kernel_optimize_test/net/rxrpc/call_accept.c
Linus Torvalds 5bb053bef8 Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
Pull networking updates from David Miller:

 1) Support offloading wireless authentication to userspace via
    NL80211_CMD_EXTERNAL_AUTH, from Srinivas Dasari.

 2) A lot of work on network namespace setup/teardown from Kirill Tkhai.
    Setup and cleanup of namespaces now all run asynchronously and thus
    performance is significantly increased.

 3) Add rx/tx timestamping support to mv88e6xxx driver, from Brandon
    Streiff.

 4) Support zerocopy on RDS sockets, from Sowmini Varadhan.

 5) Use denser instruction encoding in x86 eBPF JIT, from Daniel
    Borkmann.

 6) Support hw offload of vlan filtering in mvpp2 dreiver, from Maxime
    Chevallier.

 7) Support grafting of child qdiscs in mlxsw driver, from Nogah
    Frankel.

 8) Add packet forwarding tests to selftests, from Ido Schimmel.

 9) Deal with sub-optimal GSO packets better in BBR congestion control,
    from Eric Dumazet.

10) Support 5-tuple hashing in ipv6 multipath routing, from David Ahern.

11) Add path MTU tests to selftests, from Stefano Brivio.

12) Various bits of IPSEC offloading support for mlx5, from Aviad
    Yehezkel, Yossi Kuperman, and Saeed Mahameed.

13) Support RSS spreading on ntuple filters in SFC driver, from Edward
    Cree.

14) Lots of sockmap work from John Fastabend. Applications can use eBPF
    to filter sendmsg and sendpage operations.

15) In-kernel receive TLS support, from Dave Watson.

16) Add XDP support to ixgbevf, this is significant because it should
    allow optimized XDP usage in various cloud environments. From Tony
    Nguyen.

17) Add new Intel E800 series "ice" ethernet driver, from Anirudh
    Venkataramanan et al.

18) IP fragmentation match offload support in nfp driver, from Pieter
    Jansen van Vuuren.

19) Support XDP redirect in i40e driver, from Björn Töpel.

20) Add BPF_RAW_TRACEPOINT program type for accessing the arguments of
    tracepoints in their raw form, from Alexei Starovoitov.

21) Lots of striding RQ improvements to mlx5 driver with many
    performance improvements, from Tariq Toukan.

22) Use rhashtable for inet frag reassembly, from Eric Dumazet.

* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1678 commits)
  net: mvneta: improve suspend/resume
  net: mvneta: split rxq/txq init and txq deinit into SW and HW parts
  ipv6: frags: fix /proc/sys/net/ipv6/ip6frag_low_thresh
  net: bgmac: Fix endian access in bgmac_dma_tx_ring_free()
  net: bgmac: Correctly annotate register space
  route: check sysctl_fib_multipath_use_neigh earlier than hash
  fix typo in command value in drivers/net/phy/mdio-bitbang.
  sky2: Increase D3 delay to sky2 stops working after suspend
  net/mlx5e: Set EQE based as default TX interrupt moderation mode
  ibmvnic: Disable irqs before exiting reset from closed state
  net: sched: do not emit messages while holding spinlock
  vlan: also check phy_driver ts_info for vlan's real device
  Bluetooth: Mark expected switch fall-throughs
  Bluetooth: Set HCI_QUIRK_SIMULTANEOUS_DISCOVERY for BTUSB_QCA_ROME
  Bluetooth: btrsi: remove unused including <linux/version.h>
  Bluetooth: hci_bcm: Remove DMI quirk for the MINIX Z83-4
  sh_eth: kill useless check in __sh_eth_get_regs()
  sh_eth: add sh_eth_cpu_data::no_xdfar flag
  ipv6: factorize sk_wmem_alloc updates done by __ip6_append_data()
  ipv4: factorize sk_wmem_alloc updates done by __ip_append_data()
  ...
2018-04-03 14:04:18 -07:00

668 lines
18 KiB
C

/* incoming call handling
*
* Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/net.h>
#include <linux/skbuff.h>
#include <linux/errqueue.h>
#include <linux/udp.h>
#include <linux/in.h>
#include <linux/in6.h>
#include <linux/icmp.h>
#include <linux/gfp.h>
#include <linux/circ_buf.h>
#include <net/sock.h>
#include <net/af_rxrpc.h>
#include <net/ip.h>
#include "ar-internal.h"
/*
* Preallocate a single service call, connection and peer and, if possible,
* give them a user ID and attach the user's side of the ID to them.
*/
static int rxrpc_service_prealloc_one(struct rxrpc_sock *rx,
struct rxrpc_backlog *b,
rxrpc_notify_rx_t notify_rx,
rxrpc_user_attach_call_t user_attach_call,
unsigned long user_call_ID, gfp_t gfp,
unsigned int debug_id)
{
const void *here = __builtin_return_address(0);
struct rxrpc_call *call;
struct rxrpc_net *rxnet = rxrpc_net(sock_net(&rx->sk));
int max, tmp;
unsigned int size = RXRPC_BACKLOG_MAX;
unsigned int head, tail, call_head, call_tail;
max = rx->sk.sk_max_ack_backlog;
tmp = rx->sk.sk_ack_backlog;
if (tmp >= max) {
_leave(" = -ENOBUFS [full %u]", max);
return -ENOBUFS;
}
max -= tmp;
/* We don't need more conns and peers than we have calls, but on the
* other hand, we shouldn't ever use more peers than conns or conns
* than calls.
*/
call_head = b->call_backlog_head;
call_tail = READ_ONCE(b->call_backlog_tail);
tmp = CIRC_CNT(call_head, call_tail, size);
if (tmp >= max) {
_leave(" = -ENOBUFS [enough %u]", tmp);
return -ENOBUFS;
}
max = tmp + 1;
head = b->peer_backlog_head;
tail = READ_ONCE(b->peer_backlog_tail);
if (CIRC_CNT(head, tail, size) < max) {
struct rxrpc_peer *peer = rxrpc_alloc_peer(rx->local, gfp);
if (!peer)
return -ENOMEM;
b->peer_backlog[head] = peer;
smp_store_release(&b->peer_backlog_head,
(head + 1) & (size - 1));
}
head = b->conn_backlog_head;
tail = READ_ONCE(b->conn_backlog_tail);
if (CIRC_CNT(head, tail, size) < max) {
struct rxrpc_connection *conn;
conn = rxrpc_prealloc_service_connection(rxnet, gfp);
if (!conn)
return -ENOMEM;
b->conn_backlog[head] = conn;
smp_store_release(&b->conn_backlog_head,
(head + 1) & (size - 1));
trace_rxrpc_conn(conn, rxrpc_conn_new_service,
atomic_read(&conn->usage), here);
}
/* Now it gets complicated, because calls get registered with the
* socket here, particularly if a user ID is preassigned by the user.
*/
call = rxrpc_alloc_call(rx, gfp, debug_id);
if (!call)
return -ENOMEM;
call->flags |= (1 << RXRPC_CALL_IS_SERVICE);
call->state = RXRPC_CALL_SERVER_PREALLOC;
trace_rxrpc_call(call, rxrpc_call_new_service,
atomic_read(&call->usage),
here, (const void *)user_call_ID);
write_lock(&rx->call_lock);
if (user_attach_call) {
struct rxrpc_call *xcall;
struct rb_node *parent, **pp;
/* Check the user ID isn't already in use */
pp = &rx->calls.rb_node;
parent = NULL;
while (*pp) {
parent = *pp;
xcall = rb_entry(parent, struct rxrpc_call, sock_node);
if (user_call_ID < call->user_call_ID)
pp = &(*pp)->rb_left;
else if (user_call_ID > call->user_call_ID)
pp = &(*pp)->rb_right;
else
goto id_in_use;
}
call->user_call_ID = user_call_ID;
call->notify_rx = notify_rx;
rxrpc_get_call(call, rxrpc_call_got_kernel);
user_attach_call(call, user_call_ID);
rxrpc_get_call(call, rxrpc_call_got_userid);
rb_link_node(&call->sock_node, parent, pp);
rb_insert_color(&call->sock_node, &rx->calls);
set_bit(RXRPC_CALL_HAS_USERID, &call->flags);
}
list_add(&call->sock_link, &rx->sock_calls);
write_unlock(&rx->call_lock);
rxnet = call->rxnet;
write_lock(&rxnet->call_lock);
list_add_tail(&call->link, &rxnet->calls);
write_unlock(&rxnet->call_lock);
b->call_backlog[call_head] = call;
smp_store_release(&b->call_backlog_head, (call_head + 1) & (size - 1));
_leave(" = 0 [%d -> %lx]", call->debug_id, user_call_ID);
return 0;
id_in_use:
write_unlock(&rx->call_lock);
rxrpc_cleanup_call(call);
_leave(" = -EBADSLT");
return -EBADSLT;
}
/*
* Preallocate sufficient service connections, calls and peers to cover the
* entire backlog of a socket. When a new call comes in, if we don't have
* sufficient of each available, the call gets rejected as busy or ignored.
*
* The backlog is replenished when a connection is accepted or rejected.
*/
int rxrpc_service_prealloc(struct rxrpc_sock *rx, gfp_t gfp)
{
struct rxrpc_backlog *b = rx->backlog;
if (!b) {
b = kzalloc(sizeof(struct rxrpc_backlog), gfp);
if (!b)
return -ENOMEM;
rx->backlog = b;
}
if (rx->discard_new_call)
return 0;
while (rxrpc_service_prealloc_one(rx, b, NULL, NULL, 0, gfp,
atomic_inc_return(&rxrpc_debug_id)) == 0)
;
return 0;
}
/*
* Discard the preallocation on a service.
*/
void rxrpc_discard_prealloc(struct rxrpc_sock *rx)
{
struct rxrpc_backlog *b = rx->backlog;
struct rxrpc_net *rxnet = rxrpc_net(sock_net(&rx->sk));
unsigned int size = RXRPC_BACKLOG_MAX, head, tail;
if (!b)
return;
rx->backlog = NULL;
/* Make sure that there aren't any incoming calls in progress before we
* clear the preallocation buffers.
*/
spin_lock_bh(&rx->incoming_lock);
spin_unlock_bh(&rx->incoming_lock);
head = b->peer_backlog_head;
tail = b->peer_backlog_tail;
while (CIRC_CNT(head, tail, size) > 0) {
struct rxrpc_peer *peer = b->peer_backlog[tail];
kfree(peer);
tail = (tail + 1) & (size - 1);
}
head = b->conn_backlog_head;
tail = b->conn_backlog_tail;
while (CIRC_CNT(head, tail, size) > 0) {
struct rxrpc_connection *conn = b->conn_backlog[tail];
write_lock(&rxnet->conn_lock);
list_del(&conn->link);
list_del(&conn->proc_link);
write_unlock(&rxnet->conn_lock);
kfree(conn);
if (atomic_dec_and_test(&rxnet->nr_conns))
wake_up_var(&rxnet->nr_conns);
tail = (tail + 1) & (size - 1);
}
head = b->call_backlog_head;
tail = b->call_backlog_tail;
while (CIRC_CNT(head, tail, size) > 0) {
struct rxrpc_call *call = b->call_backlog[tail];
rcu_assign_pointer(call->socket, rx);
if (rx->discard_new_call) {
_debug("discard %lx", call->user_call_ID);
rx->discard_new_call(call, call->user_call_ID);
rxrpc_put_call(call, rxrpc_call_put_kernel);
}
rxrpc_call_completed(call);
rxrpc_release_call(rx, call);
rxrpc_put_call(call, rxrpc_call_put);
tail = (tail + 1) & (size - 1);
}
kfree(b);
}
/*
* Allocate a new incoming call from the prealloc pool, along with a connection
* and a peer as necessary.
*/
static struct rxrpc_call *rxrpc_alloc_incoming_call(struct rxrpc_sock *rx,
struct rxrpc_local *local,
struct rxrpc_connection *conn,
struct sk_buff *skb)
{
struct rxrpc_backlog *b = rx->backlog;
struct rxrpc_peer *peer, *xpeer;
struct rxrpc_call *call;
unsigned short call_head, conn_head, peer_head;
unsigned short call_tail, conn_tail, peer_tail;
unsigned short call_count, conn_count;
/* #calls >= #conns >= #peers must hold true. */
call_head = smp_load_acquire(&b->call_backlog_head);
call_tail = b->call_backlog_tail;
call_count = CIRC_CNT(call_head, call_tail, RXRPC_BACKLOG_MAX);
conn_head = smp_load_acquire(&b->conn_backlog_head);
conn_tail = b->conn_backlog_tail;
conn_count = CIRC_CNT(conn_head, conn_tail, RXRPC_BACKLOG_MAX);
ASSERTCMP(conn_count, >=, call_count);
peer_head = smp_load_acquire(&b->peer_backlog_head);
peer_tail = b->peer_backlog_tail;
ASSERTCMP(CIRC_CNT(peer_head, peer_tail, RXRPC_BACKLOG_MAX), >=,
conn_count);
if (call_count == 0)
return NULL;
if (!conn) {
/* No connection. We're going to need a peer to start off
* with. If one doesn't yet exist, use a spare from the
* preallocation set. We dump the address into the spare in
* anticipation - and to save on stack space.
*/
xpeer = b->peer_backlog[peer_tail];
if (rxrpc_extract_addr_from_skb(local, &xpeer->srx, skb) < 0)
return NULL;
peer = rxrpc_lookup_incoming_peer(local, xpeer);
if (peer == xpeer) {
b->peer_backlog[peer_tail] = NULL;
smp_store_release(&b->peer_backlog_tail,
(peer_tail + 1) &
(RXRPC_BACKLOG_MAX - 1));
}
/* Now allocate and set up the connection */
conn = b->conn_backlog[conn_tail];
b->conn_backlog[conn_tail] = NULL;
smp_store_release(&b->conn_backlog_tail,
(conn_tail + 1) & (RXRPC_BACKLOG_MAX - 1));
conn->params.local = rxrpc_get_local(local);
conn->params.peer = peer;
rxrpc_see_connection(conn);
rxrpc_new_incoming_connection(rx, conn, skb);
} else {
rxrpc_get_connection(conn);
}
/* And now we can allocate and set up a new call */
call = b->call_backlog[call_tail];
b->call_backlog[call_tail] = NULL;
smp_store_release(&b->call_backlog_tail,
(call_tail + 1) & (RXRPC_BACKLOG_MAX - 1));
rxrpc_see_call(call);
call->conn = conn;
call->peer = rxrpc_get_peer(conn->params.peer);
call->cong_cwnd = call->peer->cong_cwnd;
return call;
}
/*
* Set up a new incoming call. Called in BH context with the RCU read lock
* held.
*
* If this is for a kernel service, when we allocate the call, it will have
* three refs on it: (1) the kernel service, (2) the user_call_ID tree, (3) the
* retainer ref obtained from the backlog buffer. Prealloc calls for userspace
* services only have the ref from the backlog buffer. We want to pass this
* ref to non-BH context to dispose of.
*
* If we want to report an error, we mark the skb with the packet type and
* abort code and return NULL.
*
* The call is returned with the user access mutex held.
*/
struct rxrpc_call *rxrpc_new_incoming_call(struct rxrpc_local *local,
struct rxrpc_connection *conn,
struct sk_buff *skb)
{
struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
struct rxrpc_sock *rx;
struct rxrpc_call *call;
u16 service_id = sp->hdr.serviceId;
_enter("");
/* Get the socket providing the service */
rx = rcu_dereference(local->service);
if (rx && (service_id == rx->srx.srx_service ||
service_id == rx->second_service))
goto found_service;
trace_rxrpc_abort(0, "INV", sp->hdr.cid, sp->hdr.callNumber, sp->hdr.seq,
RX_INVALID_OPERATION, EOPNOTSUPP);
skb->mark = RXRPC_SKB_MARK_LOCAL_ABORT;
skb->priority = RX_INVALID_OPERATION;
_leave(" = NULL [service]");
return NULL;
found_service:
spin_lock(&rx->incoming_lock);
if (rx->sk.sk_state == RXRPC_SERVER_LISTEN_DISABLED ||
rx->sk.sk_state == RXRPC_CLOSE) {
trace_rxrpc_abort(0, "CLS", sp->hdr.cid, sp->hdr.callNumber,
sp->hdr.seq, RX_INVALID_OPERATION, ESHUTDOWN);
skb->mark = RXRPC_SKB_MARK_LOCAL_ABORT;
skb->priority = RX_INVALID_OPERATION;
_leave(" = NULL [close]");
call = NULL;
goto out;
}
call = rxrpc_alloc_incoming_call(rx, local, conn, skb);
if (!call) {
skb->mark = RXRPC_SKB_MARK_BUSY;
_leave(" = NULL [busy]");
call = NULL;
goto out;
}
trace_rxrpc_receive(call, rxrpc_receive_incoming,
sp->hdr.serial, sp->hdr.seq);
/* Lock the call to prevent rxrpc_kernel_send/recv_data() and
* sendmsg()/recvmsg() inconveniently stealing the mutex once the
* notification is generated.
*
* The BUG should never happen because the kernel should be well
* behaved enough not to access the call before the first notification
* event and userspace is prevented from doing so until the state is
* appropriate.
*/
if (!mutex_trylock(&call->user_mutex))
BUG();
/* Make the call live. */
rxrpc_incoming_call(rx, call, skb);
conn = call->conn;
if (rx->notify_new_call)
rx->notify_new_call(&rx->sk, call, call->user_call_ID);
else
sk_acceptq_added(&rx->sk);
spin_lock(&conn->state_lock);
switch (conn->state) {
case RXRPC_CONN_SERVICE_UNSECURED:
conn->state = RXRPC_CONN_SERVICE_CHALLENGING;
set_bit(RXRPC_CONN_EV_CHALLENGE, &call->conn->events);
rxrpc_queue_conn(call->conn);
break;
case RXRPC_CONN_SERVICE:
write_lock(&call->state_lock);
if (rx->discard_new_call)
call->state = RXRPC_CALL_SERVER_RECV_REQUEST;
else
call->state = RXRPC_CALL_SERVER_ACCEPTING;
write_unlock(&call->state_lock);
break;
case RXRPC_CONN_REMOTELY_ABORTED:
rxrpc_set_call_completion(call, RXRPC_CALL_REMOTELY_ABORTED,
conn->remote_abort, -ECONNABORTED);
break;
case RXRPC_CONN_LOCALLY_ABORTED:
rxrpc_abort_call("CON", call, sp->hdr.seq,
conn->local_abort, -ECONNABORTED);
break;
default:
BUG();
}
spin_unlock(&conn->state_lock);
if (call->state == RXRPC_CALL_SERVER_ACCEPTING)
rxrpc_notify_socket(call);
/* We have to discard the prealloc queue's ref here and rely on a
* combination of the RCU read lock and refs held either by the socket
* (recvmsg queue, to-be-accepted queue or user ID tree) or the kernel
* service to prevent the call from being deallocated too early.
*/
rxrpc_put_call(call, rxrpc_call_put);
_leave(" = %p{%d}", call, call->debug_id);
out:
spin_unlock(&rx->incoming_lock);
return call;
}
/*
* handle acceptance of a call by userspace
* - assign the user call ID to the call at the front of the queue
* - called with the socket locked.
*/
struct rxrpc_call *rxrpc_accept_call(struct rxrpc_sock *rx,
unsigned long user_call_ID,
rxrpc_notify_rx_t notify_rx)
__releases(&rx->sk.sk_lock.slock)
__acquires(call->user_mutex)
{
struct rxrpc_call *call;
struct rb_node *parent, **pp;
int ret;
_enter(",%lx", user_call_ID);
ASSERT(!irqs_disabled());
write_lock(&rx->call_lock);
if (list_empty(&rx->to_be_accepted)) {
write_unlock(&rx->call_lock);
release_sock(&rx->sk);
kleave(" = -ENODATA [empty]");
return ERR_PTR(-ENODATA);
}
/* check the user ID isn't already in use */
pp = &rx->calls.rb_node;
parent = NULL;
while (*pp) {
parent = *pp;
call = rb_entry(parent, struct rxrpc_call, sock_node);
if (user_call_ID < call->user_call_ID)
pp = &(*pp)->rb_left;
else if (user_call_ID > call->user_call_ID)
pp = &(*pp)->rb_right;
else
goto id_in_use;
}
/* Dequeue the first call and check it's still valid. We gain
* responsibility for the queue's reference.
*/
call = list_entry(rx->to_be_accepted.next,
struct rxrpc_call, accept_link);
write_unlock(&rx->call_lock);
/* We need to gain the mutex from the interrupt handler without
* upsetting lockdep, so we have to release it there and take it here.
* We are, however, still holding the socket lock, so other accepts
* must wait for us and no one can add the user ID behind our backs.
*/
if (mutex_lock_interruptible(&call->user_mutex) < 0) {
release_sock(&rx->sk);
kleave(" = -ERESTARTSYS");
return ERR_PTR(-ERESTARTSYS);
}
write_lock(&rx->call_lock);
list_del_init(&call->accept_link);
sk_acceptq_removed(&rx->sk);
rxrpc_see_call(call);
/* Find the user ID insertion point. */
pp = &rx->calls.rb_node;
parent = NULL;
while (*pp) {
parent = *pp;
call = rb_entry(parent, struct rxrpc_call, sock_node);
if (user_call_ID < call->user_call_ID)
pp = &(*pp)->rb_left;
else if (user_call_ID > call->user_call_ID)
pp = &(*pp)->rb_right;
else
BUG();
}
write_lock_bh(&call->state_lock);
switch (call->state) {
case RXRPC_CALL_SERVER_ACCEPTING:
call->state = RXRPC_CALL_SERVER_RECV_REQUEST;
break;
case RXRPC_CALL_COMPLETE:
ret = call->error;
goto out_release;
default:
BUG();
}
/* formalise the acceptance */
call->notify_rx = notify_rx;
call->user_call_ID = user_call_ID;
rxrpc_get_call(call, rxrpc_call_got_userid);
rb_link_node(&call->sock_node, parent, pp);
rb_insert_color(&call->sock_node, &rx->calls);
if (test_and_set_bit(RXRPC_CALL_HAS_USERID, &call->flags))
BUG();
write_unlock_bh(&call->state_lock);
write_unlock(&rx->call_lock);
rxrpc_notify_socket(call);
rxrpc_service_prealloc(rx, GFP_KERNEL);
release_sock(&rx->sk);
_leave(" = %p{%d}", call, call->debug_id);
return call;
out_release:
_debug("release %p", call);
write_unlock_bh(&call->state_lock);
write_unlock(&rx->call_lock);
rxrpc_release_call(rx, call);
rxrpc_put_call(call, rxrpc_call_put);
goto out;
id_in_use:
ret = -EBADSLT;
write_unlock(&rx->call_lock);
out:
rxrpc_service_prealloc(rx, GFP_KERNEL);
release_sock(&rx->sk);
_leave(" = %d", ret);
return ERR_PTR(ret);
}
/*
* Handle rejection of a call by userspace
* - reject the call at the front of the queue
*/
int rxrpc_reject_call(struct rxrpc_sock *rx)
{
struct rxrpc_call *call;
bool abort = false;
int ret;
_enter("");
ASSERT(!irqs_disabled());
write_lock(&rx->call_lock);
if (list_empty(&rx->to_be_accepted)) {
write_unlock(&rx->call_lock);
return -ENODATA;
}
/* Dequeue the first call and check it's still valid. We gain
* responsibility for the queue's reference.
*/
call = list_entry(rx->to_be_accepted.next,
struct rxrpc_call, accept_link);
list_del_init(&call->accept_link);
sk_acceptq_removed(&rx->sk);
rxrpc_see_call(call);
write_lock_bh(&call->state_lock);
switch (call->state) {
case RXRPC_CALL_SERVER_ACCEPTING:
__rxrpc_abort_call("REJ", call, 1, RX_USER_ABORT, -ECONNABORTED);
abort = true;
/* fall through */
case RXRPC_CALL_COMPLETE:
ret = call->error;
goto out_discard;
default:
BUG();
}
out_discard:
write_unlock_bh(&call->state_lock);
write_unlock(&rx->call_lock);
if (abort) {
rxrpc_send_abort_packet(call);
rxrpc_release_call(rx, call);
rxrpc_put_call(call, rxrpc_call_put);
}
rxrpc_service_prealloc(rx, GFP_KERNEL);
_leave(" = %d", ret);
return ret;
}
/*
* rxrpc_kernel_charge_accept - Charge up socket with preallocated calls
* @sock: The socket on which to preallocate
* @notify_rx: Event notification function for the call
* @user_attach_call: Func to attach call to user_call_ID
* @user_call_ID: The tag to attach to the preallocated call
* @gfp: The allocation conditions.
* @debug_id: The tracing debug ID.
*
* Charge up the socket with preallocated calls, each with a user ID. A
* function should be provided to effect the attachment from the user's side.
* The user is given a ref to hold on the call.
*
* Note that the call may be come connected before this function returns.
*/
int rxrpc_kernel_charge_accept(struct socket *sock,
rxrpc_notify_rx_t notify_rx,
rxrpc_user_attach_call_t user_attach_call,
unsigned long user_call_ID, gfp_t gfp,
unsigned int debug_id)
{
struct rxrpc_sock *rx = rxrpc_sk(sock->sk);
struct rxrpc_backlog *b = rx->backlog;
if (sock->sk->sk_state == RXRPC_CLOSE)
return -ESHUTDOWN;
return rxrpc_service_prealloc_one(rx, b, notify_rx,
user_attach_call, user_call_ID,
gfp, debug_id);
}
EXPORT_SYMBOL(rxrpc_kernel_charge_accept);