kernel_optimize_test/drivers/iio/dac/ad5064.c
Greg Kroah-Hartman ef994fda44 First set of IIO new drivers and cleanup for the 3.10 cycle.
New stuff
 
 1) Add OF support for specifying mappings between iio devices and their
    in kernel consumers.
 2) Driver for AD7923 (extra functionality and support for ad7904, ad7914 and
    ad7924 added later in series)
 3) Driver for Exynos adc (dt suppor for phy added later in series).
 4) Make iio_push_event save IRQ context - necessary if it is to be used
    within an interrupt handler.  Users of this functionality to follow.
 5) For iio use the device tree node name to provide the hwmon name attribute
    if available.
 
 Removal and moves out of staging
 
 1) Drop the adt7410 driver from IIO now that there is a hmwon driver with
    equivalent support. This device is very much targeted at hardware
    monitoring so hwmon is a more appropriate host for the driver.
 2) Move iio_hwmon driver to drivers/hwmon.
 
 Cleanups
 
 1) Minor cleanup in ST common library.
 2) Large set of patches to break the info_mask element which previously used
 odd and even bits to specify if a channel attribute was either shared across
 similar channels or specific to only one.  Now we have two bitmaps, one for
 those parameters that are specific to this channel and one for those shared
 by all channels with the same type as this one.  This has no effect on the
 userspace abi. It simplifies the core code and provides more space for new
 channel parameters. It has been on the todo list for a long time!
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.19 (GNU/Linux)
 
 iQIcBAABAgAGBQJRTYe3AAoJEFSFNJnE9BaIxfEQAJDxF7GZKG3pJhJIrN40d42y
 DZD9Tf28Z5Ynd70gA8lITzwyBuj2r56/xpuewR9SH0nsV+s8zUplUoqBg1B5eIOO
 WUg/ojzVjJISyrg+egfkNmwqv7LFkINj9CJfrf2xv99OwjQeCqMc9zHQ1JRK+tl/
 57Z1zCZFX3B2dKDalH8sGcuGFRB+TturctvSAO2FTKcQ6/8FmubXD7+4zamn7+lH
 vsD6+kRhIQ3yZJSUhLMzbueXfdF9OZe3n7MTbCtLhb76JOLmkGAqnSo0APEndBTb
 PyS3DPKFxWJZTzzyKVoEW4pdU/fx2JfOZs101TFDXxh5p1hcALP8zwJQ3CqotYT6
 kosGlyrPKaAiqkkGURqsUQvjjfcvNuhFQY2IMHQxFhEIRLYHZTLPJGBV1oBPQ4sQ
 /OAOgu+Uut45ZeHAo1bTXcykO8GzvYxvQ18LUY1Jo/5Iqid0nRxVL6CkrA6Uw+z4
 Tu4/z3ceeBAx1B34/ty58rkX+Xe6CxPPbzSgCtrV6oMpLZhQegHareItnhxbNRFN
 oO9CULLXf6nyFhoYFbZRi+FStfsvdLKjfoDshHNp2kcpqsrTDyjwaTjjTQ4u30MD
 VVo7lwVmm0ASpOXyVDPIw7ft/HHUDPH8xz7tPhhZHX5uvs74GCHg0WjZ48WMgv/N
 Jk6lERQpZ2x6RYe4eH9+
 =99m9
 -----END PGP SIGNATURE-----

Merge tag 'iio-for-3.10a' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23/iio into staging-next

Jonathan writes:

First set of IIO new drivers and cleanup for the 3.10 cycle.

New stuff

1) Add OF support for specifying mappings between iio devices and their
   in kernel consumers.
2) Driver for AD7923 (extra functionality and support for ad7904, ad7914 and
   ad7924 added later in series)
3) Driver for Exynos adc (dt suppor for phy added later in series).
4) Make iio_push_event save IRQ context - necessary if it is to be used
   within an interrupt handler.  Users of this functionality to follow.
5) For iio use the device tree node name to provide the hwmon name attribute
   if available.

Removal and moves out of staging

1) Drop the adt7410 driver from IIO now that there is a hmwon driver with
   equivalent support. This device is very much targeted at hardware
   monitoring so hwmon is a more appropriate host for the driver.
2) Move iio_hwmon driver to drivers/hwmon.

Cleanups

1) Minor cleanup in ST common library.
2) Large set of patches to break the info_mask element which previously used
odd and even bits to specify if a channel attribute was either shared across
similar channels or specific to only one.  Now we have two bitmaps, one for
those parameters that are specific to this channel and one for those shared
by all channels with the same type as this one.  This has no effect on the
userspace abi. It simplifies the core code and provides more space for new
channel parameters. It has been on the todo list for a long time!

Conflicts:
	drivers/iio/dac/ad5064.c
2013-03-25 10:50:03 -07:00

689 lines
16 KiB
C

/*
* AD5024, AD5025, AD5044, AD5045, AD5064, AD5064-1, AD5065, AD5628, AD5629R,
* AD5648, AD5666, AD5668, AD5669R Digital to analog converters driver
*
* Copyright 2011 Analog Devices Inc.
*
* Licensed under the GPL-2.
*/
#include <linux/device.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/spi/spi.h>
#include <linux/i2c.h>
#include <linux/slab.h>
#include <linux/sysfs.h>
#include <linux/regulator/consumer.h>
#include <asm/unaligned.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#define AD5064_MAX_DAC_CHANNELS 8
#define AD5064_MAX_VREFS 4
#define AD5064_ADDR(x) ((x) << 20)
#define AD5064_CMD(x) ((x) << 24)
#define AD5064_ADDR_ALL_DAC 0xF
#define AD5064_CMD_WRITE_INPUT_N 0x0
#define AD5064_CMD_UPDATE_DAC_N 0x1
#define AD5064_CMD_WRITE_INPUT_N_UPDATE_ALL 0x2
#define AD5064_CMD_WRITE_INPUT_N_UPDATE_N 0x3
#define AD5064_CMD_POWERDOWN_DAC 0x4
#define AD5064_CMD_CLEAR 0x5
#define AD5064_CMD_LDAC_MASK 0x6
#define AD5064_CMD_RESET 0x7
#define AD5064_CMD_CONFIG 0x8
#define AD5064_CONFIG_DAISY_CHAIN_ENABLE BIT(1)
#define AD5064_CONFIG_INT_VREF_ENABLE BIT(0)
#define AD5064_LDAC_PWRDN_NONE 0x0
#define AD5064_LDAC_PWRDN_1K 0x1
#define AD5064_LDAC_PWRDN_100K 0x2
#define AD5064_LDAC_PWRDN_3STATE 0x3
/**
* struct ad5064_chip_info - chip specific information
* @shared_vref: whether the vref supply is shared between channels
* @internal_vref: internal reference voltage. 0 if the chip has no internal
* vref.
* @channel: channel specification
* @num_channels: number of channels
*/
struct ad5064_chip_info {
bool shared_vref;
unsigned long internal_vref;
const struct iio_chan_spec *channels;
unsigned int num_channels;
};
struct ad5064_state;
typedef int (*ad5064_write_func)(struct ad5064_state *st, unsigned int cmd,
unsigned int addr, unsigned int val);
/**
* struct ad5064_state - driver instance specific data
* @dev: the device for this driver instance
* @chip_info: chip model specific constants, available modes etc
* @vref_reg: vref supply regulators
* @pwr_down: whether channel is powered down
* @pwr_down_mode: channel's current power down mode
* @dac_cache: current DAC raw value (chip does not support readback)
* @use_internal_vref: set to true if the internal reference voltage should be
* used.
* @write: register write callback
* @data: i2c/spi transfer buffers
*/
struct ad5064_state {
struct device *dev;
const struct ad5064_chip_info *chip_info;
struct regulator_bulk_data vref_reg[AD5064_MAX_VREFS];
bool pwr_down[AD5064_MAX_DAC_CHANNELS];
u8 pwr_down_mode[AD5064_MAX_DAC_CHANNELS];
unsigned int dac_cache[AD5064_MAX_DAC_CHANNELS];
bool use_internal_vref;
ad5064_write_func write;
/*
* DMA (thus cache coherency maintenance) requires the
* transfer buffers to live in their own cache lines.
*/
union {
u8 i2c[3];
__be32 spi;
} data ____cacheline_aligned;
};
enum ad5064_type {
ID_AD5024,
ID_AD5025,
ID_AD5044,
ID_AD5045,
ID_AD5064,
ID_AD5064_1,
ID_AD5065,
ID_AD5628_1,
ID_AD5628_2,
ID_AD5648_1,
ID_AD5648_2,
ID_AD5666_1,
ID_AD5666_2,
ID_AD5668_1,
ID_AD5668_2,
};
static int ad5064_write(struct ad5064_state *st, unsigned int cmd,
unsigned int addr, unsigned int val, unsigned int shift)
{
val <<= shift;
return st->write(st, cmd, addr, val);
}
static int ad5064_sync_powerdown_mode(struct ad5064_state *st,
const struct iio_chan_spec *chan)
{
unsigned int val;
int ret;
val = (0x1 << chan->address);
if (st->pwr_down[chan->channel])
val |= st->pwr_down_mode[chan->channel] << 8;
ret = ad5064_write(st, AD5064_CMD_POWERDOWN_DAC, 0, val, 0);
return ret;
}
static const char * const ad5064_powerdown_modes[] = {
"1kohm_to_gnd",
"100kohm_to_gnd",
"three_state",
};
static int ad5064_get_powerdown_mode(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan)
{
struct ad5064_state *st = iio_priv(indio_dev);
return st->pwr_down_mode[chan->channel] - 1;
}
static int ad5064_set_powerdown_mode(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan, unsigned int mode)
{
struct ad5064_state *st = iio_priv(indio_dev);
int ret;
mutex_lock(&indio_dev->mlock);
st->pwr_down_mode[chan->channel] = mode + 1;
ret = ad5064_sync_powerdown_mode(st, chan);
mutex_unlock(&indio_dev->mlock);
return ret;
}
static const struct iio_enum ad5064_powerdown_mode_enum = {
.items = ad5064_powerdown_modes,
.num_items = ARRAY_SIZE(ad5064_powerdown_modes),
.get = ad5064_get_powerdown_mode,
.set = ad5064_set_powerdown_mode,
};
static ssize_t ad5064_read_dac_powerdown(struct iio_dev *indio_dev,
uintptr_t private, const struct iio_chan_spec *chan, char *buf)
{
struct ad5064_state *st = iio_priv(indio_dev);
return sprintf(buf, "%d\n", st->pwr_down[chan->channel]);
}
static ssize_t ad5064_write_dac_powerdown(struct iio_dev *indio_dev,
uintptr_t private, const struct iio_chan_spec *chan, const char *buf,
size_t len)
{
struct ad5064_state *st = iio_priv(indio_dev);
bool pwr_down;
int ret;
ret = strtobool(buf, &pwr_down);
if (ret)
return ret;
mutex_lock(&indio_dev->mlock);
st->pwr_down[chan->channel] = pwr_down;
ret = ad5064_sync_powerdown_mode(st, chan);
mutex_unlock(&indio_dev->mlock);
return ret ? ret : len;
}
static int ad5064_get_vref(struct ad5064_state *st,
struct iio_chan_spec const *chan)
{
unsigned int i;
if (st->use_internal_vref)
return st->chip_info->internal_vref;
i = st->chip_info->shared_vref ? 0 : chan->channel;
return regulator_get_voltage(st->vref_reg[i].consumer);
}
static int ad5064_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val,
int *val2,
long m)
{
struct ad5064_state *st = iio_priv(indio_dev);
int scale_uv;
switch (m) {
case IIO_CHAN_INFO_RAW:
*val = st->dac_cache[chan->channel];
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
scale_uv = ad5064_get_vref(st, chan);
if (scale_uv < 0)
return scale_uv;
scale_uv = (scale_uv * 100) >> chan->scan_type.realbits;
*val = scale_uv / 100000;
*val2 = (scale_uv % 100000) * 10;
return IIO_VAL_INT_PLUS_MICRO;
default:
break;
}
return -EINVAL;
}
static int ad5064_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int val, int val2, long mask)
{
struct ad5064_state *st = iio_priv(indio_dev);
int ret;
switch (mask) {
case IIO_CHAN_INFO_RAW:
if (val >= (1 << chan->scan_type.realbits) || val < 0)
return -EINVAL;
mutex_lock(&indio_dev->mlock);
ret = ad5064_write(st, AD5064_CMD_WRITE_INPUT_N_UPDATE_N,
chan->address, val, chan->scan_type.shift);
if (ret == 0)
st->dac_cache[chan->channel] = val;
mutex_unlock(&indio_dev->mlock);
break;
default:
ret = -EINVAL;
}
return ret;
}
static const struct iio_info ad5064_info = {
.read_raw = ad5064_read_raw,
.write_raw = ad5064_write_raw,
.driver_module = THIS_MODULE,
};
static const struct iio_chan_spec_ext_info ad5064_ext_info[] = {
{
.name = "powerdown",
.read = ad5064_read_dac_powerdown,
.write = ad5064_write_dac_powerdown,
},
IIO_ENUM("powerdown_mode", false, &ad5064_powerdown_mode_enum),
IIO_ENUM_AVAILABLE("powerdown_mode", &ad5064_powerdown_mode_enum),
{ },
};
#define AD5064_CHANNEL(chan, addr, bits) { \
.type = IIO_VOLTAGE, \
.indexed = 1, \
.output = 1, \
.channel = (chan), \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
BIT(IIO_CHAN_INFO_SCALE), \
.address = addr, \
.scan_type = IIO_ST('u', (bits), 16, 20 - (bits)), \
.ext_info = ad5064_ext_info, \
}
#define DECLARE_AD5064_CHANNELS(name, bits) \
const struct iio_chan_spec name[] = { \
AD5064_CHANNEL(0, 0, bits), \
AD5064_CHANNEL(1, 1, bits), \
AD5064_CHANNEL(2, 2, bits), \
AD5064_CHANNEL(3, 3, bits), \
AD5064_CHANNEL(4, 4, bits), \
AD5064_CHANNEL(5, 5, bits), \
AD5064_CHANNEL(6, 6, bits), \
AD5064_CHANNEL(7, 7, bits), \
}
#define DECLARE_AD5065_CHANNELS(name, bits) \
const struct iio_chan_spec name[] = { \
AD5064_CHANNEL(0, 0, bits), \
AD5064_CHANNEL(1, 3, bits), \
}
static DECLARE_AD5064_CHANNELS(ad5024_channels, 12);
static DECLARE_AD5064_CHANNELS(ad5044_channels, 14);
static DECLARE_AD5064_CHANNELS(ad5064_channels, 16);
static DECLARE_AD5065_CHANNELS(ad5025_channels, 12);
static DECLARE_AD5065_CHANNELS(ad5045_channels, 14);
static DECLARE_AD5065_CHANNELS(ad5065_channels, 16);
static const struct ad5064_chip_info ad5064_chip_info_tbl[] = {
[ID_AD5024] = {
.shared_vref = false,
.channels = ad5024_channels,
.num_channels = 4,
},
[ID_AD5025] = {
.shared_vref = false,
.channels = ad5025_channels,
.num_channels = 2,
},
[ID_AD5044] = {
.shared_vref = false,
.channels = ad5044_channels,
.num_channels = 4,
},
[ID_AD5045] = {
.shared_vref = false,
.channels = ad5045_channels,
.num_channels = 2,
},
[ID_AD5064] = {
.shared_vref = false,
.channels = ad5064_channels,
.num_channels = 4,
},
[ID_AD5064_1] = {
.shared_vref = true,
.channels = ad5064_channels,
.num_channels = 4,
},
[ID_AD5065] = {
.shared_vref = false,
.channels = ad5065_channels,
.num_channels = 2,
},
[ID_AD5628_1] = {
.shared_vref = true,
.internal_vref = 2500000,
.channels = ad5024_channels,
.num_channels = 8,
},
[ID_AD5628_2] = {
.shared_vref = true,
.internal_vref = 5000000,
.channels = ad5024_channels,
.num_channels = 8,
},
[ID_AD5648_1] = {
.shared_vref = true,
.internal_vref = 2500000,
.channels = ad5044_channels,
.num_channels = 8,
},
[ID_AD5648_2] = {
.shared_vref = true,
.internal_vref = 5000000,
.channels = ad5044_channels,
.num_channels = 8,
},
[ID_AD5666_1] = {
.shared_vref = true,
.internal_vref = 2500000,
.channels = ad5064_channels,
.num_channels = 4,
},
[ID_AD5666_2] = {
.shared_vref = true,
.internal_vref = 5000000,
.channels = ad5064_channels,
.num_channels = 4,
},
[ID_AD5668_1] = {
.shared_vref = true,
.internal_vref = 2500000,
.channels = ad5064_channels,
.num_channels = 8,
},
[ID_AD5668_2] = {
.shared_vref = true,
.internal_vref = 5000000,
.channels = ad5064_channels,
.num_channels = 8,
},
};
static inline unsigned int ad5064_num_vref(struct ad5064_state *st)
{
return st->chip_info->shared_vref ? 1 : st->chip_info->num_channels;
}
static const char * const ad5064_vref_names[] = {
"vrefA",
"vrefB",
"vrefC",
"vrefD",
};
static const char * const ad5064_vref_name(struct ad5064_state *st,
unsigned int vref)
{
return st->chip_info->shared_vref ? "vref" : ad5064_vref_names[vref];
}
static int ad5064_probe(struct device *dev, enum ad5064_type type,
const char *name, ad5064_write_func write)
{
struct iio_dev *indio_dev;
struct ad5064_state *st;
unsigned int midscale;
unsigned int i;
int ret;
indio_dev = iio_device_alloc(sizeof(*st));
if (indio_dev == NULL)
return -ENOMEM;
st = iio_priv(indio_dev);
dev_set_drvdata(dev, indio_dev);
st->chip_info = &ad5064_chip_info_tbl[type];
st->dev = dev;
st->write = write;
for (i = 0; i < ad5064_num_vref(st); ++i)
st->vref_reg[i].supply = ad5064_vref_name(st, i);
ret = regulator_bulk_get(dev, ad5064_num_vref(st),
st->vref_reg);
if (ret) {
if (!st->chip_info->internal_vref)
goto error_free;
st->use_internal_vref = true;
ret = ad5064_write(st, AD5064_CMD_CONFIG, 0,
AD5064_CONFIG_INT_VREF_ENABLE, 0);
if (ret) {
dev_err(dev, "Failed to enable internal vref: %d\n",
ret);
goto error_free;
}
} else {
ret = regulator_bulk_enable(ad5064_num_vref(st), st->vref_reg);
if (ret)
goto error_free_reg;
}
indio_dev->dev.parent = dev;
indio_dev->name = name;
indio_dev->info = &ad5064_info;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->channels = st->chip_info->channels;
indio_dev->num_channels = st->chip_info->num_channels;
midscale = (1 << indio_dev->channels[0].scan_type.realbits) / 2;
for (i = 0; i < st->chip_info->num_channels; ++i) {
st->pwr_down_mode[i] = AD5064_LDAC_PWRDN_1K;
st->dac_cache[i] = midscale;
}
ret = iio_device_register(indio_dev);
if (ret)
goto error_disable_reg;
return 0;
error_disable_reg:
if (!st->use_internal_vref)
regulator_bulk_disable(ad5064_num_vref(st), st->vref_reg);
error_free_reg:
if (!st->use_internal_vref)
regulator_bulk_free(ad5064_num_vref(st), st->vref_reg);
error_free:
iio_device_free(indio_dev);
return ret;
}
static int ad5064_remove(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct ad5064_state *st = iio_priv(indio_dev);
iio_device_unregister(indio_dev);
if (!st->use_internal_vref) {
regulator_bulk_disable(ad5064_num_vref(st), st->vref_reg);
regulator_bulk_free(ad5064_num_vref(st), st->vref_reg);
}
iio_device_free(indio_dev);
return 0;
}
#if IS_ENABLED(CONFIG_SPI_MASTER)
static int ad5064_spi_write(struct ad5064_state *st, unsigned int cmd,
unsigned int addr, unsigned int val)
{
struct spi_device *spi = to_spi_device(st->dev);
st->data.spi = cpu_to_be32(AD5064_CMD(cmd) | AD5064_ADDR(addr) | val);
return spi_write(spi, &st->data.spi, sizeof(st->data.spi));
}
static int ad5064_spi_probe(struct spi_device *spi)
{
const struct spi_device_id *id = spi_get_device_id(spi);
return ad5064_probe(&spi->dev, id->driver_data, id->name,
ad5064_spi_write);
}
static int ad5064_spi_remove(struct spi_device *spi)
{
return ad5064_remove(&spi->dev);
}
static const struct spi_device_id ad5064_spi_ids[] = {
{"ad5024", ID_AD5024},
{"ad5025", ID_AD5025},
{"ad5044", ID_AD5044},
{"ad5045", ID_AD5045},
{"ad5064", ID_AD5064},
{"ad5064-1", ID_AD5064_1},
{"ad5065", ID_AD5065},
{"ad5628-1", ID_AD5628_1},
{"ad5628-2", ID_AD5628_2},
{"ad5648-1", ID_AD5648_1},
{"ad5648-2", ID_AD5648_2},
{"ad5666-1", ID_AD5666_1},
{"ad5666-2", ID_AD5666_2},
{"ad5668-1", ID_AD5668_1},
{"ad5668-2", ID_AD5668_2},
{"ad5668-3", ID_AD5668_2}, /* similar enough to ad5668-2 */
{}
};
MODULE_DEVICE_TABLE(spi, ad5064_spi_ids);
static struct spi_driver ad5064_spi_driver = {
.driver = {
.name = "ad5064",
.owner = THIS_MODULE,
},
.probe = ad5064_spi_probe,
.remove = ad5064_spi_remove,
.id_table = ad5064_spi_ids,
};
static int __init ad5064_spi_register_driver(void)
{
return spi_register_driver(&ad5064_spi_driver);
}
static void ad5064_spi_unregister_driver(void)
{
spi_unregister_driver(&ad5064_spi_driver);
}
#else
static inline int ad5064_spi_register_driver(void) { return 0; }
static inline void ad5064_spi_unregister_driver(void) { }
#endif
#if IS_ENABLED(CONFIG_I2C)
static int ad5064_i2c_write(struct ad5064_state *st, unsigned int cmd,
unsigned int addr, unsigned int val)
{
struct i2c_client *i2c = to_i2c_client(st->dev);
st->data.i2c[0] = (cmd << 4) | addr;
put_unaligned_be16(val, &st->data.i2c[1]);
return i2c_master_send(i2c, st->data.i2c, 3);
}
static int ad5064_i2c_probe(struct i2c_client *i2c,
const struct i2c_device_id *id)
{
return ad5064_probe(&i2c->dev, id->driver_data, id->name,
ad5064_i2c_write);
}
static int ad5064_i2c_remove(struct i2c_client *i2c)
{
return ad5064_remove(&i2c->dev);
}
static const struct i2c_device_id ad5064_i2c_ids[] = {
{"ad5629-1", ID_AD5628_1},
{"ad5629-2", ID_AD5628_2},
{"ad5629-3", ID_AD5628_2}, /* similar enough to ad5629-2 */
{"ad5669-1", ID_AD5668_1},
{"ad5669-2", ID_AD5668_2},
{"ad5669-3", ID_AD5668_2}, /* similar enough to ad5669-2 */
{}
};
MODULE_DEVICE_TABLE(i2c, ad5064_i2c_ids);
static struct i2c_driver ad5064_i2c_driver = {
.driver = {
.name = "ad5064",
.owner = THIS_MODULE,
},
.probe = ad5064_i2c_probe,
.remove = ad5064_i2c_remove,
.id_table = ad5064_i2c_ids,
};
static int __init ad5064_i2c_register_driver(void)
{
return i2c_add_driver(&ad5064_i2c_driver);
}
static void __exit ad5064_i2c_unregister_driver(void)
{
i2c_del_driver(&ad5064_i2c_driver);
}
#else
static inline int ad5064_i2c_register_driver(void) { return 0; }
static inline void ad5064_i2c_unregister_driver(void) { }
#endif
static int __init ad5064_init(void)
{
int ret;
ret = ad5064_spi_register_driver();
if (ret)
return ret;
ret = ad5064_i2c_register_driver();
if (ret) {
ad5064_spi_unregister_driver();
return ret;
}
return 0;
}
module_init(ad5064_init);
static void __exit ad5064_exit(void)
{
ad5064_i2c_unregister_driver();
ad5064_spi_unregister_driver();
}
module_exit(ad5064_exit);
MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
MODULE_DESCRIPTION("Analog Devices AD5024 and similar multi-channel DACs");
MODULE_LICENSE("GPL v2");