forked from luck/tmp_suning_uos_patched
5f97f7f940
This adds support for the Atmel AVR32 architecture as well as the AT32AP7000 CPU and the AT32STK1000 development board. AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for cost-sensitive embedded applications, with particular emphasis on low power consumption and high code density. The AVR32 architecture is not binary compatible with earlier 8-bit AVR architectures. The AVR32 architecture, including the instruction set, is described by the AVR32 Architecture Manual, available from http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It features a 7-stage pipeline, 16KB instruction and data caches and a full Memory Management Unit. It also comes with a large set of integrated peripherals, many of which are shared with the AT91 ARM-based controllers from Atmel. Full data sheet is available from http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf while the CPU core implementation including caches and MMU is documented by the AVR32 AP Technical Reference, available from http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf Information about the AT32STK1000 development board can be found at http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918 including a BSP CD image with an earlier version of this patch, development tools (binaries and source/patches) and a root filesystem image suitable for booting from SD card. Alternatively, there's a preliminary "getting started" guide available at http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links to the sources and patches you will need in order to set up a cross-compiling environment for avr32-linux. This patch, as well as the other patches included with the BSP and the toolchain patches, is actively supported by Atmel Corporation. [dmccr@us.ibm.com: Fix more pxx_page macro locations] [bunk@stusta.de: fix `make defconfig'] Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Dave McCracken <dmccr@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
316 lines
7.4 KiB
C
316 lines
7.4 KiB
C
/*
|
|
* Copyright (C) 2004-2006 Atmel Corporation
|
|
*
|
|
* Based on linux/arch/sh/mm/fault.c:
|
|
* Copyright (C) 1999 Niibe Yutaka
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/module.h>
|
|
#include <linux/pagemap.h>
|
|
|
|
#include <asm/kdebug.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/sysreg.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/tlb.h>
|
|
|
|
#ifdef DEBUG
|
|
static void dump_code(unsigned long pc)
|
|
{
|
|
char *p = (char *)pc;
|
|
char val;
|
|
int i;
|
|
|
|
|
|
printk(KERN_DEBUG "Code:");
|
|
for (i = 0; i < 16; i++) {
|
|
if (__get_user(val, p + i))
|
|
break;
|
|
printk(" %02x", val);
|
|
}
|
|
printk("\n");
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_KPROBES
|
|
ATOMIC_NOTIFIER_HEAD(notify_page_fault_chain);
|
|
|
|
/* Hook to register for page fault notifications */
|
|
int register_page_fault_notifier(struct notifier_block *nb)
|
|
{
|
|
return atomic_notifier_chain_register(¬ify_page_fault_chain, nb);
|
|
}
|
|
|
|
int unregister_page_fault_notifier(struct notifier_block *nb)
|
|
{
|
|
return atomic_notifier_chain_unregister(¬ify_page_fault_chain, nb);
|
|
}
|
|
|
|
static inline int notify_page_fault(enum die_val val, struct pt_regs *regs,
|
|
int trap, int sig)
|
|
{
|
|
struct die_args args = {
|
|
.regs = regs,
|
|
.trapnr = trap,
|
|
};
|
|
return atomic_notifier_call_chain(¬ify_page_fault_chain, val, &args);
|
|
}
|
|
#else
|
|
static inline int notify_page_fault(enum die_val val, struct pt_regs *regs,
|
|
int trap, int sig)
|
|
{
|
|
return NOTIFY_DONE;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* This routine handles page faults. It determines the address and the
|
|
* problem, and then passes it off to one of the appropriate routines.
|
|
*
|
|
* ecr is the Exception Cause Register. Possible values are:
|
|
* 5: Page not found (instruction access)
|
|
* 6: Protection fault (instruction access)
|
|
* 12: Page not found (read access)
|
|
* 13: Page not found (write access)
|
|
* 14: Protection fault (read access)
|
|
* 15: Protection fault (write access)
|
|
*/
|
|
asmlinkage void do_page_fault(unsigned long ecr, struct pt_regs *regs)
|
|
{
|
|
struct task_struct *tsk;
|
|
struct mm_struct *mm;
|
|
struct vm_area_struct *vma;
|
|
const struct exception_table_entry *fixup;
|
|
unsigned long address;
|
|
unsigned long page;
|
|
int writeaccess = 0;
|
|
|
|
if (notify_page_fault(DIE_PAGE_FAULT, regs,
|
|
ecr, SIGSEGV) == NOTIFY_STOP)
|
|
return;
|
|
|
|
address = sysreg_read(TLBEAR);
|
|
|
|
tsk = current;
|
|
mm = tsk->mm;
|
|
|
|
/*
|
|
* If we're in an interrupt or have no user context, we must
|
|
* not take the fault...
|
|
*/
|
|
if (in_atomic() || !mm || regs->sr & SYSREG_BIT(GM))
|
|
goto no_context;
|
|
|
|
local_irq_enable();
|
|
|
|
down_read(&mm->mmap_sem);
|
|
|
|
vma = find_vma(mm, address);
|
|
if (!vma)
|
|
goto bad_area;
|
|
if (vma->vm_start <= address)
|
|
goto good_area;
|
|
if (!(vma->vm_flags & VM_GROWSDOWN))
|
|
goto bad_area;
|
|
if (expand_stack(vma, address))
|
|
goto bad_area;
|
|
|
|
/*
|
|
* Ok, we have a good vm_area for this memory access, so we
|
|
* can handle it...
|
|
*/
|
|
good_area:
|
|
//pr_debug("good area: vm_flags = 0x%lx\n", vma->vm_flags);
|
|
switch (ecr) {
|
|
case ECR_PROTECTION_X:
|
|
case ECR_TLB_MISS_X:
|
|
if (!(vma->vm_flags & VM_EXEC))
|
|
goto bad_area;
|
|
break;
|
|
case ECR_PROTECTION_R:
|
|
case ECR_TLB_MISS_R:
|
|
if (!(vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC)))
|
|
goto bad_area;
|
|
break;
|
|
case ECR_PROTECTION_W:
|
|
case ECR_TLB_MISS_W:
|
|
if (!(vma->vm_flags & VM_WRITE))
|
|
goto bad_area;
|
|
writeaccess = 1;
|
|
break;
|
|
default:
|
|
panic("Unhandled case %lu in do_page_fault!", ecr);
|
|
}
|
|
|
|
/*
|
|
* If for any reason at all we couldn't handle the fault, make
|
|
* sure we exit gracefully rather than endlessly redo the
|
|
* fault.
|
|
*/
|
|
survive:
|
|
switch (handle_mm_fault(mm, vma, address, writeaccess)) {
|
|
case VM_FAULT_MINOR:
|
|
tsk->min_flt++;
|
|
break;
|
|
case VM_FAULT_MAJOR:
|
|
tsk->maj_flt++;
|
|
break;
|
|
case VM_FAULT_SIGBUS:
|
|
goto do_sigbus;
|
|
case VM_FAULT_OOM:
|
|
goto out_of_memory;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
up_read(&mm->mmap_sem);
|
|
return;
|
|
|
|
/*
|
|
* Something tried to access memory that isn't in our memory
|
|
* map. Fix it, but check if it's kernel or user first...
|
|
*/
|
|
bad_area:
|
|
pr_debug("Bad area [%s:%u]: addr %08lx, ecr %lu\n",
|
|
tsk->comm, tsk->pid, address, ecr);
|
|
|
|
up_read(&mm->mmap_sem);
|
|
|
|
if (user_mode(regs)) {
|
|
/* Hmm...we have to pass address and ecr somehow... */
|
|
/* tsk->thread.address = address;
|
|
tsk->thread.error_code = ecr; */
|
|
#ifdef DEBUG
|
|
show_regs(regs);
|
|
dump_code(regs->pc);
|
|
|
|
page = sysreg_read(PTBR);
|
|
printk("ptbr = %08lx", page);
|
|
if (page) {
|
|
page = ((unsigned long *)page)[address >> 22];
|
|
printk(" pgd = %08lx", page);
|
|
if (page & _PAGE_PRESENT) {
|
|
page &= PAGE_MASK;
|
|
address &= 0x003ff000;
|
|
page = ((unsigned long *)__va(page))[address >> PAGE_SHIFT];
|
|
printk(" pte = %08lx\n", page);
|
|
}
|
|
}
|
|
#endif
|
|
pr_debug("Sending SIGSEGV to PID %d...\n",
|
|
tsk->pid);
|
|
force_sig(SIGSEGV, tsk);
|
|
return;
|
|
}
|
|
|
|
no_context:
|
|
pr_debug("No context\n");
|
|
|
|
/* Are we prepared to handle this kernel fault? */
|
|
fixup = search_exception_tables(regs->pc);
|
|
if (fixup) {
|
|
regs->pc = fixup->fixup;
|
|
pr_debug("Found fixup at %08lx\n", fixup->fixup);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Oops. The kernel tried to access some bad page. We'll have
|
|
* to terminate things with extreme prejudice.
|
|
*/
|
|
if (address < PAGE_SIZE)
|
|
printk(KERN_ALERT
|
|
"Unable to handle kernel NULL pointer dereference");
|
|
else
|
|
printk(KERN_ALERT
|
|
"Unable to handle kernel paging request");
|
|
printk(" at virtual address %08lx\n", address);
|
|
printk(KERN_ALERT "pc = %08lx\n", regs->pc);
|
|
|
|
page = sysreg_read(PTBR);
|
|
printk(KERN_ALERT "ptbr = %08lx", page);
|
|
if (page) {
|
|
page = ((unsigned long *)page)[address >> 22];
|
|
printk(" pgd = %08lx", page);
|
|
if (page & _PAGE_PRESENT) {
|
|
page &= PAGE_MASK;
|
|
address &= 0x003ff000;
|
|
page = ((unsigned long *)__va(page))[address >> PAGE_SHIFT];
|
|
printk(" pte = %08lx\n", page);
|
|
}
|
|
}
|
|
die("\nOops", regs, ecr);
|
|
do_exit(SIGKILL);
|
|
|
|
/*
|
|
* We ran out of memory, or some other thing happened to us
|
|
* that made us unable to handle the page fault gracefully.
|
|
*/
|
|
out_of_memory:
|
|
printk("Out of memory\n");
|
|
up_read(&mm->mmap_sem);
|
|
if (current->pid == 1) {
|
|
yield();
|
|
down_read(&mm->mmap_sem);
|
|
goto survive;
|
|
}
|
|
printk("VM: Killing process %s\n", tsk->comm);
|
|
if (user_mode(regs))
|
|
do_exit(SIGKILL);
|
|
goto no_context;
|
|
|
|
do_sigbus:
|
|
up_read(&mm->mmap_sem);
|
|
|
|
/*
|
|
* Send a sigbus, regardless of whether we were in kernel or
|
|
* user mode.
|
|
*/
|
|
/* address, error_code, trap_no, ... */
|
|
#ifdef DEBUG
|
|
show_regs(regs);
|
|
dump_code(regs->pc);
|
|
#endif
|
|
pr_debug("Sending SIGBUS to PID %d...\n", tsk->pid);
|
|
force_sig(SIGBUS, tsk);
|
|
|
|
/* Kernel mode? Handle exceptions or die */
|
|
if (!user_mode(regs))
|
|
goto no_context;
|
|
}
|
|
|
|
asmlinkage void do_bus_error(unsigned long addr, int write_access,
|
|
struct pt_regs *regs)
|
|
{
|
|
printk(KERN_ALERT
|
|
"Bus error at physical address 0x%08lx (%s access)\n",
|
|
addr, write_access ? "write" : "read");
|
|
printk(KERN_INFO "DTLB dump:\n");
|
|
dump_dtlb();
|
|
die("Bus Error", regs, write_access);
|
|
do_exit(SIGKILL);
|
|
}
|
|
|
|
/*
|
|
* This functionality is currently not possible to implement because
|
|
* we're using segmentation to ensure a fixed mapping of the kernel
|
|
* virtual address space.
|
|
*
|
|
* It would be possible to implement this, but it would require us to
|
|
* disable segmentation at startup and load the kernel mappings into
|
|
* the TLB like any other pages. There will be lots of trickery to
|
|
* avoid recursive invocation of the TLB miss handler, though...
|
|
*/
|
|
#ifdef CONFIG_DEBUG_PAGEALLOC
|
|
void kernel_map_pages(struct page *page, int numpages, int enable)
|
|
{
|
|
|
|
}
|
|
EXPORT_SYMBOL(kernel_map_pages);
|
|
#endif
|