq %0,%%cr3" :: "r" (__pa_symbol(&init_level4_pgt)));
|
|
}
|
|
__flush_tlb_all();
|
|
}
|
|
|
|
/* Compute zone sizes for the DMA and DMA32 zones in a node. */
|
|
__init void
|
|
size_zones(unsigned long *z, unsigned long *h,
|
|
unsigned long start_pfn, unsigned long end_pfn)
|
|
{
|
|
int i;
|
|
unsigned long w;
|
|
|
|
for (i = 0; i < MAX_NR_ZONES; i++)
|
|
z[i] = 0;
|
|
|
|
if (start_pfn < MAX_DMA_PFN)
|
|
z[ZONE_DMA] = MAX_DMA_PFN - start_pfn;
|
|
if (start_pfn < MAX_DMA32_PFN) {
|
|
unsigned long dma32_pfn = MAX_DMA32_PFN;
|
|
if (dma32_pfn > end_pfn)
|
|
dma32_pfn = end_pfn;
|
|
z[ZONE_DMA32] = dma32_pfn - start_pfn;
|
|
}
|
|
z[ZONE_NORMAL] = end_pfn - start_pfn;
|
|
|
|
/* Remove lower zones from higher ones. */
|
|
w = 0;
|
|
for (i = 0; i < MAX_NR_ZONES; i++) {
|
|
if (z[i])
|
|
z[i] -= w;
|
|
w += z[i];
|
|
}
|
|
|
|
/* Compute holes */
|
|
w = start_pfn;
|
|
for (i = 0; i < MAX_NR_ZONES; i++) {
|
|
unsigned long s = w;
|
|
w += z[i];
|
|
h[i] = e820_hole_size(s, w);
|
|
}
|
|
|
|
/* Add the space pace needed for mem_map to the holes too. */
|
|
for (i = 0; i < MAX_NR_ZONES; i++)
|
|
h[i] += (z[i] * sizeof(struct page)) / PAGE_SIZE;
|
|
|
|
/* The 16MB DMA zone has the kernel and other misc mappings.
|
|
Account them too */
|
|
if (h[ZONE_DMA]) {
|
|
h[ZONE_DMA] += dma_reserve;
|
|
if (h[ZONE_DMA] >= z[ZONE_DMA]) {
|
|
printk(KERN_WARNING
|
|
"Kernel too large and filling up ZONE_DMA?\n");
|
|
h[ZONE_DMA] = z[ZONE_DMA];
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifndef CONFIG_NUMA
|
|
void __init paging_init(void)
|
|
{
|
|
unsigned long zones[MAX_NR_ZONES], holes[MAX_NR_ZONES];
|
|
size_zones(zones, holes, 0, end_pfn);
|
|
free_area_init_node(0, NODE_DATA(0), zones,
|
|
__pa(PAGE_OFFSET) >> PAGE_SHIFT, holes);
|
|
}
|
|
#endif
|
|
|
|
/* Unmap a kernel mapping if it exists. This is useful to avoid prefetches
|
|
from the CPU leading to inconsistent cache lines. address and size
|
|
must be aligned to 2MB boundaries.
|
|
Does nothing when the mapping doesn't exist. */
|
|
void __init clear_kernel_mapping(unsigned long address, unsigned long size)
|
|
{
|
|
unsigned long end = address + size;
|
|
|
|
BUG_ON(address & ~LARGE_PAGE_MASK);
|
|
BUG_ON(size & ~LARGE_PAGE_MASK);
|
|
|
|
for (; address < end; address += LARGE_PAGE_SIZE) {
|
|
pgd_t *pgd = pgd_offset_k(address);
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
if (pgd_none(*pgd))
|
|
continue;
|
|
pud = pud_offset(pgd, address);
|
|
if (pud_none(*pud))
|
|
continue;
|
|
pmd = pmd_offset(pud, address);
|
|
if (!pmd || pmd_none(*pmd))
|
|
continue;
|
|
if (0 == (pmd_val(*pmd) & _PAGE_PSE)) {
|
|
/* Could handle this, but it should not happen currently. */
|
|
printk(KERN_ERR
|
|
"clear_kernel_mapping: mapping has been split. will leak memory\n");
|
|
pmd_ERROR(*pmd);
|
|
}
|
|
set_pmd(pmd, __pmd(0));
|
|
}
|
|
__flush_tlb_all();
|
|
}
|
|
|
|
static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel, kcore_modules,
|
|
kcore_vsyscall;
|
|
|
|
void __init mem_init(void)
|
|
{
|
|
long codesize, reservedpages, datasize, initsize;
|
|
|
|
#ifdef CONFIG_SWIOTLB
|
|
pci_swiotlb_init();
|
|
#endif
|
|
no_iommu_init();
|
|
|
|
/* How many end-of-memory variables you have, grandma! */
|
|
max_low_pfn = end_pfn;
|
|
max_pfn = end_pfn;
|
|
num_physpages = end_pfn;
|
|
high_memory = (void *) __va(end_pfn * PAGE_SIZE);
|
|
|
|
/* clear the zero-page */
|
|
memset(empty_zero_page, 0, PAGE_SIZE);
|
|
|
|
reservedpages = 0;
|
|
|
|
/* this will put all low memory onto the freelists */
|
|
#ifdef CONFIG_NUMA
|
|
totalram_pages = numa_free_all_bootmem();
|
|
#else
|
|
totalram_pages = free_all_bootmem();
|
|
#endif
|
|
reservedpages = end_pfn - totalram_pages - e820_hole_size(0, end_pfn);
|
|
|
|
after_bootmem = 1;
|
|
|
|
codesize = (unsigned long) &_etext - (unsigned long) &_text;
|
|
datasize = (unsigned long) &_edata - (unsigned long) &_etext;
|
|
initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
|
|
|
|
/* Register memory areas for /proc/kcore */
|
|
kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
|
|
kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
|
|
VMALLOC_END-VMALLOC_START);
|
|
kclist_add(&kcore_kernel, &_stext, _end - _stext);
|
|
kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
|
|
kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
|
|
VSYSCALL_END - VSYSCALL_START);
|
|
|
|
printk("Memory: %luk/%luk available (%ldk kernel code, %ldk reserved, %ldk data, %ldk init)\n",
|
|
(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
|
|
end_pfn << (PAGE_SHIFT-10),
|
|
codesize >> 10,
|
|
reservedpages << (PAGE_SHIFT-10),
|
|
datasize >> 10,
|
|
initsize >> 10);
|
|
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* Sync boot_level4_pgt mappings with the init_level4_pgt
|
|
* except for the low identity mappings which are already zapped
|
|
* in init_level4_pgt. This sync-up is essential for AP's bringup
|
|
*/
|
|
memcpy(boot_level4_pgt+1, init_level4_pgt+1, (PTRS_PER_PGD-1)*sizeof(pgd_t));
|
|
#endif
|
|
}
|
|
|
|
void free_initmem(void)
|
|
{
|
|
unsigned long addr;
|
|
|
|
addr = (unsigned long)(&__init_begin);
|
|
for (; addr < (unsigned long)(&__init_end); addr += PAGE_SIZE) {
|
|
ClearPageReserved(virt_to_page(addr));
|
|
set_page_count(virt_to_page(addr), 1);
|
|
memset((void *)(addr & ~(PAGE_SIZE-1)), 0xcc, PAGE_SIZE);
|
|
free_page(addr);
|
|
totalram_pages++;
|
|
}
|
|
memset(__initdata_begin, 0xba, __initdata_end - __initdata_begin);
|
|
printk ("Freeing unused kernel memory: %luk freed\n", (__init_end - __init_begin) >> 10);
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_RODATA
|
|
|
|
extern char __start_rodata, __end_rodata;
|
|
void mark_rodata_ro(void)
|
|
{
|
|
unsigned long addr = (unsigned long)&__start_rodata;
|
|
|
|
for (; addr < (unsigned long)&__end_rodata; addr += PAGE_SIZE)
|
|
change_page_attr_addr(addr, 1, PAGE_KERNEL_RO);
|
|
|
|
printk ("Write protecting the kernel read-only data: %luk\n",
|
|
(&__end_rodata - &__start_rodata) >> 10);
|
|
|
|
/*
|
|
* change_page_attr_addr() requires a global_flush_tlb() call after it.
|
|
* We do this after the printk so that if something went wrong in the
|
|
* change, the printk gets out at least to give a better debug hint
|
|
* of who is the culprit.
|
|
*/
|
|
global_flush_tlb();
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
void free_initrd_mem(unsigned long start, unsigned long end)
|
|
{
|
|
if (start < (unsigned long)&_end)
|
|
return;
|
|
printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
|
|
for (; start < end; start += PAGE_SIZE) {
|
|
ClearPageReserved(virt_to_page(start));
|
|
set_page_count(virt_to_page(start), 1);
|
|
free_page(start);
|
|
totalram_pages++;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void __init reserve_bootmem_generic(unsigned long phys, unsigned len)
|
|
{
|
|
/* Should check here against the e820 map to avoid double free */
|
|
#ifdef CONFIG_NUMA
|
|
int nid = phys_to_nid(phys);
|
|
reserve_bootmem_node(NODE_DATA(nid), phys, len);
|
|
#else
|
|
reserve_bootmem(phys, len);
|
|
#endif
|
|
if (phys+len <= MAX_DMA_PFN*PAGE_SIZE)
|
|
dma_reserve += len / PAGE_SIZE;
|
|
}
|
|
|
|
int kern_addr_valid(unsigned long addr)
|
|
{
|
|
unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
if (above != 0 && above != -1UL)
|
|
return 0;
|
|
|
|
pgd = pgd_offset_k(addr);
|
|
if (pgd_none(*pgd))
|
|
return 0;
|
|
|
|
pud = pud_offset(pgd, addr);
|
|
if (pud_none(*pud))
|
|
return 0;
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
if (pmd_none(*pmd))
|
|
return 0;
|
|
if (pmd_large(*pmd))
|
|
return pfn_valid(pmd_pfn(*pmd));
|
|
|
|
pte = pte_offset_kernel(pmd, addr);
|
|
if (pte_none(*pte))
|
|
return 0;
|
|
return pfn_valid(pte_pfn(*pte));
|
|
}
|
|
|
|
#ifdef CONFIG_SYSCTL
|
|
#include <linux/sysctl.h>
|
|
|
|
extern int exception_trace, page_fault_trace;
|
|
|
|
static ctl_table debug_table2[] = {
|
|
{ 99, "exception-trace", &exception_trace, sizeof(int), 0644, NULL,
|
|
proc_dointvec },
|
|
{ 0, }
|
|
};
|
|
|
|
static ctl_table debug_root_table2[] = {
|
|
{ .ctl_name = CTL_DEBUG, .procname = "debug", .mode = 0555,
|
|
.child = debug_table2 },
|
|
{ 0 },
|
|
};
|
|
|
|
static __init int x8664_sysctl_init(void)
|
|
{
|
|
register_sysctl_table(debug_root_table2, 1);
|
|
return 0;
|
|
}
|
|
__initcall(x8664_sysctl_init);
|
|
#endif
|
|
|
|
/* A pseudo VMAs to allow ptrace access for the vsyscall page. This only
|
|
covers the 64bit vsyscall page now. 32bit has a real VMA now and does
|
|
not need special handling anymore. */
|
|
|
|
static struct vm_area_struct gate_vma = {
|
|
.vm_start = VSYSCALL_START,
|
|
.vm_end = VSYSCALL_END,
|
|
.vm_page_prot = PAGE_READONLY
|
|
};
|
|
|
|
struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
|
|
{
|
|
#ifdef CONFIG_IA32_EMULATION
|
|
if (test_tsk_thread_flag(tsk, TIF_IA32))
|
|
return NULL;
|
|
#endif
|
|
return &gate_vma;
|
|
}
|
|
|
|
int in_gate_area(struct task_struct *task, unsigned long addr)
|
|
{
|
|
struct vm_area_struct *vma = get_gate_vma(task);
|
|
if (!vma)
|
|
return 0;
|
|
return (addr >= vma->vm_start) && (addr < vma->vm_end);
|
|
}
|
|
|
|
/* Use this when you have no reliable task/vma, typically from interrupt
|
|
* context. It is less reliable than using the task's vma and may give
|
|
* false positives.
|
|
*/
|
|
int in_gate_area_no_task(unsigned long addr)
|
|
{
|
|
return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
|
|
}
|