forked from luck/tmp_suning_uos_patched
6c8a53c9e6
Pull perf changes from Ingo Molnar: "Core kernel changes: - One of the more interesting features in this cycle is the ability to attach eBPF programs (user-defined, sandboxed bytecode executed by the kernel) to kprobes. This allows user-defined instrumentation on a live kernel image that can never crash, hang or interfere with the kernel negatively. (Right now it's limited to root-only, but in the future we might allow unprivileged use as well.) (Alexei Starovoitov) - Another non-trivial feature is per event clockid support: this allows, amongst other things, the selection of different clock sources for event timestamps traced via perf. This feature is sought by people who'd like to merge perf generated events with external events that were measured with different clocks: - cluster wide profiling - for system wide tracing with user-space events, - JIT profiling events etc. Matching perf tooling support is added as well, available via the -k, --clockid <clockid> parameter to perf record et al. (Peter Zijlstra) Hardware enablement kernel changes: - x86 Intel Processor Trace (PT) support: which is a hardware tracer on steroids, available on Broadwell CPUs. The hardware trace stream is directly output into the user-space ring-buffer, using the 'AUX' data format extension that was added to the perf core to support hardware constraints such as the necessity to have the tracing buffer physically contiguous. This patch-set was developed for two years and this is the result. A simple way to make use of this is to use BTS tracing, the PT driver emulates BTS output - available via the 'intel_bts' PMU. More explicit PT specific tooling support is in the works as well - will probably be ready by 4.2. (Alexander Shishkin, Peter Zijlstra) - x86 Intel Cache QoS Monitoring (CQM) support: this is a hardware feature of Intel Xeon CPUs that allows the measurement and allocation/partitioning of caches to individual workloads. These kernel changes expose the measurement side as a new PMU driver, which exposes various QoS related PMU events. (The partitioning change is work in progress and is planned to be merged as a cgroup extension.) (Matt Fleming, Peter Zijlstra; CPU feature detection by Peter P Waskiewicz Jr) - x86 Intel Haswell LBR call stack support: this is a new Haswell feature that allows the hardware recording of call chains, plus tooling support. To activate this feature you have to enable it via the new 'lbr' call-graph recording option: perf record --call-graph lbr perf report or: perf top --call-graph lbr This hardware feature is a lot faster than stack walk or dwarf based unwinding, but has some limitations: - It reuses the current LBR facility, so LBR call stack and branch record can not be enabled at the same time. - It is only available for user-space callchains. (Yan, Zheng) - x86 Intel Broadwell CPU support and various event constraints and event table fixes for earlier models. (Andi Kleen) - x86 Intel HT CPUs event scheduling workarounds. This is a complex CPU bug affecting the SNB,IVB,HSW families that results in counter value corruption. The mitigation code is automatically enabled and is transparent. (Maria Dimakopoulou, Stephane Eranian) The perf tooling side had a ton of changes in this cycle as well, so I'm only able to list the user visible changes here, in addition to the tooling changes outlined above: User visible changes affecting all tools: - Improve support of compressed kernel modules (Jiri Olsa) - Save DSO loading errno to better report errors (Arnaldo Carvalho de Melo) - Bash completion for subcommands (Yunlong Song) - Add 'I' event modifier for perf_event_attr.exclude_idle bit (Jiri Olsa) - Support missing -f to override perf.data file ownership. (Yunlong Song) - Show the first event with an invalid filter (David Ahern, Arnaldo Carvalho de Melo) User visible changes in individual tools: 'perf data': New tool for converting perf.data to other formats, initially for the CTF (Common Trace Format) from LTTng (Jiri Olsa, Sebastian Siewior) 'perf diff': Add --kallsyms option (David Ahern) 'perf list': Allow listing events with 'tracepoint' prefix (Yunlong Song) Sort the output of the command (Yunlong Song) 'perf kmem': Respect -i option (Jiri Olsa) Print big numbers using thousands' group (Namhyung Kim) Allow -v option (Namhyung Kim) Fix alignment of slab result table (Namhyung Kim) 'perf probe': Support multiple probes on different binaries on the same command line (Masami Hiramatsu) Support unnamed union/structure members data collection. (Masami Hiramatsu) Check kprobes blacklist when adding new events. (Masami Hiramatsu) 'perf record': Teach 'perf record' about perf_event_attr.clockid (Peter Zijlstra) Support recording running/enabled time (Andi Kleen) 'perf sched': Improve the performance of 'perf sched replay' on high CPU core count machines (Yunlong Song) 'perf report' and 'perf top': Allow annotating entries in callchains in the hists browser (Arnaldo Carvalho de Melo) Indicate which callchain entries are annotated in the TUI hists browser (Arnaldo Carvalho de Melo) Add pid/tid filtering to 'report' and 'script' commands (David Ahern) Consider PERF_RECORD_ events with cpumode == 0 in 'perf top', removing one cause of long term memory usage buildup, i.e. not processing PERF_RECORD_EXIT events (Arnaldo Carvalho de Melo) 'perf stat': Report unsupported events properly (Suzuki K. Poulose) Output running time and run/enabled ratio in CSV mode (Andi Kleen) 'perf trace': Handle legacy syscalls tracepoints (David Ahern, Arnaldo Carvalho de Melo) Only insert blank duration bracket when tracing syscalls (Arnaldo Carvalho de Melo) Filter out the trace pid when no threads are specified (Arnaldo Carvalho de Melo) Dump stack on segfaults (Arnaldo Carvalho de Melo) No need to explicitely enable evsels for workload started from perf, let it be enabled via perf_event_attr.enable_on_exec, removing some events that take place in the 'perf trace' before a workload is really started by it. (Arnaldo Carvalho de Melo) Allow mixing with tracepoints and suppressing plain syscalls. (Arnaldo Carvalho de Melo) There's also been a ton of infrastructure work done, such as the split-out of perf's build system into tools/build/ and other changes - see the shortlog and changelog for details" * 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (358 commits) perf/x86/intel/pt: Clean up the control flow in pt_pmu_hw_init() perf evlist: Fix type for references to data_head/tail perf probe: Check the orphaned -x option perf probe: Support multiple probes on different binaries perf buildid-list: Fix segfault when show DSOs with hits perf tools: Fix cross-endian analysis perf tools: Fix error path to do closedir() when synthesizing threads perf tools: Fix synthesizing fork_event.ppid for non-main thread perf tools: Add 'I' event modifier for exclude_idle bit perf report: Don't call map__kmap if map is NULL. perf tests: Fix attr tests perf probe: Fix ARM 32 building error perf tools: Merge all perf_event_attr print functions perf record: Add clockid parameter perf sched replay: Use replay_repeat to calculate the runavg of cpu usage instead of the default value 10 perf sched replay: Support using -f to override perf.data file ownership perf sched replay: Fix the EMFILE error caused by the limitation of the maximum open files perf sched replay: Handle the dead halt of sem_wait when create_tasks() fails for any task perf sched replay: Fix the segmentation fault problem caused by pr_err in threads perf sched replay: Realloc the memory of pid_to_task stepwise to adapt to the different pid_max configurations ...
978 lines
24 KiB
C
978 lines
24 KiB
C
#ifndef _ASM_X86_PROCESSOR_H
|
|
#define _ASM_X86_PROCESSOR_H
|
|
|
|
#include <asm/processor-flags.h>
|
|
|
|
/* Forward declaration, a strange C thing */
|
|
struct task_struct;
|
|
struct mm_struct;
|
|
|
|
#include <asm/vm86.h>
|
|
#include <asm/math_emu.h>
|
|
#include <asm/segment.h>
|
|
#include <asm/types.h>
|
|
#include <asm/sigcontext.h>
|
|
#include <asm/current.h>
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/page.h>
|
|
#include <asm/pgtable_types.h>
|
|
#include <asm/percpu.h>
|
|
#include <asm/msr.h>
|
|
#include <asm/desc_defs.h>
|
|
#include <asm/nops.h>
|
|
#include <asm/special_insns.h>
|
|
|
|
#include <linux/personality.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/threads.h>
|
|
#include <linux/math64.h>
|
|
#include <linux/err.h>
|
|
#include <linux/irqflags.h>
|
|
|
|
/*
|
|
* We handle most unaligned accesses in hardware. On the other hand
|
|
* unaligned DMA can be quite expensive on some Nehalem processors.
|
|
*
|
|
* Based on this we disable the IP header alignment in network drivers.
|
|
*/
|
|
#define NET_IP_ALIGN 0
|
|
|
|
#define HBP_NUM 4
|
|
/*
|
|
* Default implementation of macro that returns current
|
|
* instruction pointer ("program counter").
|
|
*/
|
|
static inline void *current_text_addr(void)
|
|
{
|
|
void *pc;
|
|
|
|
asm volatile("mov $1f, %0; 1:":"=r" (pc));
|
|
|
|
return pc;
|
|
}
|
|
|
|
#ifdef CONFIG_X86_VSMP
|
|
# define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT)
|
|
# define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT)
|
|
#else
|
|
# define ARCH_MIN_TASKALIGN 16
|
|
# define ARCH_MIN_MMSTRUCT_ALIGN 0
|
|
#endif
|
|
|
|
enum tlb_infos {
|
|
ENTRIES,
|
|
NR_INFO
|
|
};
|
|
|
|
extern u16 __read_mostly tlb_lli_4k[NR_INFO];
|
|
extern u16 __read_mostly tlb_lli_2m[NR_INFO];
|
|
extern u16 __read_mostly tlb_lli_4m[NR_INFO];
|
|
extern u16 __read_mostly tlb_lld_4k[NR_INFO];
|
|
extern u16 __read_mostly tlb_lld_2m[NR_INFO];
|
|
extern u16 __read_mostly tlb_lld_4m[NR_INFO];
|
|
extern u16 __read_mostly tlb_lld_1g[NR_INFO];
|
|
|
|
/*
|
|
* CPU type and hardware bug flags. Kept separately for each CPU.
|
|
* Members of this structure are referenced in head.S, so think twice
|
|
* before touching them. [mj]
|
|
*/
|
|
|
|
struct cpuinfo_x86 {
|
|
__u8 x86; /* CPU family */
|
|
__u8 x86_vendor; /* CPU vendor */
|
|
__u8 x86_model;
|
|
__u8 x86_mask;
|
|
#ifdef CONFIG_X86_32
|
|
char wp_works_ok; /* It doesn't on 386's */
|
|
|
|
/* Problems on some 486Dx4's and old 386's: */
|
|
char rfu;
|
|
char pad0;
|
|
char pad1;
|
|
#else
|
|
/* Number of 4K pages in DTLB/ITLB combined(in pages): */
|
|
int x86_tlbsize;
|
|
#endif
|
|
__u8 x86_virt_bits;
|
|
__u8 x86_phys_bits;
|
|
/* CPUID returned core id bits: */
|
|
__u8 x86_coreid_bits;
|
|
/* Max extended CPUID function supported: */
|
|
__u32 extended_cpuid_level;
|
|
/* Maximum supported CPUID level, -1=no CPUID: */
|
|
int cpuid_level;
|
|
__u32 x86_capability[NCAPINTS + NBUGINTS];
|
|
char x86_vendor_id[16];
|
|
char x86_model_id[64];
|
|
/* in KB - valid for CPUS which support this call: */
|
|
int x86_cache_size;
|
|
int x86_cache_alignment; /* In bytes */
|
|
/* Cache QoS architectural values: */
|
|
int x86_cache_max_rmid; /* max index */
|
|
int x86_cache_occ_scale; /* scale to bytes */
|
|
int x86_power;
|
|
unsigned long loops_per_jiffy;
|
|
/* cpuid returned max cores value: */
|
|
u16 x86_max_cores;
|
|
u16 apicid;
|
|
u16 initial_apicid;
|
|
u16 x86_clflush_size;
|
|
/* number of cores as seen by the OS: */
|
|
u16 booted_cores;
|
|
/* Physical processor id: */
|
|
u16 phys_proc_id;
|
|
/* Core id: */
|
|
u16 cpu_core_id;
|
|
/* Compute unit id */
|
|
u8 compute_unit_id;
|
|
/* Index into per_cpu list: */
|
|
u16 cpu_index;
|
|
u32 microcode;
|
|
};
|
|
|
|
#define X86_VENDOR_INTEL 0
|
|
#define X86_VENDOR_CYRIX 1
|
|
#define X86_VENDOR_AMD 2
|
|
#define X86_VENDOR_UMC 3
|
|
#define X86_VENDOR_CENTAUR 5
|
|
#define X86_VENDOR_TRANSMETA 7
|
|
#define X86_VENDOR_NSC 8
|
|
#define X86_VENDOR_NUM 9
|
|
|
|
#define X86_VENDOR_UNKNOWN 0xff
|
|
|
|
/*
|
|
* capabilities of CPUs
|
|
*/
|
|
extern struct cpuinfo_x86 boot_cpu_data;
|
|
extern struct cpuinfo_x86 new_cpu_data;
|
|
|
|
extern struct tss_struct doublefault_tss;
|
|
extern __u32 cpu_caps_cleared[NCAPINTS];
|
|
extern __u32 cpu_caps_set[NCAPINTS];
|
|
|
|
#ifdef CONFIG_SMP
|
|
DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
|
|
#define cpu_data(cpu) per_cpu(cpu_info, cpu)
|
|
#else
|
|
#define cpu_info boot_cpu_data
|
|
#define cpu_data(cpu) boot_cpu_data
|
|
#endif
|
|
|
|
extern const struct seq_operations cpuinfo_op;
|
|
|
|
#define cache_line_size() (boot_cpu_data.x86_cache_alignment)
|
|
|
|
extern void cpu_detect(struct cpuinfo_x86 *c);
|
|
extern void fpu_detect(struct cpuinfo_x86 *c);
|
|
|
|
extern void early_cpu_init(void);
|
|
extern void identify_boot_cpu(void);
|
|
extern void identify_secondary_cpu(struct cpuinfo_x86 *);
|
|
extern void print_cpu_info(struct cpuinfo_x86 *);
|
|
void print_cpu_msr(struct cpuinfo_x86 *);
|
|
extern void init_scattered_cpuid_features(struct cpuinfo_x86 *c);
|
|
extern unsigned int init_intel_cacheinfo(struct cpuinfo_x86 *c);
|
|
extern void init_amd_cacheinfo(struct cpuinfo_x86 *c);
|
|
|
|
extern void detect_extended_topology(struct cpuinfo_x86 *c);
|
|
extern void detect_ht(struct cpuinfo_x86 *c);
|
|
|
|
#ifdef CONFIG_X86_32
|
|
extern int have_cpuid_p(void);
|
|
#else
|
|
static inline int have_cpuid_p(void)
|
|
{
|
|
return 1;
|
|
}
|
|
#endif
|
|
static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
|
|
unsigned int *ecx, unsigned int *edx)
|
|
{
|
|
/* ecx is often an input as well as an output. */
|
|
asm volatile("cpuid"
|
|
: "=a" (*eax),
|
|
"=b" (*ebx),
|
|
"=c" (*ecx),
|
|
"=d" (*edx)
|
|
: "0" (*eax), "2" (*ecx)
|
|
: "memory");
|
|
}
|
|
|
|
static inline void load_cr3(pgd_t *pgdir)
|
|
{
|
|
write_cr3(__pa(pgdir));
|
|
}
|
|
|
|
#ifdef CONFIG_X86_32
|
|
/* This is the TSS defined by the hardware. */
|
|
struct x86_hw_tss {
|
|
unsigned short back_link, __blh;
|
|
unsigned long sp0;
|
|
unsigned short ss0, __ss0h;
|
|
unsigned long sp1;
|
|
|
|
/*
|
|
* We don't use ring 1, so ss1 is a convenient scratch space in
|
|
* the same cacheline as sp0. We use ss1 to cache the value in
|
|
* MSR_IA32_SYSENTER_CS. When we context switch
|
|
* MSR_IA32_SYSENTER_CS, we first check if the new value being
|
|
* written matches ss1, and, if it's not, then we wrmsr the new
|
|
* value and update ss1.
|
|
*
|
|
* The only reason we context switch MSR_IA32_SYSENTER_CS is
|
|
* that we set it to zero in vm86 tasks to avoid corrupting the
|
|
* stack if we were to go through the sysenter path from vm86
|
|
* mode.
|
|
*/
|
|
unsigned short ss1; /* MSR_IA32_SYSENTER_CS */
|
|
|
|
unsigned short __ss1h;
|
|
unsigned long sp2;
|
|
unsigned short ss2, __ss2h;
|
|
unsigned long __cr3;
|
|
unsigned long ip;
|
|
unsigned long flags;
|
|
unsigned long ax;
|
|
unsigned long cx;
|
|
unsigned long dx;
|
|
unsigned long bx;
|
|
unsigned long sp;
|
|
unsigned long bp;
|
|
unsigned long si;
|
|
unsigned long di;
|
|
unsigned short es, __esh;
|
|
unsigned short cs, __csh;
|
|
unsigned short ss, __ssh;
|
|
unsigned short ds, __dsh;
|
|
unsigned short fs, __fsh;
|
|
unsigned short gs, __gsh;
|
|
unsigned short ldt, __ldth;
|
|
unsigned short trace;
|
|
unsigned short io_bitmap_base;
|
|
|
|
} __attribute__((packed));
|
|
#else
|
|
struct x86_hw_tss {
|
|
u32 reserved1;
|
|
u64 sp0;
|
|
u64 sp1;
|
|
u64 sp2;
|
|
u64 reserved2;
|
|
u64 ist[7];
|
|
u32 reserved3;
|
|
u32 reserved4;
|
|
u16 reserved5;
|
|
u16 io_bitmap_base;
|
|
|
|
} __attribute__((packed)) ____cacheline_aligned;
|
|
#endif
|
|
|
|
/*
|
|
* IO-bitmap sizes:
|
|
*/
|
|
#define IO_BITMAP_BITS 65536
|
|
#define IO_BITMAP_BYTES (IO_BITMAP_BITS/8)
|
|
#define IO_BITMAP_LONGS (IO_BITMAP_BYTES/sizeof(long))
|
|
#define IO_BITMAP_OFFSET offsetof(struct tss_struct, io_bitmap)
|
|
#define INVALID_IO_BITMAP_OFFSET 0x8000
|
|
|
|
struct tss_struct {
|
|
/*
|
|
* The hardware state:
|
|
*/
|
|
struct x86_hw_tss x86_tss;
|
|
|
|
/*
|
|
* The extra 1 is there because the CPU will access an
|
|
* additional byte beyond the end of the IO permission
|
|
* bitmap. The extra byte must be all 1 bits, and must
|
|
* be within the limit.
|
|
*/
|
|
unsigned long io_bitmap[IO_BITMAP_LONGS + 1];
|
|
|
|
/*
|
|
* Space for the temporary SYSENTER stack:
|
|
*/
|
|
unsigned long SYSENTER_stack[64];
|
|
|
|
} ____cacheline_aligned;
|
|
|
|
DECLARE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss);
|
|
|
|
#ifdef CONFIG_X86_32
|
|
DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
|
|
#endif
|
|
|
|
/*
|
|
* Save the original ist values for checking stack pointers during debugging
|
|
*/
|
|
struct orig_ist {
|
|
unsigned long ist[7];
|
|
};
|
|
|
|
#define MXCSR_DEFAULT 0x1f80
|
|
|
|
struct i387_fsave_struct {
|
|
u32 cwd; /* FPU Control Word */
|
|
u32 swd; /* FPU Status Word */
|
|
u32 twd; /* FPU Tag Word */
|
|
u32 fip; /* FPU IP Offset */
|
|
u32 fcs; /* FPU IP Selector */
|
|
u32 foo; /* FPU Operand Pointer Offset */
|
|
u32 fos; /* FPU Operand Pointer Selector */
|
|
|
|
/* 8*10 bytes for each FP-reg = 80 bytes: */
|
|
u32 st_space[20];
|
|
|
|
/* Software status information [not touched by FSAVE ]: */
|
|
u32 status;
|
|
};
|
|
|
|
struct i387_fxsave_struct {
|
|
u16 cwd; /* Control Word */
|
|
u16 swd; /* Status Word */
|
|
u16 twd; /* Tag Word */
|
|
u16 fop; /* Last Instruction Opcode */
|
|
union {
|
|
struct {
|
|
u64 rip; /* Instruction Pointer */
|
|
u64 rdp; /* Data Pointer */
|
|
};
|
|
struct {
|
|
u32 fip; /* FPU IP Offset */
|
|
u32 fcs; /* FPU IP Selector */
|
|
u32 foo; /* FPU Operand Offset */
|
|
u32 fos; /* FPU Operand Selector */
|
|
};
|
|
};
|
|
u32 mxcsr; /* MXCSR Register State */
|
|
u32 mxcsr_mask; /* MXCSR Mask */
|
|
|
|
/* 8*16 bytes for each FP-reg = 128 bytes: */
|
|
u32 st_space[32];
|
|
|
|
/* 16*16 bytes for each XMM-reg = 256 bytes: */
|
|
u32 xmm_space[64];
|
|
|
|
u32 padding[12];
|
|
|
|
union {
|
|
u32 padding1[12];
|
|
u32 sw_reserved[12];
|
|
};
|
|
|
|
} __attribute__((aligned(16)));
|
|
|
|
struct i387_soft_struct {
|
|
u32 cwd;
|
|
u32 swd;
|
|
u32 twd;
|
|
u32 fip;
|
|
u32 fcs;
|
|
u32 foo;
|
|
u32 fos;
|
|
/* 8*10 bytes for each FP-reg = 80 bytes: */
|
|
u32 st_space[20];
|
|
u8 ftop;
|
|
u8 changed;
|
|
u8 lookahead;
|
|
u8 no_update;
|
|
u8 rm;
|
|
u8 alimit;
|
|
struct math_emu_info *info;
|
|
u32 entry_eip;
|
|
};
|
|
|
|
struct ymmh_struct {
|
|
/* 16 * 16 bytes for each YMMH-reg = 256 bytes */
|
|
u32 ymmh_space[64];
|
|
};
|
|
|
|
/* We don't support LWP yet: */
|
|
struct lwp_struct {
|
|
u8 reserved[128];
|
|
};
|
|
|
|
struct bndreg {
|
|
u64 lower_bound;
|
|
u64 upper_bound;
|
|
} __packed;
|
|
|
|
struct bndcsr {
|
|
u64 bndcfgu;
|
|
u64 bndstatus;
|
|
} __packed;
|
|
|
|
struct xsave_hdr_struct {
|
|
u64 xstate_bv;
|
|
u64 xcomp_bv;
|
|
u64 reserved[6];
|
|
} __attribute__((packed));
|
|
|
|
struct xsave_struct {
|
|
struct i387_fxsave_struct i387;
|
|
struct xsave_hdr_struct xsave_hdr;
|
|
struct ymmh_struct ymmh;
|
|
struct lwp_struct lwp;
|
|
struct bndreg bndreg[4];
|
|
struct bndcsr bndcsr;
|
|
/* new processor state extensions will go here */
|
|
} __attribute__ ((packed, aligned (64)));
|
|
|
|
union thread_xstate {
|
|
struct i387_fsave_struct fsave;
|
|
struct i387_fxsave_struct fxsave;
|
|
struct i387_soft_struct soft;
|
|
struct xsave_struct xsave;
|
|
};
|
|
|
|
struct fpu {
|
|
unsigned int last_cpu;
|
|
unsigned int has_fpu;
|
|
union thread_xstate *state;
|
|
};
|
|
|
|
#ifdef CONFIG_X86_64
|
|
DECLARE_PER_CPU(struct orig_ist, orig_ist);
|
|
|
|
union irq_stack_union {
|
|
char irq_stack[IRQ_STACK_SIZE];
|
|
/*
|
|
* GCC hardcodes the stack canary as %gs:40. Since the
|
|
* irq_stack is the object at %gs:0, we reserve the bottom
|
|
* 48 bytes of the irq stack for the canary.
|
|
*/
|
|
struct {
|
|
char gs_base[40];
|
|
unsigned long stack_canary;
|
|
};
|
|
};
|
|
|
|
DECLARE_PER_CPU_FIRST(union irq_stack_union, irq_stack_union) __visible;
|
|
DECLARE_INIT_PER_CPU(irq_stack_union);
|
|
|
|
DECLARE_PER_CPU(char *, irq_stack_ptr);
|
|
DECLARE_PER_CPU(unsigned int, irq_count);
|
|
extern asmlinkage void ignore_sysret(void);
|
|
#else /* X86_64 */
|
|
#ifdef CONFIG_CC_STACKPROTECTOR
|
|
/*
|
|
* Make sure stack canary segment base is cached-aligned:
|
|
* "For Intel Atom processors, avoid non zero segment base address
|
|
* that is not aligned to cache line boundary at all cost."
|
|
* (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
|
|
*/
|
|
struct stack_canary {
|
|
char __pad[20]; /* canary at %gs:20 */
|
|
unsigned long canary;
|
|
};
|
|
DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
|
|
#endif
|
|
/*
|
|
* per-CPU IRQ handling stacks
|
|
*/
|
|
struct irq_stack {
|
|
u32 stack[THREAD_SIZE/sizeof(u32)];
|
|
} __aligned(THREAD_SIZE);
|
|
|
|
DECLARE_PER_CPU(struct irq_stack *, hardirq_stack);
|
|
DECLARE_PER_CPU(struct irq_stack *, softirq_stack);
|
|
#endif /* X86_64 */
|
|
|
|
extern unsigned int xstate_size;
|
|
extern void free_thread_xstate(struct task_struct *);
|
|
extern struct kmem_cache *task_xstate_cachep;
|
|
|
|
struct perf_event;
|
|
|
|
struct thread_struct {
|
|
/* Cached TLS descriptors: */
|
|
struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES];
|
|
unsigned long sp0;
|
|
unsigned long sp;
|
|
#ifdef CONFIG_X86_32
|
|
unsigned long sysenter_cs;
|
|
#else
|
|
unsigned short es;
|
|
unsigned short ds;
|
|
unsigned short fsindex;
|
|
unsigned short gsindex;
|
|
#endif
|
|
#ifdef CONFIG_X86_32
|
|
unsigned long ip;
|
|
#endif
|
|
#ifdef CONFIG_X86_64
|
|
unsigned long fs;
|
|
#endif
|
|
unsigned long gs;
|
|
/* Save middle states of ptrace breakpoints */
|
|
struct perf_event *ptrace_bps[HBP_NUM];
|
|
/* Debug status used for traps, single steps, etc... */
|
|
unsigned long debugreg6;
|
|
/* Keep track of the exact dr7 value set by the user */
|
|
unsigned long ptrace_dr7;
|
|
/* Fault info: */
|
|
unsigned long cr2;
|
|
unsigned long trap_nr;
|
|
unsigned long error_code;
|
|
/* floating point and extended processor state */
|
|
struct fpu fpu;
|
|
#ifdef CONFIG_X86_32
|
|
/* Virtual 86 mode info */
|
|
struct vm86_struct __user *vm86_info;
|
|
unsigned long screen_bitmap;
|
|
unsigned long v86flags;
|
|
unsigned long v86mask;
|
|
unsigned long saved_sp0;
|
|
unsigned int saved_fs;
|
|
unsigned int saved_gs;
|
|
#endif
|
|
/* IO permissions: */
|
|
unsigned long *io_bitmap_ptr;
|
|
unsigned long iopl;
|
|
/* Max allowed port in the bitmap, in bytes: */
|
|
unsigned io_bitmap_max;
|
|
/*
|
|
* fpu_counter contains the number of consecutive context switches
|
|
* that the FPU is used. If this is over a threshold, the lazy fpu
|
|
* saving becomes unlazy to save the trap. This is an unsigned char
|
|
* so that after 256 times the counter wraps and the behavior turns
|
|
* lazy again; this to deal with bursty apps that only use FPU for
|
|
* a short time
|
|
*/
|
|
unsigned char fpu_counter;
|
|
};
|
|
|
|
/*
|
|
* Set IOPL bits in EFLAGS from given mask
|
|
*/
|
|
static inline void native_set_iopl_mask(unsigned mask)
|
|
{
|
|
#ifdef CONFIG_X86_32
|
|
unsigned int reg;
|
|
|
|
asm volatile ("pushfl;"
|
|
"popl %0;"
|
|
"andl %1, %0;"
|
|
"orl %2, %0;"
|
|
"pushl %0;"
|
|
"popfl"
|
|
: "=&r" (reg)
|
|
: "i" (~X86_EFLAGS_IOPL), "r" (mask));
|
|
#endif
|
|
}
|
|
|
|
static inline void
|
|
native_load_sp0(struct tss_struct *tss, struct thread_struct *thread)
|
|
{
|
|
tss->x86_tss.sp0 = thread->sp0;
|
|
#ifdef CONFIG_X86_32
|
|
/* Only happens when SEP is enabled, no need to test "SEP"arately: */
|
|
if (unlikely(tss->x86_tss.ss1 != thread->sysenter_cs)) {
|
|
tss->x86_tss.ss1 = thread->sysenter_cs;
|
|
wrmsr(MSR_IA32_SYSENTER_CS, thread->sysenter_cs, 0);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static inline void native_swapgs(void)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
asm volatile("swapgs" ::: "memory");
|
|
#endif
|
|
}
|
|
|
|
static inline unsigned long current_top_of_stack(void)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
return this_cpu_read_stable(cpu_tss.x86_tss.sp0);
|
|
#else
|
|
/* sp0 on x86_32 is special in and around vm86 mode. */
|
|
return this_cpu_read_stable(cpu_current_top_of_stack);
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_PARAVIRT
|
|
#include <asm/paravirt.h>
|
|
#else
|
|
#define __cpuid native_cpuid
|
|
#define paravirt_enabled() 0
|
|
|
|
static inline void load_sp0(struct tss_struct *tss,
|
|
struct thread_struct *thread)
|
|
{
|
|
native_load_sp0(tss, thread);
|
|
}
|
|
|
|
#define set_iopl_mask native_set_iopl_mask
|
|
#endif /* CONFIG_PARAVIRT */
|
|
|
|
typedef struct {
|
|
unsigned long seg;
|
|
} mm_segment_t;
|
|
|
|
|
|
/* Free all resources held by a thread. */
|
|
extern void release_thread(struct task_struct *);
|
|
|
|
unsigned long get_wchan(struct task_struct *p);
|
|
|
|
/*
|
|
* Generic CPUID function
|
|
* clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
|
|
* resulting in stale register contents being returned.
|
|
*/
|
|
static inline void cpuid(unsigned int op,
|
|
unsigned int *eax, unsigned int *ebx,
|
|
unsigned int *ecx, unsigned int *edx)
|
|
{
|
|
*eax = op;
|
|
*ecx = 0;
|
|
__cpuid(eax, ebx, ecx, edx);
|
|
}
|
|
|
|
/* Some CPUID calls want 'count' to be placed in ecx */
|
|
static inline void cpuid_count(unsigned int op, int count,
|
|
unsigned int *eax, unsigned int *ebx,
|
|
unsigned int *ecx, unsigned int *edx)
|
|
{
|
|
*eax = op;
|
|
*ecx = count;
|
|
__cpuid(eax, ebx, ecx, edx);
|
|
}
|
|
|
|
/*
|
|
* CPUID functions returning a single datum
|
|
*/
|
|
static inline unsigned int cpuid_eax(unsigned int op)
|
|
{
|
|
unsigned int eax, ebx, ecx, edx;
|
|
|
|
cpuid(op, &eax, &ebx, &ecx, &edx);
|
|
|
|
return eax;
|
|
}
|
|
|
|
static inline unsigned int cpuid_ebx(unsigned int op)
|
|
{
|
|
unsigned int eax, ebx, ecx, edx;
|
|
|
|
cpuid(op, &eax, &ebx, &ecx, &edx);
|
|
|
|
return ebx;
|
|
}
|
|
|
|
static inline unsigned int cpuid_ecx(unsigned int op)
|
|
{
|
|
unsigned int eax, ebx, ecx, edx;
|
|
|
|
cpuid(op, &eax, &ebx, &ecx, &edx);
|
|
|
|
return ecx;
|
|
}
|
|
|
|
static inline unsigned int cpuid_edx(unsigned int op)
|
|
{
|
|
unsigned int eax, ebx, ecx, edx;
|
|
|
|
cpuid(op, &eax, &ebx, &ecx, &edx);
|
|
|
|
return edx;
|
|
}
|
|
|
|
/* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */
|
|
static inline void rep_nop(void)
|
|
{
|
|
asm volatile("rep; nop" ::: "memory");
|
|
}
|
|
|
|
static inline void cpu_relax(void)
|
|
{
|
|
rep_nop();
|
|
}
|
|
|
|
#define cpu_relax_lowlatency() cpu_relax()
|
|
|
|
/* Stop speculative execution and prefetching of modified code. */
|
|
static inline void sync_core(void)
|
|
{
|
|
int tmp;
|
|
|
|
#ifdef CONFIG_M486
|
|
/*
|
|
* Do a CPUID if available, otherwise do a jump. The jump
|
|
* can conveniently enough be the jump around CPUID.
|
|
*/
|
|
asm volatile("cmpl %2,%1\n\t"
|
|
"jl 1f\n\t"
|
|
"cpuid\n"
|
|
"1:"
|
|
: "=a" (tmp)
|
|
: "rm" (boot_cpu_data.cpuid_level), "ri" (0), "0" (1)
|
|
: "ebx", "ecx", "edx", "memory");
|
|
#else
|
|
/*
|
|
* CPUID is a barrier to speculative execution.
|
|
* Prefetched instructions are automatically
|
|
* invalidated when modified.
|
|
*/
|
|
asm volatile("cpuid"
|
|
: "=a" (tmp)
|
|
: "0" (1)
|
|
: "ebx", "ecx", "edx", "memory");
|
|
#endif
|
|
}
|
|
|
|
extern void select_idle_routine(const struct cpuinfo_x86 *c);
|
|
extern void init_amd_e400_c1e_mask(void);
|
|
|
|
extern unsigned long boot_option_idle_override;
|
|
extern bool amd_e400_c1e_detected;
|
|
|
|
enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
|
|
IDLE_POLL};
|
|
|
|
extern void enable_sep_cpu(void);
|
|
extern int sysenter_setup(void);
|
|
|
|
extern void early_trap_init(void);
|
|
void early_trap_pf_init(void);
|
|
|
|
/* Defined in head.S */
|
|
extern struct desc_ptr early_gdt_descr;
|
|
|
|
extern void cpu_set_gdt(int);
|
|
extern void switch_to_new_gdt(int);
|
|
extern void load_percpu_segment(int);
|
|
extern void cpu_init(void);
|
|
|
|
static inline unsigned long get_debugctlmsr(void)
|
|
{
|
|
unsigned long debugctlmsr = 0;
|
|
|
|
#ifndef CONFIG_X86_DEBUGCTLMSR
|
|
if (boot_cpu_data.x86 < 6)
|
|
return 0;
|
|
#endif
|
|
rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
|
|
|
|
return debugctlmsr;
|
|
}
|
|
|
|
static inline void update_debugctlmsr(unsigned long debugctlmsr)
|
|
{
|
|
#ifndef CONFIG_X86_DEBUGCTLMSR
|
|
if (boot_cpu_data.x86 < 6)
|
|
return;
|
|
#endif
|
|
wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
|
|
}
|
|
|
|
extern void set_task_blockstep(struct task_struct *task, bool on);
|
|
|
|
/*
|
|
* from system description table in BIOS. Mostly for MCA use, but
|
|
* others may find it useful:
|
|
*/
|
|
extern unsigned int machine_id;
|
|
extern unsigned int machine_submodel_id;
|
|
extern unsigned int BIOS_revision;
|
|
|
|
/* Boot loader type from the setup header: */
|
|
extern int bootloader_type;
|
|
extern int bootloader_version;
|
|
|
|
extern char ignore_fpu_irq;
|
|
|
|
#define HAVE_ARCH_PICK_MMAP_LAYOUT 1
|
|
#define ARCH_HAS_PREFETCHW
|
|
#define ARCH_HAS_SPINLOCK_PREFETCH
|
|
|
|
#ifdef CONFIG_X86_32
|
|
# define BASE_PREFETCH ""
|
|
# define ARCH_HAS_PREFETCH
|
|
#else
|
|
# define BASE_PREFETCH "prefetcht0 %P1"
|
|
#endif
|
|
|
|
/*
|
|
* Prefetch instructions for Pentium III (+) and AMD Athlon (+)
|
|
*
|
|
* It's not worth to care about 3dnow prefetches for the K6
|
|
* because they are microcoded there and very slow.
|
|
*/
|
|
static inline void prefetch(const void *x)
|
|
{
|
|
alternative_input(BASE_PREFETCH, "prefetchnta %P1",
|
|
X86_FEATURE_XMM,
|
|
"m" (*(const char *)x));
|
|
}
|
|
|
|
/*
|
|
* 3dnow prefetch to get an exclusive cache line.
|
|
* Useful for spinlocks to avoid one state transition in the
|
|
* cache coherency protocol:
|
|
*/
|
|
static inline void prefetchw(const void *x)
|
|
{
|
|
alternative_input(BASE_PREFETCH, "prefetchw %P1",
|
|
X86_FEATURE_3DNOWPREFETCH,
|
|
"m" (*(const char *)x));
|
|
}
|
|
|
|
static inline void spin_lock_prefetch(const void *x)
|
|
{
|
|
prefetchw(x);
|
|
}
|
|
|
|
#define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
|
|
TOP_OF_KERNEL_STACK_PADDING)
|
|
|
|
#ifdef CONFIG_X86_32
|
|
/*
|
|
* User space process size: 3GB (default).
|
|
*/
|
|
#define TASK_SIZE PAGE_OFFSET
|
|
#define TASK_SIZE_MAX TASK_SIZE
|
|
#define STACK_TOP TASK_SIZE
|
|
#define STACK_TOP_MAX STACK_TOP
|
|
|
|
#define INIT_THREAD { \
|
|
.sp0 = TOP_OF_INIT_STACK, \
|
|
.vm86_info = NULL, \
|
|
.sysenter_cs = __KERNEL_CS, \
|
|
.io_bitmap_ptr = NULL, \
|
|
}
|
|
|
|
extern unsigned long thread_saved_pc(struct task_struct *tsk);
|
|
|
|
/*
|
|
* TOP_OF_KERNEL_STACK_PADDING reserves 8 bytes on top of the ring0 stack.
|
|
* This is necessary to guarantee that the entire "struct pt_regs"
|
|
* is accessible even if the CPU haven't stored the SS/ESP registers
|
|
* on the stack (interrupt gate does not save these registers
|
|
* when switching to the same priv ring).
|
|
* Therefore beware: accessing the ss/esp fields of the
|
|
* "struct pt_regs" is possible, but they may contain the
|
|
* completely wrong values.
|
|
*/
|
|
#define task_pt_regs(task) \
|
|
({ \
|
|
unsigned long __ptr = (unsigned long)task_stack_page(task); \
|
|
__ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \
|
|
((struct pt_regs *)__ptr) - 1; \
|
|
})
|
|
|
|
#define KSTK_ESP(task) (task_pt_regs(task)->sp)
|
|
|
|
#else
|
|
/*
|
|
* User space process size. 47bits minus one guard page. The guard
|
|
* page is necessary on Intel CPUs: if a SYSCALL instruction is at
|
|
* the highest possible canonical userspace address, then that
|
|
* syscall will enter the kernel with a non-canonical return
|
|
* address, and SYSRET will explode dangerously. We avoid this
|
|
* particular problem by preventing anything from being mapped
|
|
* at the maximum canonical address.
|
|
*/
|
|
#define TASK_SIZE_MAX ((1UL << 47) - PAGE_SIZE)
|
|
|
|
/* This decides where the kernel will search for a free chunk of vm
|
|
* space during mmap's.
|
|
*/
|
|
#define IA32_PAGE_OFFSET ((current->personality & ADDR_LIMIT_3GB) ? \
|
|
0xc0000000 : 0xFFFFe000)
|
|
|
|
#define TASK_SIZE (test_thread_flag(TIF_ADDR32) ? \
|
|
IA32_PAGE_OFFSET : TASK_SIZE_MAX)
|
|
#define TASK_SIZE_OF(child) ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
|
|
IA32_PAGE_OFFSET : TASK_SIZE_MAX)
|
|
|
|
#define STACK_TOP TASK_SIZE
|
|
#define STACK_TOP_MAX TASK_SIZE_MAX
|
|
|
|
#define INIT_THREAD { \
|
|
.sp0 = TOP_OF_INIT_STACK \
|
|
}
|
|
|
|
/*
|
|
* Return saved PC of a blocked thread.
|
|
* What is this good for? it will be always the scheduler or ret_from_fork.
|
|
*/
|
|
#define thread_saved_pc(t) (*(unsigned long *)((t)->thread.sp - 8))
|
|
|
|
#define task_pt_regs(tsk) ((struct pt_regs *)(tsk)->thread.sp0 - 1)
|
|
extern unsigned long KSTK_ESP(struct task_struct *task);
|
|
|
|
#endif /* CONFIG_X86_64 */
|
|
|
|
extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
|
|
unsigned long new_sp);
|
|
|
|
/*
|
|
* This decides where the kernel will search for a free chunk of vm
|
|
* space during mmap's.
|
|
*/
|
|
#define TASK_UNMAPPED_BASE (PAGE_ALIGN(TASK_SIZE / 3))
|
|
|
|
#define KSTK_EIP(task) (task_pt_regs(task)->ip)
|
|
|
|
/* Get/set a process' ability to use the timestamp counter instruction */
|
|
#define GET_TSC_CTL(adr) get_tsc_mode((adr))
|
|
#define SET_TSC_CTL(val) set_tsc_mode((val))
|
|
|
|
extern int get_tsc_mode(unsigned long adr);
|
|
extern int set_tsc_mode(unsigned int val);
|
|
|
|
/* Register/unregister a process' MPX related resource */
|
|
#define MPX_ENABLE_MANAGEMENT(tsk) mpx_enable_management((tsk))
|
|
#define MPX_DISABLE_MANAGEMENT(tsk) mpx_disable_management((tsk))
|
|
|
|
#ifdef CONFIG_X86_INTEL_MPX
|
|
extern int mpx_enable_management(struct task_struct *tsk);
|
|
extern int mpx_disable_management(struct task_struct *tsk);
|
|
#else
|
|
static inline int mpx_enable_management(struct task_struct *tsk)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
static inline int mpx_disable_management(struct task_struct *tsk)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
#endif /* CONFIG_X86_INTEL_MPX */
|
|
|
|
extern u16 amd_get_nb_id(int cpu);
|
|
|
|
static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
|
|
{
|
|
uint32_t base, eax, signature[3];
|
|
|
|
for (base = 0x40000000; base < 0x40010000; base += 0x100) {
|
|
cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);
|
|
|
|
if (!memcmp(sig, signature, 12) &&
|
|
(leaves == 0 || ((eax - base) >= leaves)))
|
|
return base;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
extern unsigned long arch_align_stack(unsigned long sp);
|
|
extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
|
|
|
|
void default_idle(void);
|
|
#ifdef CONFIG_XEN
|
|
bool xen_set_default_idle(void);
|
|
#else
|
|
#define xen_set_default_idle 0
|
|
#endif
|
|
|
|
void stop_this_cpu(void *dummy);
|
|
void df_debug(struct pt_regs *regs, long error_code);
|
|
#endif /* _ASM_X86_PROCESSOR_H */
|