forked from luck/tmp_suning_uos_patched
fb67e14fc9
Retry #PF for softmmu only when the current vcpu has the same cr3 as the time when #PF occurs Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com> Signed-off-by: Avi Kivity <avi@redhat.com>
6334 lines
156 KiB
C
6334 lines
156 KiB
C
/*
|
|
* Kernel-based Virtual Machine driver for Linux
|
|
*
|
|
* derived from drivers/kvm/kvm_main.c
|
|
*
|
|
* Copyright (C) 2006 Qumranet, Inc.
|
|
* Copyright (C) 2008 Qumranet, Inc.
|
|
* Copyright IBM Corporation, 2008
|
|
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
|
|
*
|
|
* Authors:
|
|
* Avi Kivity <avi@qumranet.com>
|
|
* Yaniv Kamay <yaniv@qumranet.com>
|
|
* Amit Shah <amit.shah@qumranet.com>
|
|
* Ben-Ami Yassour <benami@il.ibm.com>
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2. See
|
|
* the COPYING file in the top-level directory.
|
|
*
|
|
*/
|
|
|
|
#include <linux/kvm_host.h>
|
|
#include "irq.h"
|
|
#include "mmu.h"
|
|
#include "i8254.h"
|
|
#include "tss.h"
|
|
#include "kvm_cache_regs.h"
|
|
#include "x86.h"
|
|
|
|
#include <linux/clocksource.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/kvm.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/iommu.h>
|
|
#include <linux/intel-iommu.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/user-return-notifier.h>
|
|
#include <linux/srcu.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/perf_event.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/hash.h>
|
|
#include <trace/events/kvm.h>
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include "trace.h"
|
|
|
|
#include <asm/debugreg.h>
|
|
#include <asm/msr.h>
|
|
#include <asm/desc.h>
|
|
#include <asm/mtrr.h>
|
|
#include <asm/mce.h>
|
|
#include <asm/i387.h>
|
|
#include <asm/xcr.h>
|
|
#include <asm/pvclock.h>
|
|
#include <asm/div64.h>
|
|
|
|
#define MAX_IO_MSRS 256
|
|
#define CR0_RESERVED_BITS \
|
|
(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
|
|
| X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
|
|
| X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
|
|
#define CR4_RESERVED_BITS \
|
|
(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
|
|
| X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
|
|
| X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
|
|
| X86_CR4_OSXSAVE \
|
|
| X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
|
|
|
|
#define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
|
|
|
|
#define KVM_MAX_MCE_BANKS 32
|
|
#define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
|
|
|
|
/* EFER defaults:
|
|
* - enable syscall per default because its emulated by KVM
|
|
* - enable LME and LMA per default on 64 bit KVM
|
|
*/
|
|
#ifdef CONFIG_X86_64
|
|
static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
|
|
#else
|
|
static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
|
|
#endif
|
|
|
|
#define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
|
|
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
|
|
|
|
static void update_cr8_intercept(struct kvm_vcpu *vcpu);
|
|
static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
|
|
struct kvm_cpuid_entry2 __user *entries);
|
|
|
|
struct kvm_x86_ops *kvm_x86_ops;
|
|
EXPORT_SYMBOL_GPL(kvm_x86_ops);
|
|
|
|
int ignore_msrs = 0;
|
|
module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
|
|
|
|
#define KVM_NR_SHARED_MSRS 16
|
|
|
|
struct kvm_shared_msrs_global {
|
|
int nr;
|
|
u32 msrs[KVM_NR_SHARED_MSRS];
|
|
};
|
|
|
|
struct kvm_shared_msrs {
|
|
struct user_return_notifier urn;
|
|
bool registered;
|
|
struct kvm_shared_msr_values {
|
|
u64 host;
|
|
u64 curr;
|
|
} values[KVM_NR_SHARED_MSRS];
|
|
};
|
|
|
|
static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
|
|
static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
|
|
|
|
struct kvm_stats_debugfs_item debugfs_entries[] = {
|
|
{ "pf_fixed", VCPU_STAT(pf_fixed) },
|
|
{ "pf_guest", VCPU_STAT(pf_guest) },
|
|
{ "tlb_flush", VCPU_STAT(tlb_flush) },
|
|
{ "invlpg", VCPU_STAT(invlpg) },
|
|
{ "exits", VCPU_STAT(exits) },
|
|
{ "io_exits", VCPU_STAT(io_exits) },
|
|
{ "mmio_exits", VCPU_STAT(mmio_exits) },
|
|
{ "signal_exits", VCPU_STAT(signal_exits) },
|
|
{ "irq_window", VCPU_STAT(irq_window_exits) },
|
|
{ "nmi_window", VCPU_STAT(nmi_window_exits) },
|
|
{ "halt_exits", VCPU_STAT(halt_exits) },
|
|
{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
|
|
{ "hypercalls", VCPU_STAT(hypercalls) },
|
|
{ "request_irq", VCPU_STAT(request_irq_exits) },
|
|
{ "irq_exits", VCPU_STAT(irq_exits) },
|
|
{ "host_state_reload", VCPU_STAT(host_state_reload) },
|
|
{ "efer_reload", VCPU_STAT(efer_reload) },
|
|
{ "fpu_reload", VCPU_STAT(fpu_reload) },
|
|
{ "insn_emulation", VCPU_STAT(insn_emulation) },
|
|
{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
|
|
{ "irq_injections", VCPU_STAT(irq_injections) },
|
|
{ "nmi_injections", VCPU_STAT(nmi_injections) },
|
|
{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
|
|
{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
|
|
{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
|
|
{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
|
|
{ "mmu_flooded", VM_STAT(mmu_flooded) },
|
|
{ "mmu_recycled", VM_STAT(mmu_recycled) },
|
|
{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
|
|
{ "mmu_unsync", VM_STAT(mmu_unsync) },
|
|
{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
|
|
{ "largepages", VM_STAT(lpages) },
|
|
{ NULL }
|
|
};
|
|
|
|
u64 __read_mostly host_xcr0;
|
|
|
|
static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
|
|
{
|
|
int i;
|
|
for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
|
|
vcpu->arch.apf.gfns[i] = ~0;
|
|
}
|
|
|
|
static void kvm_on_user_return(struct user_return_notifier *urn)
|
|
{
|
|
unsigned slot;
|
|
struct kvm_shared_msrs *locals
|
|
= container_of(urn, struct kvm_shared_msrs, urn);
|
|
struct kvm_shared_msr_values *values;
|
|
|
|
for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
|
|
values = &locals->values[slot];
|
|
if (values->host != values->curr) {
|
|
wrmsrl(shared_msrs_global.msrs[slot], values->host);
|
|
values->curr = values->host;
|
|
}
|
|
}
|
|
locals->registered = false;
|
|
user_return_notifier_unregister(urn);
|
|
}
|
|
|
|
static void shared_msr_update(unsigned slot, u32 msr)
|
|
{
|
|
struct kvm_shared_msrs *smsr;
|
|
u64 value;
|
|
|
|
smsr = &__get_cpu_var(shared_msrs);
|
|
/* only read, and nobody should modify it at this time,
|
|
* so don't need lock */
|
|
if (slot >= shared_msrs_global.nr) {
|
|
printk(KERN_ERR "kvm: invalid MSR slot!");
|
|
return;
|
|
}
|
|
rdmsrl_safe(msr, &value);
|
|
smsr->values[slot].host = value;
|
|
smsr->values[slot].curr = value;
|
|
}
|
|
|
|
void kvm_define_shared_msr(unsigned slot, u32 msr)
|
|
{
|
|
if (slot >= shared_msrs_global.nr)
|
|
shared_msrs_global.nr = slot + 1;
|
|
shared_msrs_global.msrs[slot] = msr;
|
|
/* we need ensured the shared_msr_global have been updated */
|
|
smp_wmb();
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
|
|
|
|
static void kvm_shared_msr_cpu_online(void)
|
|
{
|
|
unsigned i;
|
|
|
|
for (i = 0; i < shared_msrs_global.nr; ++i)
|
|
shared_msr_update(i, shared_msrs_global.msrs[i]);
|
|
}
|
|
|
|
void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
|
|
{
|
|
struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
|
|
|
|
if (((value ^ smsr->values[slot].curr) & mask) == 0)
|
|
return;
|
|
smsr->values[slot].curr = value;
|
|
wrmsrl(shared_msrs_global.msrs[slot], value);
|
|
if (!smsr->registered) {
|
|
smsr->urn.on_user_return = kvm_on_user_return;
|
|
user_return_notifier_register(&smsr->urn);
|
|
smsr->registered = true;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
|
|
|
|
static void drop_user_return_notifiers(void *ignore)
|
|
{
|
|
struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
|
|
|
|
if (smsr->registered)
|
|
kvm_on_user_return(&smsr->urn);
|
|
}
|
|
|
|
u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (irqchip_in_kernel(vcpu->kvm))
|
|
return vcpu->arch.apic_base;
|
|
else
|
|
return vcpu->arch.apic_base;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_get_apic_base);
|
|
|
|
void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
|
|
{
|
|
/* TODO: reserve bits check */
|
|
if (irqchip_in_kernel(vcpu->kvm))
|
|
kvm_lapic_set_base(vcpu, data);
|
|
else
|
|
vcpu->arch.apic_base = data;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_set_apic_base);
|
|
|
|
#define EXCPT_BENIGN 0
|
|
#define EXCPT_CONTRIBUTORY 1
|
|
#define EXCPT_PF 2
|
|
|
|
static int exception_class(int vector)
|
|
{
|
|
switch (vector) {
|
|
case PF_VECTOR:
|
|
return EXCPT_PF;
|
|
case DE_VECTOR:
|
|
case TS_VECTOR:
|
|
case NP_VECTOR:
|
|
case SS_VECTOR:
|
|
case GP_VECTOR:
|
|
return EXCPT_CONTRIBUTORY;
|
|
default:
|
|
break;
|
|
}
|
|
return EXCPT_BENIGN;
|
|
}
|
|
|
|
static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
|
|
unsigned nr, bool has_error, u32 error_code,
|
|
bool reinject)
|
|
{
|
|
u32 prev_nr;
|
|
int class1, class2;
|
|
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
|
|
if (!vcpu->arch.exception.pending) {
|
|
queue:
|
|
vcpu->arch.exception.pending = true;
|
|
vcpu->arch.exception.has_error_code = has_error;
|
|
vcpu->arch.exception.nr = nr;
|
|
vcpu->arch.exception.error_code = error_code;
|
|
vcpu->arch.exception.reinject = reinject;
|
|
return;
|
|
}
|
|
|
|
/* to check exception */
|
|
prev_nr = vcpu->arch.exception.nr;
|
|
if (prev_nr == DF_VECTOR) {
|
|
/* triple fault -> shutdown */
|
|
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
|
|
return;
|
|
}
|
|
class1 = exception_class(prev_nr);
|
|
class2 = exception_class(nr);
|
|
if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
|
|
|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
|
|
/* generate double fault per SDM Table 5-5 */
|
|
vcpu->arch.exception.pending = true;
|
|
vcpu->arch.exception.has_error_code = true;
|
|
vcpu->arch.exception.nr = DF_VECTOR;
|
|
vcpu->arch.exception.error_code = 0;
|
|
} else
|
|
/* replace previous exception with a new one in a hope
|
|
that instruction re-execution will regenerate lost
|
|
exception */
|
|
goto queue;
|
|
}
|
|
|
|
void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
|
|
{
|
|
kvm_multiple_exception(vcpu, nr, false, 0, false);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_queue_exception);
|
|
|
|
void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
|
|
{
|
|
kvm_multiple_exception(vcpu, nr, false, 0, true);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_requeue_exception);
|
|
|
|
void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
|
|
{
|
|
++vcpu->stat.pf_guest;
|
|
vcpu->arch.cr2 = fault->address;
|
|
kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
|
|
}
|
|
|
|
void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
|
|
{
|
|
if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
|
|
vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
|
|
else
|
|
vcpu->arch.mmu.inject_page_fault(vcpu, fault);
|
|
}
|
|
|
|
void kvm_inject_nmi(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
vcpu->arch.nmi_pending = 1;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_inject_nmi);
|
|
|
|
void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
|
|
{
|
|
kvm_multiple_exception(vcpu, nr, true, error_code, false);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
|
|
|
|
void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
|
|
{
|
|
kvm_multiple_exception(vcpu, nr, true, error_code, true);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
|
|
|
|
/*
|
|
* Checks if cpl <= required_cpl; if true, return true. Otherwise queue
|
|
* a #GP and return false.
|
|
*/
|
|
bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
|
|
{
|
|
if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
|
|
return true;
|
|
kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
|
|
return false;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_require_cpl);
|
|
|
|
/*
|
|
* This function will be used to read from the physical memory of the currently
|
|
* running guest. The difference to kvm_read_guest_page is that this function
|
|
* can read from guest physical or from the guest's guest physical memory.
|
|
*/
|
|
int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
|
|
gfn_t ngfn, void *data, int offset, int len,
|
|
u32 access)
|
|
{
|
|
gfn_t real_gfn;
|
|
gpa_t ngpa;
|
|
|
|
ngpa = gfn_to_gpa(ngfn);
|
|
real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
|
|
if (real_gfn == UNMAPPED_GVA)
|
|
return -EFAULT;
|
|
|
|
real_gfn = gpa_to_gfn(real_gfn);
|
|
|
|
return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
|
|
|
|
int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
|
|
void *data, int offset, int len, u32 access)
|
|
{
|
|
return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
|
|
data, offset, len, access);
|
|
}
|
|
|
|
/*
|
|
* Load the pae pdptrs. Return true is they are all valid.
|
|
*/
|
|
int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
|
|
{
|
|
gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
|
|
unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
|
|
int i;
|
|
int ret;
|
|
u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
|
|
|
|
ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
|
|
offset * sizeof(u64), sizeof(pdpte),
|
|
PFERR_USER_MASK|PFERR_WRITE_MASK);
|
|
if (ret < 0) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
|
|
if (is_present_gpte(pdpte[i]) &&
|
|
(pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
}
|
|
ret = 1;
|
|
|
|
memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
|
|
__set_bit(VCPU_EXREG_PDPTR,
|
|
(unsigned long *)&vcpu->arch.regs_avail);
|
|
__set_bit(VCPU_EXREG_PDPTR,
|
|
(unsigned long *)&vcpu->arch.regs_dirty);
|
|
out:
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(load_pdptrs);
|
|
|
|
static bool pdptrs_changed(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
|
|
bool changed = true;
|
|
int offset;
|
|
gfn_t gfn;
|
|
int r;
|
|
|
|
if (is_long_mode(vcpu) || !is_pae(vcpu))
|
|
return false;
|
|
|
|
if (!test_bit(VCPU_EXREG_PDPTR,
|
|
(unsigned long *)&vcpu->arch.regs_avail))
|
|
return true;
|
|
|
|
gfn = (vcpu->arch.cr3 & ~31u) >> PAGE_SHIFT;
|
|
offset = (vcpu->arch.cr3 & ~31u) & (PAGE_SIZE - 1);
|
|
r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
|
|
PFERR_USER_MASK | PFERR_WRITE_MASK);
|
|
if (r < 0)
|
|
goto out;
|
|
changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
|
|
out:
|
|
|
|
return changed;
|
|
}
|
|
|
|
int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
|
|
{
|
|
unsigned long old_cr0 = kvm_read_cr0(vcpu);
|
|
unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
|
|
X86_CR0_CD | X86_CR0_NW;
|
|
|
|
cr0 |= X86_CR0_ET;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
if (cr0 & 0xffffffff00000000UL)
|
|
return 1;
|
|
#endif
|
|
|
|
cr0 &= ~CR0_RESERVED_BITS;
|
|
|
|
if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
|
|
return 1;
|
|
|
|
if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
|
|
return 1;
|
|
|
|
if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
|
|
#ifdef CONFIG_X86_64
|
|
if ((vcpu->arch.efer & EFER_LME)) {
|
|
int cs_db, cs_l;
|
|
|
|
if (!is_pae(vcpu))
|
|
return 1;
|
|
kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
|
|
if (cs_l)
|
|
return 1;
|
|
} else
|
|
#endif
|
|
if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
|
|
vcpu->arch.cr3))
|
|
return 1;
|
|
}
|
|
|
|
kvm_x86_ops->set_cr0(vcpu, cr0);
|
|
|
|
if ((cr0 ^ old_cr0) & X86_CR0_PG)
|
|
kvm_clear_async_pf_completion_queue(vcpu);
|
|
|
|
if ((cr0 ^ old_cr0) & update_bits)
|
|
kvm_mmu_reset_context(vcpu);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_set_cr0);
|
|
|
|
void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
|
|
{
|
|
(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_lmsw);
|
|
|
|
int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
|
|
{
|
|
u64 xcr0;
|
|
|
|
/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
|
|
if (index != XCR_XFEATURE_ENABLED_MASK)
|
|
return 1;
|
|
xcr0 = xcr;
|
|
if (kvm_x86_ops->get_cpl(vcpu) != 0)
|
|
return 1;
|
|
if (!(xcr0 & XSTATE_FP))
|
|
return 1;
|
|
if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
|
|
return 1;
|
|
if (xcr0 & ~host_xcr0)
|
|
return 1;
|
|
vcpu->arch.xcr0 = xcr0;
|
|
vcpu->guest_xcr0_loaded = 0;
|
|
return 0;
|
|
}
|
|
|
|
int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
|
|
{
|
|
if (__kvm_set_xcr(vcpu, index, xcr)) {
|
|
kvm_inject_gp(vcpu, 0);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_set_xcr);
|
|
|
|
static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_cpuid_entry2 *best;
|
|
|
|
best = kvm_find_cpuid_entry(vcpu, 1, 0);
|
|
return best && (best->ecx & bit(X86_FEATURE_XSAVE));
|
|
}
|
|
|
|
static void update_cpuid(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_cpuid_entry2 *best;
|
|
|
|
best = kvm_find_cpuid_entry(vcpu, 1, 0);
|
|
if (!best)
|
|
return;
|
|
|
|
/* Update OSXSAVE bit */
|
|
if (cpu_has_xsave && best->function == 0x1) {
|
|
best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
|
|
if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
|
|
best->ecx |= bit(X86_FEATURE_OSXSAVE);
|
|
}
|
|
}
|
|
|
|
int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
|
|
{
|
|
unsigned long old_cr4 = kvm_read_cr4(vcpu);
|
|
unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
|
|
|
|
if (cr4 & CR4_RESERVED_BITS)
|
|
return 1;
|
|
|
|
if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
|
|
return 1;
|
|
|
|
if (is_long_mode(vcpu)) {
|
|
if (!(cr4 & X86_CR4_PAE))
|
|
return 1;
|
|
} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
|
|
&& ((cr4 ^ old_cr4) & pdptr_bits)
|
|
&& !load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3))
|
|
return 1;
|
|
|
|
if (cr4 & X86_CR4_VMXE)
|
|
return 1;
|
|
|
|
kvm_x86_ops->set_cr4(vcpu, cr4);
|
|
|
|
if ((cr4 ^ old_cr4) & pdptr_bits)
|
|
kvm_mmu_reset_context(vcpu);
|
|
|
|
if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
|
|
update_cpuid(vcpu);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_set_cr4);
|
|
|
|
int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
|
|
{
|
|
if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
|
|
kvm_mmu_sync_roots(vcpu);
|
|
kvm_mmu_flush_tlb(vcpu);
|
|
return 0;
|
|
}
|
|
|
|
if (is_long_mode(vcpu)) {
|
|
if (cr3 & CR3_L_MODE_RESERVED_BITS)
|
|
return 1;
|
|
} else {
|
|
if (is_pae(vcpu)) {
|
|
if (cr3 & CR3_PAE_RESERVED_BITS)
|
|
return 1;
|
|
if (is_paging(vcpu) &&
|
|
!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
|
|
return 1;
|
|
}
|
|
/*
|
|
* We don't check reserved bits in nonpae mode, because
|
|
* this isn't enforced, and VMware depends on this.
|
|
*/
|
|
}
|
|
|
|
/*
|
|
* Does the new cr3 value map to physical memory? (Note, we
|
|
* catch an invalid cr3 even in real-mode, because it would
|
|
* cause trouble later on when we turn on paging anyway.)
|
|
*
|
|
* A real CPU would silently accept an invalid cr3 and would
|
|
* attempt to use it - with largely undefined (and often hard
|
|
* to debug) behavior on the guest side.
|
|
*/
|
|
if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
|
|
return 1;
|
|
vcpu->arch.cr3 = cr3;
|
|
vcpu->arch.mmu.new_cr3(vcpu);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_set_cr3);
|
|
|
|
int __kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
|
|
{
|
|
if (cr8 & CR8_RESERVED_BITS)
|
|
return 1;
|
|
if (irqchip_in_kernel(vcpu->kvm))
|
|
kvm_lapic_set_tpr(vcpu, cr8);
|
|
else
|
|
vcpu->arch.cr8 = cr8;
|
|
return 0;
|
|
}
|
|
|
|
void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
|
|
{
|
|
if (__kvm_set_cr8(vcpu, cr8))
|
|
kvm_inject_gp(vcpu, 0);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_set_cr8);
|
|
|
|
unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (irqchip_in_kernel(vcpu->kvm))
|
|
return kvm_lapic_get_cr8(vcpu);
|
|
else
|
|
return vcpu->arch.cr8;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_get_cr8);
|
|
|
|
static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
|
|
{
|
|
switch (dr) {
|
|
case 0 ... 3:
|
|
vcpu->arch.db[dr] = val;
|
|
if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
|
|
vcpu->arch.eff_db[dr] = val;
|
|
break;
|
|
case 4:
|
|
if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
|
|
return 1; /* #UD */
|
|
/* fall through */
|
|
case 6:
|
|
if (val & 0xffffffff00000000ULL)
|
|
return -1; /* #GP */
|
|
vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
|
|
break;
|
|
case 5:
|
|
if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
|
|
return 1; /* #UD */
|
|
/* fall through */
|
|
default: /* 7 */
|
|
if (val & 0xffffffff00000000ULL)
|
|
return -1; /* #GP */
|
|
vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
|
|
if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
|
|
kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
|
|
vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
|
|
}
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
|
|
{
|
|
int res;
|
|
|
|
res = __kvm_set_dr(vcpu, dr, val);
|
|
if (res > 0)
|
|
kvm_queue_exception(vcpu, UD_VECTOR);
|
|
else if (res < 0)
|
|
kvm_inject_gp(vcpu, 0);
|
|
|
|
return res;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_set_dr);
|
|
|
|
static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
|
|
{
|
|
switch (dr) {
|
|
case 0 ... 3:
|
|
*val = vcpu->arch.db[dr];
|
|
break;
|
|
case 4:
|
|
if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
|
|
return 1;
|
|
/* fall through */
|
|
case 6:
|
|
*val = vcpu->arch.dr6;
|
|
break;
|
|
case 5:
|
|
if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
|
|
return 1;
|
|
/* fall through */
|
|
default: /* 7 */
|
|
*val = vcpu->arch.dr7;
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
|
|
{
|
|
if (_kvm_get_dr(vcpu, dr, val)) {
|
|
kvm_queue_exception(vcpu, UD_VECTOR);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_get_dr);
|
|
|
|
/*
|
|
* List of msr numbers which we expose to userspace through KVM_GET_MSRS
|
|
* and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
|
|
*
|
|
* This list is modified at module load time to reflect the
|
|
* capabilities of the host cpu. This capabilities test skips MSRs that are
|
|
* kvm-specific. Those are put in the beginning of the list.
|
|
*/
|
|
|
|
#define KVM_SAVE_MSRS_BEGIN 8
|
|
static u32 msrs_to_save[] = {
|
|
MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
|
|
MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
|
|
HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
|
|
HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN,
|
|
MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
|
|
MSR_STAR,
|
|
#ifdef CONFIG_X86_64
|
|
MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
|
|
#endif
|
|
MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
|
|
};
|
|
|
|
static unsigned num_msrs_to_save;
|
|
|
|
static u32 emulated_msrs[] = {
|
|
MSR_IA32_MISC_ENABLE,
|
|
MSR_IA32_MCG_STATUS,
|
|
MSR_IA32_MCG_CTL,
|
|
};
|
|
|
|
static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
|
|
{
|
|
u64 old_efer = vcpu->arch.efer;
|
|
|
|
if (efer & efer_reserved_bits)
|
|
return 1;
|
|
|
|
if (is_paging(vcpu)
|
|
&& (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
|
|
return 1;
|
|
|
|
if (efer & EFER_FFXSR) {
|
|
struct kvm_cpuid_entry2 *feat;
|
|
|
|
feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
|
|
if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
|
|
return 1;
|
|
}
|
|
|
|
if (efer & EFER_SVME) {
|
|
struct kvm_cpuid_entry2 *feat;
|
|
|
|
feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
|
|
if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
|
|
return 1;
|
|
}
|
|
|
|
efer &= ~EFER_LMA;
|
|
efer |= vcpu->arch.efer & EFER_LMA;
|
|
|
|
kvm_x86_ops->set_efer(vcpu, efer);
|
|
|
|
vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
|
|
|
|
/* Update reserved bits */
|
|
if ((efer ^ old_efer) & EFER_NX)
|
|
kvm_mmu_reset_context(vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void kvm_enable_efer_bits(u64 mask)
|
|
{
|
|
efer_reserved_bits &= ~mask;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
|
|
|
|
|
|
/*
|
|
* Writes msr value into into the appropriate "register".
|
|
* Returns 0 on success, non-0 otherwise.
|
|
* Assumes vcpu_load() was already called.
|
|
*/
|
|
int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
|
|
{
|
|
return kvm_x86_ops->set_msr(vcpu, msr_index, data);
|
|
}
|
|
|
|
/*
|
|
* Adapt set_msr() to msr_io()'s calling convention
|
|
*/
|
|
static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
|
|
{
|
|
return kvm_set_msr(vcpu, index, *data);
|
|
}
|
|
|
|
static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
|
|
{
|
|
int version;
|
|
int r;
|
|
struct pvclock_wall_clock wc;
|
|
struct timespec boot;
|
|
|
|
if (!wall_clock)
|
|
return;
|
|
|
|
r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
|
|
if (r)
|
|
return;
|
|
|
|
if (version & 1)
|
|
++version; /* first time write, random junk */
|
|
|
|
++version;
|
|
|
|
kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
|
|
|
|
/*
|
|
* The guest calculates current wall clock time by adding
|
|
* system time (updated by kvm_guest_time_update below) to the
|
|
* wall clock specified here. guest system time equals host
|
|
* system time for us, thus we must fill in host boot time here.
|
|
*/
|
|
getboottime(&boot);
|
|
|
|
wc.sec = boot.tv_sec;
|
|
wc.nsec = boot.tv_nsec;
|
|
wc.version = version;
|
|
|
|
kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
|
|
|
|
version++;
|
|
kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
|
|
}
|
|
|
|
static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
|
|
{
|
|
uint32_t quotient, remainder;
|
|
|
|
/* Don't try to replace with do_div(), this one calculates
|
|
* "(dividend << 32) / divisor" */
|
|
__asm__ ( "divl %4"
|
|
: "=a" (quotient), "=d" (remainder)
|
|
: "0" (0), "1" (dividend), "r" (divisor) );
|
|
return quotient;
|
|
}
|
|
|
|
static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
|
|
s8 *pshift, u32 *pmultiplier)
|
|
{
|
|
uint64_t scaled64;
|
|
int32_t shift = 0;
|
|
uint64_t tps64;
|
|
uint32_t tps32;
|
|
|
|
tps64 = base_khz * 1000LL;
|
|
scaled64 = scaled_khz * 1000LL;
|
|
while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
|
|
tps64 >>= 1;
|
|
shift--;
|
|
}
|
|
|
|
tps32 = (uint32_t)tps64;
|
|
while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
|
|
if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
|
|
scaled64 >>= 1;
|
|
else
|
|
tps32 <<= 1;
|
|
shift++;
|
|
}
|
|
|
|
*pshift = shift;
|
|
*pmultiplier = div_frac(scaled64, tps32);
|
|
|
|
pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
|
|
__func__, base_khz, scaled_khz, shift, *pmultiplier);
|
|
}
|
|
|
|
static inline u64 get_kernel_ns(void)
|
|
{
|
|
struct timespec ts;
|
|
|
|
WARN_ON(preemptible());
|
|
ktime_get_ts(&ts);
|
|
monotonic_to_bootbased(&ts);
|
|
return timespec_to_ns(&ts);
|
|
}
|
|
|
|
static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
|
|
unsigned long max_tsc_khz;
|
|
|
|
static inline int kvm_tsc_changes_freq(void)
|
|
{
|
|
int cpu = get_cpu();
|
|
int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
|
|
cpufreq_quick_get(cpu) != 0;
|
|
put_cpu();
|
|
return ret;
|
|
}
|
|
|
|
static inline u64 nsec_to_cycles(u64 nsec)
|
|
{
|
|
u64 ret;
|
|
|
|
WARN_ON(preemptible());
|
|
if (kvm_tsc_changes_freq())
|
|
printk_once(KERN_WARNING
|
|
"kvm: unreliable cycle conversion on adjustable rate TSC\n");
|
|
ret = nsec * __get_cpu_var(cpu_tsc_khz);
|
|
do_div(ret, USEC_PER_SEC);
|
|
return ret;
|
|
}
|
|
|
|
static void kvm_arch_set_tsc_khz(struct kvm *kvm, u32 this_tsc_khz)
|
|
{
|
|
/* Compute a scale to convert nanoseconds in TSC cycles */
|
|
kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
|
|
&kvm->arch.virtual_tsc_shift,
|
|
&kvm->arch.virtual_tsc_mult);
|
|
kvm->arch.virtual_tsc_khz = this_tsc_khz;
|
|
}
|
|
|
|
static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
|
|
{
|
|
u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
|
|
vcpu->kvm->arch.virtual_tsc_mult,
|
|
vcpu->kvm->arch.virtual_tsc_shift);
|
|
tsc += vcpu->arch.last_tsc_write;
|
|
return tsc;
|
|
}
|
|
|
|
void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
u64 offset, ns, elapsed;
|
|
unsigned long flags;
|
|
s64 sdiff;
|
|
|
|
spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
|
|
offset = data - native_read_tsc();
|
|
ns = get_kernel_ns();
|
|
elapsed = ns - kvm->arch.last_tsc_nsec;
|
|
sdiff = data - kvm->arch.last_tsc_write;
|
|
if (sdiff < 0)
|
|
sdiff = -sdiff;
|
|
|
|
/*
|
|
* Special case: close write to TSC within 5 seconds of
|
|
* another CPU is interpreted as an attempt to synchronize
|
|
* The 5 seconds is to accomodate host load / swapping as
|
|
* well as any reset of TSC during the boot process.
|
|
*
|
|
* In that case, for a reliable TSC, we can match TSC offsets,
|
|
* or make a best guest using elapsed value.
|
|
*/
|
|
if (sdiff < nsec_to_cycles(5ULL * NSEC_PER_SEC) &&
|
|
elapsed < 5ULL * NSEC_PER_SEC) {
|
|
if (!check_tsc_unstable()) {
|
|
offset = kvm->arch.last_tsc_offset;
|
|
pr_debug("kvm: matched tsc offset for %llu\n", data);
|
|
} else {
|
|
u64 delta = nsec_to_cycles(elapsed);
|
|
offset += delta;
|
|
pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
|
|
}
|
|
ns = kvm->arch.last_tsc_nsec;
|
|
}
|
|
kvm->arch.last_tsc_nsec = ns;
|
|
kvm->arch.last_tsc_write = data;
|
|
kvm->arch.last_tsc_offset = offset;
|
|
kvm_x86_ops->write_tsc_offset(vcpu, offset);
|
|
spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
|
|
|
|
/* Reset of TSC must disable overshoot protection below */
|
|
vcpu->arch.hv_clock.tsc_timestamp = 0;
|
|
vcpu->arch.last_tsc_write = data;
|
|
vcpu->arch.last_tsc_nsec = ns;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_write_tsc);
|
|
|
|
static int kvm_guest_time_update(struct kvm_vcpu *v)
|
|
{
|
|
unsigned long flags;
|
|
struct kvm_vcpu_arch *vcpu = &v->arch;
|
|
void *shared_kaddr;
|
|
unsigned long this_tsc_khz;
|
|
s64 kernel_ns, max_kernel_ns;
|
|
u64 tsc_timestamp;
|
|
|
|
/* Keep irq disabled to prevent changes to the clock */
|
|
local_irq_save(flags);
|
|
kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
|
|
kernel_ns = get_kernel_ns();
|
|
this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
|
|
|
|
if (unlikely(this_tsc_khz == 0)) {
|
|
local_irq_restore(flags);
|
|
kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* We may have to catch up the TSC to match elapsed wall clock
|
|
* time for two reasons, even if kvmclock is used.
|
|
* 1) CPU could have been running below the maximum TSC rate
|
|
* 2) Broken TSC compensation resets the base at each VCPU
|
|
* entry to avoid unknown leaps of TSC even when running
|
|
* again on the same CPU. This may cause apparent elapsed
|
|
* time to disappear, and the guest to stand still or run
|
|
* very slowly.
|
|
*/
|
|
if (vcpu->tsc_catchup) {
|
|
u64 tsc = compute_guest_tsc(v, kernel_ns);
|
|
if (tsc > tsc_timestamp) {
|
|
kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
|
|
tsc_timestamp = tsc;
|
|
}
|
|
}
|
|
|
|
local_irq_restore(flags);
|
|
|
|
if (!vcpu->time_page)
|
|
return 0;
|
|
|
|
/*
|
|
* Time as measured by the TSC may go backwards when resetting the base
|
|
* tsc_timestamp. The reason for this is that the TSC resolution is
|
|
* higher than the resolution of the other clock scales. Thus, many
|
|
* possible measurments of the TSC correspond to one measurement of any
|
|
* other clock, and so a spread of values is possible. This is not a
|
|
* problem for the computation of the nanosecond clock; with TSC rates
|
|
* around 1GHZ, there can only be a few cycles which correspond to one
|
|
* nanosecond value, and any path through this code will inevitably
|
|
* take longer than that. However, with the kernel_ns value itself,
|
|
* the precision may be much lower, down to HZ granularity. If the
|
|
* first sampling of TSC against kernel_ns ends in the low part of the
|
|
* range, and the second in the high end of the range, we can get:
|
|
*
|
|
* (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
|
|
*
|
|
* As the sampling errors potentially range in the thousands of cycles,
|
|
* it is possible such a time value has already been observed by the
|
|
* guest. To protect against this, we must compute the system time as
|
|
* observed by the guest and ensure the new system time is greater.
|
|
*/
|
|
max_kernel_ns = 0;
|
|
if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
|
|
max_kernel_ns = vcpu->last_guest_tsc -
|
|
vcpu->hv_clock.tsc_timestamp;
|
|
max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
|
|
vcpu->hv_clock.tsc_to_system_mul,
|
|
vcpu->hv_clock.tsc_shift);
|
|
max_kernel_ns += vcpu->last_kernel_ns;
|
|
}
|
|
|
|
if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
|
|
kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
|
|
&vcpu->hv_clock.tsc_shift,
|
|
&vcpu->hv_clock.tsc_to_system_mul);
|
|
vcpu->hw_tsc_khz = this_tsc_khz;
|
|
}
|
|
|
|
if (max_kernel_ns > kernel_ns)
|
|
kernel_ns = max_kernel_ns;
|
|
|
|
/* With all the info we got, fill in the values */
|
|
vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
|
|
vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
|
|
vcpu->last_kernel_ns = kernel_ns;
|
|
vcpu->last_guest_tsc = tsc_timestamp;
|
|
vcpu->hv_clock.flags = 0;
|
|
|
|
/*
|
|
* The interface expects us to write an even number signaling that the
|
|
* update is finished. Since the guest won't see the intermediate
|
|
* state, we just increase by 2 at the end.
|
|
*/
|
|
vcpu->hv_clock.version += 2;
|
|
|
|
shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
|
|
|
|
memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
|
|
sizeof(vcpu->hv_clock));
|
|
|
|
kunmap_atomic(shared_kaddr, KM_USER0);
|
|
|
|
mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
|
|
return 0;
|
|
}
|
|
|
|
static bool msr_mtrr_valid(unsigned msr)
|
|
{
|
|
switch (msr) {
|
|
case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
|
|
case MSR_MTRRfix64K_00000:
|
|
case MSR_MTRRfix16K_80000:
|
|
case MSR_MTRRfix16K_A0000:
|
|
case MSR_MTRRfix4K_C0000:
|
|
case MSR_MTRRfix4K_C8000:
|
|
case MSR_MTRRfix4K_D0000:
|
|
case MSR_MTRRfix4K_D8000:
|
|
case MSR_MTRRfix4K_E0000:
|
|
case MSR_MTRRfix4K_E8000:
|
|
case MSR_MTRRfix4K_F0000:
|
|
case MSR_MTRRfix4K_F8000:
|
|
case MSR_MTRRdefType:
|
|
case MSR_IA32_CR_PAT:
|
|
return true;
|
|
case 0x2f8:
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool valid_pat_type(unsigned t)
|
|
{
|
|
return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
|
|
}
|
|
|
|
static bool valid_mtrr_type(unsigned t)
|
|
{
|
|
return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
|
|
}
|
|
|
|
static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
|
|
{
|
|
int i;
|
|
|
|
if (!msr_mtrr_valid(msr))
|
|
return false;
|
|
|
|
if (msr == MSR_IA32_CR_PAT) {
|
|
for (i = 0; i < 8; i++)
|
|
if (!valid_pat_type((data >> (i * 8)) & 0xff))
|
|
return false;
|
|
return true;
|
|
} else if (msr == MSR_MTRRdefType) {
|
|
if (data & ~0xcff)
|
|
return false;
|
|
return valid_mtrr_type(data & 0xff);
|
|
} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
|
|
for (i = 0; i < 8 ; i++)
|
|
if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/* variable MTRRs */
|
|
return valid_mtrr_type(data & 0xff);
|
|
}
|
|
|
|
static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
|
|
{
|
|
u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
|
|
|
|
if (!mtrr_valid(vcpu, msr, data))
|
|
return 1;
|
|
|
|
if (msr == MSR_MTRRdefType) {
|
|
vcpu->arch.mtrr_state.def_type = data;
|
|
vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
|
|
} else if (msr == MSR_MTRRfix64K_00000)
|
|
p[0] = data;
|
|
else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
|
|
p[1 + msr - MSR_MTRRfix16K_80000] = data;
|
|
else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
|
|
p[3 + msr - MSR_MTRRfix4K_C0000] = data;
|
|
else if (msr == MSR_IA32_CR_PAT)
|
|
vcpu->arch.pat = data;
|
|
else { /* Variable MTRRs */
|
|
int idx, is_mtrr_mask;
|
|
u64 *pt;
|
|
|
|
idx = (msr - 0x200) / 2;
|
|
is_mtrr_mask = msr - 0x200 - 2 * idx;
|
|
if (!is_mtrr_mask)
|
|
pt =
|
|
(u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
|
|
else
|
|
pt =
|
|
(u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
|
|
*pt = data;
|
|
}
|
|
|
|
kvm_mmu_reset_context(vcpu);
|
|
return 0;
|
|
}
|
|
|
|
static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
|
|
{
|
|
u64 mcg_cap = vcpu->arch.mcg_cap;
|
|
unsigned bank_num = mcg_cap & 0xff;
|
|
|
|
switch (msr) {
|
|
case MSR_IA32_MCG_STATUS:
|
|
vcpu->arch.mcg_status = data;
|
|
break;
|
|
case MSR_IA32_MCG_CTL:
|
|
if (!(mcg_cap & MCG_CTL_P))
|
|
return 1;
|
|
if (data != 0 && data != ~(u64)0)
|
|
return -1;
|
|
vcpu->arch.mcg_ctl = data;
|
|
break;
|
|
default:
|
|
if (msr >= MSR_IA32_MC0_CTL &&
|
|
msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
|
|
u32 offset = msr - MSR_IA32_MC0_CTL;
|
|
/* only 0 or all 1s can be written to IA32_MCi_CTL
|
|
* some Linux kernels though clear bit 10 in bank 4 to
|
|
* workaround a BIOS/GART TBL issue on AMD K8s, ignore
|
|
* this to avoid an uncatched #GP in the guest
|
|
*/
|
|
if ((offset & 0x3) == 0 &&
|
|
data != 0 && (data | (1 << 10)) != ~(u64)0)
|
|
return -1;
|
|
vcpu->arch.mce_banks[offset] = data;
|
|
break;
|
|
}
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
int lm = is_long_mode(vcpu);
|
|
u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
|
|
: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
|
|
u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
|
|
: kvm->arch.xen_hvm_config.blob_size_32;
|
|
u32 page_num = data & ~PAGE_MASK;
|
|
u64 page_addr = data & PAGE_MASK;
|
|
u8 *page;
|
|
int r;
|
|
|
|
r = -E2BIG;
|
|
if (page_num >= blob_size)
|
|
goto out;
|
|
r = -ENOMEM;
|
|
page = kzalloc(PAGE_SIZE, GFP_KERNEL);
|
|
if (!page)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
|
|
goto out_free;
|
|
if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
|
|
goto out_free;
|
|
r = 0;
|
|
out_free:
|
|
kfree(page);
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
|
|
{
|
|
return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
|
|
}
|
|
|
|
static bool kvm_hv_msr_partition_wide(u32 msr)
|
|
{
|
|
bool r = false;
|
|
switch (msr) {
|
|
case HV_X64_MSR_GUEST_OS_ID:
|
|
case HV_X64_MSR_HYPERCALL:
|
|
r = true;
|
|
break;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
|
|
switch (msr) {
|
|
case HV_X64_MSR_GUEST_OS_ID:
|
|
kvm->arch.hv_guest_os_id = data;
|
|
/* setting guest os id to zero disables hypercall page */
|
|
if (!kvm->arch.hv_guest_os_id)
|
|
kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
|
|
break;
|
|
case HV_X64_MSR_HYPERCALL: {
|
|
u64 gfn;
|
|
unsigned long addr;
|
|
u8 instructions[4];
|
|
|
|
/* if guest os id is not set hypercall should remain disabled */
|
|
if (!kvm->arch.hv_guest_os_id)
|
|
break;
|
|
if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
|
|
kvm->arch.hv_hypercall = data;
|
|
break;
|
|
}
|
|
gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
|
|
addr = gfn_to_hva(kvm, gfn);
|
|
if (kvm_is_error_hva(addr))
|
|
return 1;
|
|
kvm_x86_ops->patch_hypercall(vcpu, instructions);
|
|
((unsigned char *)instructions)[3] = 0xc3; /* ret */
|
|
if (copy_to_user((void __user *)addr, instructions, 4))
|
|
return 1;
|
|
kvm->arch.hv_hypercall = data;
|
|
break;
|
|
}
|
|
default:
|
|
pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
|
|
"data 0x%llx\n", msr, data);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
|
|
{
|
|
switch (msr) {
|
|
case HV_X64_MSR_APIC_ASSIST_PAGE: {
|
|
unsigned long addr;
|
|
|
|
if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
|
|
vcpu->arch.hv_vapic = data;
|
|
break;
|
|
}
|
|
addr = gfn_to_hva(vcpu->kvm, data >>
|
|
HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
|
|
if (kvm_is_error_hva(addr))
|
|
return 1;
|
|
if (clear_user((void __user *)addr, PAGE_SIZE))
|
|
return 1;
|
|
vcpu->arch.hv_vapic = data;
|
|
break;
|
|
}
|
|
case HV_X64_MSR_EOI:
|
|
return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
|
|
case HV_X64_MSR_ICR:
|
|
return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
|
|
case HV_X64_MSR_TPR:
|
|
return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
|
|
default:
|
|
pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
|
|
"data 0x%llx\n", msr, data);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
|
|
{
|
|
gpa_t gpa = data & ~0x3f;
|
|
|
|
/* Bits 2:5 are resrved, Should be zero */
|
|
if (data & 0x3c)
|
|
return 1;
|
|
|
|
vcpu->arch.apf.msr_val = data;
|
|
|
|
if (!(data & KVM_ASYNC_PF_ENABLED)) {
|
|
kvm_clear_async_pf_completion_queue(vcpu);
|
|
kvm_async_pf_hash_reset(vcpu);
|
|
return 0;
|
|
}
|
|
|
|
if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
|
|
return 1;
|
|
|
|
vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
|
|
kvm_async_pf_wakeup_all(vcpu);
|
|
return 0;
|
|
}
|
|
|
|
int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
|
|
{
|
|
switch (msr) {
|
|
case MSR_EFER:
|
|
return set_efer(vcpu, data);
|
|
case MSR_K7_HWCR:
|
|
data &= ~(u64)0x40; /* ignore flush filter disable */
|
|
data &= ~(u64)0x100; /* ignore ignne emulation enable */
|
|
if (data != 0) {
|
|
pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
|
|
data);
|
|
return 1;
|
|
}
|
|
break;
|
|
case MSR_FAM10H_MMIO_CONF_BASE:
|
|
if (data != 0) {
|
|
pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
|
|
"0x%llx\n", data);
|
|
return 1;
|
|
}
|
|
break;
|
|
case MSR_AMD64_NB_CFG:
|
|
break;
|
|
case MSR_IA32_DEBUGCTLMSR:
|
|
if (!data) {
|
|
/* We support the non-activated case already */
|
|
break;
|
|
} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
|
|
/* Values other than LBR and BTF are vendor-specific,
|
|
thus reserved and should throw a #GP */
|
|
return 1;
|
|
}
|
|
pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
|
|
__func__, data);
|
|
break;
|
|
case MSR_IA32_UCODE_REV:
|
|
case MSR_IA32_UCODE_WRITE:
|
|
case MSR_VM_HSAVE_PA:
|
|
case MSR_AMD64_PATCH_LOADER:
|
|
break;
|
|
case 0x200 ... 0x2ff:
|
|
return set_msr_mtrr(vcpu, msr, data);
|
|
case MSR_IA32_APICBASE:
|
|
kvm_set_apic_base(vcpu, data);
|
|
break;
|
|
case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
|
|
return kvm_x2apic_msr_write(vcpu, msr, data);
|
|
case MSR_IA32_MISC_ENABLE:
|
|
vcpu->arch.ia32_misc_enable_msr = data;
|
|
break;
|
|
case MSR_KVM_WALL_CLOCK_NEW:
|
|
case MSR_KVM_WALL_CLOCK:
|
|
vcpu->kvm->arch.wall_clock = data;
|
|
kvm_write_wall_clock(vcpu->kvm, data);
|
|
break;
|
|
case MSR_KVM_SYSTEM_TIME_NEW:
|
|
case MSR_KVM_SYSTEM_TIME: {
|
|
if (vcpu->arch.time_page) {
|
|
kvm_release_page_dirty(vcpu->arch.time_page);
|
|
vcpu->arch.time_page = NULL;
|
|
}
|
|
|
|
vcpu->arch.time = data;
|
|
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
|
|
|
|
/* we verify if the enable bit is set... */
|
|
if (!(data & 1))
|
|
break;
|
|
|
|
/* ...but clean it before doing the actual write */
|
|
vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
|
|
|
|
vcpu->arch.time_page =
|
|
gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
|
|
|
|
if (is_error_page(vcpu->arch.time_page)) {
|
|
kvm_release_page_clean(vcpu->arch.time_page);
|
|
vcpu->arch.time_page = NULL;
|
|
}
|
|
break;
|
|
}
|
|
case MSR_KVM_ASYNC_PF_EN:
|
|
if (kvm_pv_enable_async_pf(vcpu, data))
|
|
return 1;
|
|
break;
|
|
case MSR_IA32_MCG_CTL:
|
|
case MSR_IA32_MCG_STATUS:
|
|
case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
|
|
return set_msr_mce(vcpu, msr, data);
|
|
|
|
/* Performance counters are not protected by a CPUID bit,
|
|
* so we should check all of them in the generic path for the sake of
|
|
* cross vendor migration.
|
|
* Writing a zero into the event select MSRs disables them,
|
|
* which we perfectly emulate ;-). Any other value should be at least
|
|
* reported, some guests depend on them.
|
|
*/
|
|
case MSR_P6_EVNTSEL0:
|
|
case MSR_P6_EVNTSEL1:
|
|
case MSR_K7_EVNTSEL0:
|
|
case MSR_K7_EVNTSEL1:
|
|
case MSR_K7_EVNTSEL2:
|
|
case MSR_K7_EVNTSEL3:
|
|
if (data != 0)
|
|
pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
|
|
"0x%x data 0x%llx\n", msr, data);
|
|
break;
|
|
/* at least RHEL 4 unconditionally writes to the perfctr registers,
|
|
* so we ignore writes to make it happy.
|
|
*/
|
|
case MSR_P6_PERFCTR0:
|
|
case MSR_P6_PERFCTR1:
|
|
case MSR_K7_PERFCTR0:
|
|
case MSR_K7_PERFCTR1:
|
|
case MSR_K7_PERFCTR2:
|
|
case MSR_K7_PERFCTR3:
|
|
pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
|
|
"0x%x data 0x%llx\n", msr, data);
|
|
break;
|
|
case MSR_K7_CLK_CTL:
|
|
/*
|
|
* Ignore all writes to this no longer documented MSR.
|
|
* Writes are only relevant for old K7 processors,
|
|
* all pre-dating SVM, but a recommended workaround from
|
|
* AMD for these chips. It is possible to speicify the
|
|
* affected processor models on the command line, hence
|
|
* the need to ignore the workaround.
|
|
*/
|
|
break;
|
|
case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
|
|
if (kvm_hv_msr_partition_wide(msr)) {
|
|
int r;
|
|
mutex_lock(&vcpu->kvm->lock);
|
|
r = set_msr_hyperv_pw(vcpu, msr, data);
|
|
mutex_unlock(&vcpu->kvm->lock);
|
|
return r;
|
|
} else
|
|
return set_msr_hyperv(vcpu, msr, data);
|
|
break;
|
|
default:
|
|
if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
|
|
return xen_hvm_config(vcpu, data);
|
|
if (!ignore_msrs) {
|
|
pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
|
|
msr, data);
|
|
return 1;
|
|
} else {
|
|
pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
|
|
msr, data);
|
|
break;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_set_msr_common);
|
|
|
|
|
|
/*
|
|
* Reads an msr value (of 'msr_index') into 'pdata'.
|
|
* Returns 0 on success, non-0 otherwise.
|
|
* Assumes vcpu_load() was already called.
|
|
*/
|
|
int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
|
|
{
|
|
return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
|
|
}
|
|
|
|
static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
|
|
{
|
|
u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
|
|
|
|
if (!msr_mtrr_valid(msr))
|
|
return 1;
|
|
|
|
if (msr == MSR_MTRRdefType)
|
|
*pdata = vcpu->arch.mtrr_state.def_type +
|
|
(vcpu->arch.mtrr_state.enabled << 10);
|
|
else if (msr == MSR_MTRRfix64K_00000)
|
|
*pdata = p[0];
|
|
else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
|
|
*pdata = p[1 + msr - MSR_MTRRfix16K_80000];
|
|
else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
|
|
*pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
|
|
else if (msr == MSR_IA32_CR_PAT)
|
|
*pdata = vcpu->arch.pat;
|
|
else { /* Variable MTRRs */
|
|
int idx, is_mtrr_mask;
|
|
u64 *pt;
|
|
|
|
idx = (msr - 0x200) / 2;
|
|
is_mtrr_mask = msr - 0x200 - 2 * idx;
|
|
if (!is_mtrr_mask)
|
|
pt =
|
|
(u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
|
|
else
|
|
pt =
|
|
(u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
|
|
*pdata = *pt;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
|
|
{
|
|
u64 data;
|
|
u64 mcg_cap = vcpu->arch.mcg_cap;
|
|
unsigned bank_num = mcg_cap & 0xff;
|
|
|
|
switch (msr) {
|
|
case MSR_IA32_P5_MC_ADDR:
|
|
case MSR_IA32_P5_MC_TYPE:
|
|
data = 0;
|
|
break;
|
|
case MSR_IA32_MCG_CAP:
|
|
data = vcpu->arch.mcg_cap;
|
|
break;
|
|
case MSR_IA32_MCG_CTL:
|
|
if (!(mcg_cap & MCG_CTL_P))
|
|
return 1;
|
|
data = vcpu->arch.mcg_ctl;
|
|
break;
|
|
case MSR_IA32_MCG_STATUS:
|
|
data = vcpu->arch.mcg_status;
|
|
break;
|
|
default:
|
|
if (msr >= MSR_IA32_MC0_CTL &&
|
|
msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
|
|
u32 offset = msr - MSR_IA32_MC0_CTL;
|
|
data = vcpu->arch.mce_banks[offset];
|
|
break;
|
|
}
|
|
return 1;
|
|
}
|
|
*pdata = data;
|
|
return 0;
|
|
}
|
|
|
|
static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
|
|
{
|
|
u64 data = 0;
|
|
struct kvm *kvm = vcpu->kvm;
|
|
|
|
switch (msr) {
|
|
case HV_X64_MSR_GUEST_OS_ID:
|
|
data = kvm->arch.hv_guest_os_id;
|
|
break;
|
|
case HV_X64_MSR_HYPERCALL:
|
|
data = kvm->arch.hv_hypercall;
|
|
break;
|
|
default:
|
|
pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
|
|
return 1;
|
|
}
|
|
|
|
*pdata = data;
|
|
return 0;
|
|
}
|
|
|
|
static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
|
|
{
|
|
u64 data = 0;
|
|
|
|
switch (msr) {
|
|
case HV_X64_MSR_VP_INDEX: {
|
|
int r;
|
|
struct kvm_vcpu *v;
|
|
kvm_for_each_vcpu(r, v, vcpu->kvm)
|
|
if (v == vcpu)
|
|
data = r;
|
|
break;
|
|
}
|
|
case HV_X64_MSR_EOI:
|
|
return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
|
|
case HV_X64_MSR_ICR:
|
|
return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
|
|
case HV_X64_MSR_TPR:
|
|
return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
|
|
default:
|
|
pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
|
|
return 1;
|
|
}
|
|
*pdata = data;
|
|
return 0;
|
|
}
|
|
|
|
int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
|
|
{
|
|
u64 data;
|
|
|
|
switch (msr) {
|
|
case MSR_IA32_PLATFORM_ID:
|
|
case MSR_IA32_UCODE_REV:
|
|
case MSR_IA32_EBL_CR_POWERON:
|
|
case MSR_IA32_DEBUGCTLMSR:
|
|
case MSR_IA32_LASTBRANCHFROMIP:
|
|
case MSR_IA32_LASTBRANCHTOIP:
|
|
case MSR_IA32_LASTINTFROMIP:
|
|
case MSR_IA32_LASTINTTOIP:
|
|
case MSR_K8_SYSCFG:
|
|
case MSR_K7_HWCR:
|
|
case MSR_VM_HSAVE_PA:
|
|
case MSR_P6_PERFCTR0:
|
|
case MSR_P6_PERFCTR1:
|
|
case MSR_P6_EVNTSEL0:
|
|
case MSR_P6_EVNTSEL1:
|
|
case MSR_K7_EVNTSEL0:
|
|
case MSR_K7_PERFCTR0:
|
|
case MSR_K8_INT_PENDING_MSG:
|
|
case MSR_AMD64_NB_CFG:
|
|
case MSR_FAM10H_MMIO_CONF_BASE:
|
|
data = 0;
|
|
break;
|
|
case MSR_MTRRcap:
|
|
data = 0x500 | KVM_NR_VAR_MTRR;
|
|
break;
|
|
case 0x200 ... 0x2ff:
|
|
return get_msr_mtrr(vcpu, msr, pdata);
|
|
case 0xcd: /* fsb frequency */
|
|
data = 3;
|
|
break;
|
|
/*
|
|
* MSR_EBC_FREQUENCY_ID
|
|
* Conservative value valid for even the basic CPU models.
|
|
* Models 0,1: 000 in bits 23:21 indicating a bus speed of
|
|
* 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
|
|
* and 266MHz for model 3, or 4. Set Core Clock
|
|
* Frequency to System Bus Frequency Ratio to 1 (bits
|
|
* 31:24) even though these are only valid for CPU
|
|
* models > 2, however guests may end up dividing or
|
|
* multiplying by zero otherwise.
|
|
*/
|
|
case MSR_EBC_FREQUENCY_ID:
|
|
data = 1 << 24;
|
|
break;
|
|
case MSR_IA32_APICBASE:
|
|
data = kvm_get_apic_base(vcpu);
|
|
break;
|
|
case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
|
|
return kvm_x2apic_msr_read(vcpu, msr, pdata);
|
|
break;
|
|
case MSR_IA32_MISC_ENABLE:
|
|
data = vcpu->arch.ia32_misc_enable_msr;
|
|
break;
|
|
case MSR_IA32_PERF_STATUS:
|
|
/* TSC increment by tick */
|
|
data = 1000ULL;
|
|
/* CPU multiplier */
|
|
data |= (((uint64_t)4ULL) << 40);
|
|
break;
|
|
case MSR_EFER:
|
|
data = vcpu->arch.efer;
|
|
break;
|
|
case MSR_KVM_WALL_CLOCK:
|
|
case MSR_KVM_WALL_CLOCK_NEW:
|
|
data = vcpu->kvm->arch.wall_clock;
|
|
break;
|
|
case MSR_KVM_SYSTEM_TIME:
|
|
case MSR_KVM_SYSTEM_TIME_NEW:
|
|
data = vcpu->arch.time;
|
|
break;
|
|
case MSR_KVM_ASYNC_PF_EN:
|
|
data = vcpu->arch.apf.msr_val;
|
|
break;
|
|
case MSR_IA32_P5_MC_ADDR:
|
|
case MSR_IA32_P5_MC_TYPE:
|
|
case MSR_IA32_MCG_CAP:
|
|
case MSR_IA32_MCG_CTL:
|
|
case MSR_IA32_MCG_STATUS:
|
|
case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
|
|
return get_msr_mce(vcpu, msr, pdata);
|
|
case MSR_K7_CLK_CTL:
|
|
/*
|
|
* Provide expected ramp-up count for K7. All other
|
|
* are set to zero, indicating minimum divisors for
|
|
* every field.
|
|
*
|
|
* This prevents guest kernels on AMD host with CPU
|
|
* type 6, model 8 and higher from exploding due to
|
|
* the rdmsr failing.
|
|
*/
|
|
data = 0x20000000;
|
|
break;
|
|
case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
|
|
if (kvm_hv_msr_partition_wide(msr)) {
|
|
int r;
|
|
mutex_lock(&vcpu->kvm->lock);
|
|
r = get_msr_hyperv_pw(vcpu, msr, pdata);
|
|
mutex_unlock(&vcpu->kvm->lock);
|
|
return r;
|
|
} else
|
|
return get_msr_hyperv(vcpu, msr, pdata);
|
|
break;
|
|
default:
|
|
if (!ignore_msrs) {
|
|
pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
|
|
return 1;
|
|
} else {
|
|
pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
|
|
data = 0;
|
|
}
|
|
break;
|
|
}
|
|
*pdata = data;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_get_msr_common);
|
|
|
|
/*
|
|
* Read or write a bunch of msrs. All parameters are kernel addresses.
|
|
*
|
|
* @return number of msrs set successfully.
|
|
*/
|
|
static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
|
|
struct kvm_msr_entry *entries,
|
|
int (*do_msr)(struct kvm_vcpu *vcpu,
|
|
unsigned index, u64 *data))
|
|
{
|
|
int i, idx;
|
|
|
|
idx = srcu_read_lock(&vcpu->kvm->srcu);
|
|
for (i = 0; i < msrs->nmsrs; ++i)
|
|
if (do_msr(vcpu, entries[i].index, &entries[i].data))
|
|
break;
|
|
srcu_read_unlock(&vcpu->kvm->srcu, idx);
|
|
|
|
return i;
|
|
}
|
|
|
|
/*
|
|
* Read or write a bunch of msrs. Parameters are user addresses.
|
|
*
|
|
* @return number of msrs set successfully.
|
|
*/
|
|
static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
|
|
int (*do_msr)(struct kvm_vcpu *vcpu,
|
|
unsigned index, u64 *data),
|
|
int writeback)
|
|
{
|
|
struct kvm_msrs msrs;
|
|
struct kvm_msr_entry *entries;
|
|
int r, n;
|
|
unsigned size;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&msrs, user_msrs, sizeof msrs))
|
|
goto out;
|
|
|
|
r = -E2BIG;
|
|
if (msrs.nmsrs >= MAX_IO_MSRS)
|
|
goto out;
|
|
|
|
r = -ENOMEM;
|
|
size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
|
|
entries = kmalloc(size, GFP_KERNEL);
|
|
if (!entries)
|
|
goto out;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(entries, user_msrs->entries, size))
|
|
goto out_free;
|
|
|
|
r = n = __msr_io(vcpu, &msrs, entries, do_msr);
|
|
if (r < 0)
|
|
goto out_free;
|
|
|
|
r = -EFAULT;
|
|
if (writeback && copy_to_user(user_msrs->entries, entries, size))
|
|
goto out_free;
|
|
|
|
r = n;
|
|
|
|
out_free:
|
|
kfree(entries);
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
int kvm_dev_ioctl_check_extension(long ext)
|
|
{
|
|
int r;
|
|
|
|
switch (ext) {
|
|
case KVM_CAP_IRQCHIP:
|
|
case KVM_CAP_HLT:
|
|
case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
|
|
case KVM_CAP_SET_TSS_ADDR:
|
|
case KVM_CAP_EXT_CPUID:
|
|
case KVM_CAP_CLOCKSOURCE:
|
|
case KVM_CAP_PIT:
|
|
case KVM_CAP_NOP_IO_DELAY:
|
|
case KVM_CAP_MP_STATE:
|
|
case KVM_CAP_SYNC_MMU:
|
|
case KVM_CAP_REINJECT_CONTROL:
|
|
case KVM_CAP_IRQ_INJECT_STATUS:
|
|
case KVM_CAP_ASSIGN_DEV_IRQ:
|
|
case KVM_CAP_IRQFD:
|
|
case KVM_CAP_IOEVENTFD:
|
|
case KVM_CAP_PIT2:
|
|
case KVM_CAP_PIT_STATE2:
|
|
case KVM_CAP_SET_IDENTITY_MAP_ADDR:
|
|
case KVM_CAP_XEN_HVM:
|
|
case KVM_CAP_ADJUST_CLOCK:
|
|
case KVM_CAP_VCPU_EVENTS:
|
|
case KVM_CAP_HYPERV:
|
|
case KVM_CAP_HYPERV_VAPIC:
|
|
case KVM_CAP_HYPERV_SPIN:
|
|
case KVM_CAP_PCI_SEGMENT:
|
|
case KVM_CAP_DEBUGREGS:
|
|
case KVM_CAP_X86_ROBUST_SINGLESTEP:
|
|
case KVM_CAP_XSAVE:
|
|
case KVM_CAP_ASYNC_PF:
|
|
r = 1;
|
|
break;
|
|
case KVM_CAP_COALESCED_MMIO:
|
|
r = KVM_COALESCED_MMIO_PAGE_OFFSET;
|
|
break;
|
|
case KVM_CAP_VAPIC:
|
|
r = !kvm_x86_ops->cpu_has_accelerated_tpr();
|
|
break;
|
|
case KVM_CAP_NR_VCPUS:
|
|
r = KVM_MAX_VCPUS;
|
|
break;
|
|
case KVM_CAP_NR_MEMSLOTS:
|
|
r = KVM_MEMORY_SLOTS;
|
|
break;
|
|
case KVM_CAP_PV_MMU: /* obsolete */
|
|
r = 0;
|
|
break;
|
|
case KVM_CAP_IOMMU:
|
|
r = iommu_found();
|
|
break;
|
|
case KVM_CAP_MCE:
|
|
r = KVM_MAX_MCE_BANKS;
|
|
break;
|
|
case KVM_CAP_XCRS:
|
|
r = cpu_has_xsave;
|
|
break;
|
|
default:
|
|
r = 0;
|
|
break;
|
|
}
|
|
return r;
|
|
|
|
}
|
|
|
|
long kvm_arch_dev_ioctl(struct file *filp,
|
|
unsigned int ioctl, unsigned long arg)
|
|
{
|
|
void __user *argp = (void __user *)arg;
|
|
long r;
|
|
|
|
switch (ioctl) {
|
|
case KVM_GET_MSR_INDEX_LIST: {
|
|
struct kvm_msr_list __user *user_msr_list = argp;
|
|
struct kvm_msr_list msr_list;
|
|
unsigned n;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
|
|
goto out;
|
|
n = msr_list.nmsrs;
|
|
msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
|
|
if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
|
|
goto out;
|
|
r = -E2BIG;
|
|
if (n < msr_list.nmsrs)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_to_user(user_msr_list->indices, &msrs_to_save,
|
|
num_msrs_to_save * sizeof(u32)))
|
|
goto out;
|
|
if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
|
|
&emulated_msrs,
|
|
ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_GET_SUPPORTED_CPUID: {
|
|
struct kvm_cpuid2 __user *cpuid_arg = argp;
|
|
struct kvm_cpuid2 cpuid;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
|
|
goto out;
|
|
r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
|
|
cpuid_arg->entries);
|
|
if (r)
|
|
goto out;
|
|
|
|
r = -EFAULT;
|
|
if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_X86_GET_MCE_CAP_SUPPORTED: {
|
|
u64 mce_cap;
|
|
|
|
mce_cap = KVM_MCE_CAP_SUPPORTED;
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
default:
|
|
r = -EINVAL;
|
|
}
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
static void wbinvd_ipi(void *garbage)
|
|
{
|
|
wbinvd();
|
|
}
|
|
|
|
static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
|
|
{
|
|
return vcpu->kvm->arch.iommu_domain &&
|
|
!(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
|
|
}
|
|
|
|
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
|
|
{
|
|
/* Address WBINVD may be executed by guest */
|
|
if (need_emulate_wbinvd(vcpu)) {
|
|
if (kvm_x86_ops->has_wbinvd_exit())
|
|
cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
|
|
else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
|
|
smp_call_function_single(vcpu->cpu,
|
|
wbinvd_ipi, NULL, 1);
|
|
}
|
|
|
|
kvm_x86_ops->vcpu_load(vcpu, cpu);
|
|
if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
|
|
/* Make sure TSC doesn't go backwards */
|
|
s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
|
|
native_read_tsc() - vcpu->arch.last_host_tsc;
|
|
if (tsc_delta < 0)
|
|
mark_tsc_unstable("KVM discovered backwards TSC");
|
|
if (check_tsc_unstable()) {
|
|
kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
|
|
vcpu->arch.tsc_catchup = 1;
|
|
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
|
|
}
|
|
if (vcpu->cpu != cpu)
|
|
kvm_migrate_timers(vcpu);
|
|
vcpu->cpu = cpu;
|
|
}
|
|
}
|
|
|
|
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_x86_ops->vcpu_put(vcpu);
|
|
kvm_put_guest_fpu(vcpu);
|
|
vcpu->arch.last_host_tsc = native_read_tsc();
|
|
}
|
|
|
|
static int is_efer_nx(void)
|
|
{
|
|
unsigned long long efer = 0;
|
|
|
|
rdmsrl_safe(MSR_EFER, &efer);
|
|
return efer & EFER_NX;
|
|
}
|
|
|
|
static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
|
|
{
|
|
int i;
|
|
struct kvm_cpuid_entry2 *e, *entry;
|
|
|
|
entry = NULL;
|
|
for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
|
|
e = &vcpu->arch.cpuid_entries[i];
|
|
if (e->function == 0x80000001) {
|
|
entry = e;
|
|
break;
|
|
}
|
|
}
|
|
if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
|
|
entry->edx &= ~(1 << 20);
|
|
printk(KERN_INFO "kvm: guest NX capability removed\n");
|
|
}
|
|
}
|
|
|
|
/* when an old userspace process fills a new kernel module */
|
|
static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
|
|
struct kvm_cpuid *cpuid,
|
|
struct kvm_cpuid_entry __user *entries)
|
|
{
|
|
int r, i;
|
|
struct kvm_cpuid_entry *cpuid_entries;
|
|
|
|
r = -E2BIG;
|
|
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
|
|
goto out;
|
|
r = -ENOMEM;
|
|
cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
|
|
if (!cpuid_entries)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_from_user(cpuid_entries, entries,
|
|
cpuid->nent * sizeof(struct kvm_cpuid_entry)))
|
|
goto out_free;
|
|
for (i = 0; i < cpuid->nent; i++) {
|
|
vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
|
|
vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
|
|
vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
|
|
vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
|
|
vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
|
|
vcpu->arch.cpuid_entries[i].index = 0;
|
|
vcpu->arch.cpuid_entries[i].flags = 0;
|
|
vcpu->arch.cpuid_entries[i].padding[0] = 0;
|
|
vcpu->arch.cpuid_entries[i].padding[1] = 0;
|
|
vcpu->arch.cpuid_entries[i].padding[2] = 0;
|
|
}
|
|
vcpu->arch.cpuid_nent = cpuid->nent;
|
|
cpuid_fix_nx_cap(vcpu);
|
|
r = 0;
|
|
kvm_apic_set_version(vcpu);
|
|
kvm_x86_ops->cpuid_update(vcpu);
|
|
update_cpuid(vcpu);
|
|
|
|
out_free:
|
|
vfree(cpuid_entries);
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
|
|
struct kvm_cpuid2 *cpuid,
|
|
struct kvm_cpuid_entry2 __user *entries)
|
|
{
|
|
int r;
|
|
|
|
r = -E2BIG;
|
|
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
|
|
cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
|
|
goto out;
|
|
vcpu->arch.cpuid_nent = cpuid->nent;
|
|
kvm_apic_set_version(vcpu);
|
|
kvm_x86_ops->cpuid_update(vcpu);
|
|
update_cpuid(vcpu);
|
|
return 0;
|
|
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
|
|
struct kvm_cpuid2 *cpuid,
|
|
struct kvm_cpuid_entry2 __user *entries)
|
|
{
|
|
int r;
|
|
|
|
r = -E2BIG;
|
|
if (cpuid->nent < vcpu->arch.cpuid_nent)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
|
|
vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
|
|
goto out;
|
|
return 0;
|
|
|
|
out:
|
|
cpuid->nent = vcpu->arch.cpuid_nent;
|
|
return r;
|
|
}
|
|
|
|
static void cpuid_mask(u32 *word, int wordnum)
|
|
{
|
|
*word &= boot_cpu_data.x86_capability[wordnum];
|
|
}
|
|
|
|
static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
|
|
u32 index)
|
|
{
|
|
entry->function = function;
|
|
entry->index = index;
|
|
cpuid_count(entry->function, entry->index,
|
|
&entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
|
|
entry->flags = 0;
|
|
}
|
|
|
|
#define F(x) bit(X86_FEATURE_##x)
|
|
|
|
static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
|
|
u32 index, int *nent, int maxnent)
|
|
{
|
|
unsigned f_nx = is_efer_nx() ? F(NX) : 0;
|
|
#ifdef CONFIG_X86_64
|
|
unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
|
|
? F(GBPAGES) : 0;
|
|
unsigned f_lm = F(LM);
|
|
#else
|
|
unsigned f_gbpages = 0;
|
|
unsigned f_lm = 0;
|
|
#endif
|
|
unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
|
|
|
|
/* cpuid 1.edx */
|
|
const u32 kvm_supported_word0_x86_features =
|
|
F(FPU) | F(VME) | F(DE) | F(PSE) |
|
|
F(TSC) | F(MSR) | F(PAE) | F(MCE) |
|
|
F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
|
|
F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
|
|
F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
|
|
0 /* Reserved, DS, ACPI */ | F(MMX) |
|
|
F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
|
|
0 /* HTT, TM, Reserved, PBE */;
|
|
/* cpuid 0x80000001.edx */
|
|
const u32 kvm_supported_word1_x86_features =
|
|
F(FPU) | F(VME) | F(DE) | F(PSE) |
|
|
F(TSC) | F(MSR) | F(PAE) | F(MCE) |
|
|
F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
|
|
F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
|
|
F(PAT) | F(PSE36) | 0 /* Reserved */ |
|
|
f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
|
|
F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
|
|
0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
|
|
/* cpuid 1.ecx */
|
|
const u32 kvm_supported_word4_x86_features =
|
|
F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
|
|
0 /* DS-CPL, VMX, SMX, EST */ |
|
|
0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
|
|
0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
|
|
0 /* Reserved, DCA */ | F(XMM4_1) |
|
|
F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
|
|
0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
|
|
F(F16C);
|
|
/* cpuid 0x80000001.ecx */
|
|
const u32 kvm_supported_word6_x86_features =
|
|
F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
|
|
F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
|
|
F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) |
|
|
0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
|
|
|
|
/* all calls to cpuid_count() should be made on the same cpu */
|
|
get_cpu();
|
|
do_cpuid_1_ent(entry, function, index);
|
|
++*nent;
|
|
|
|
switch (function) {
|
|
case 0:
|
|
entry->eax = min(entry->eax, (u32)0xd);
|
|
break;
|
|
case 1:
|
|
entry->edx &= kvm_supported_word0_x86_features;
|
|
cpuid_mask(&entry->edx, 0);
|
|
entry->ecx &= kvm_supported_word4_x86_features;
|
|
cpuid_mask(&entry->ecx, 4);
|
|
/* we support x2apic emulation even if host does not support
|
|
* it since we emulate x2apic in software */
|
|
entry->ecx |= F(X2APIC);
|
|
break;
|
|
/* function 2 entries are STATEFUL. That is, repeated cpuid commands
|
|
* may return different values. This forces us to get_cpu() before
|
|
* issuing the first command, and also to emulate this annoying behavior
|
|
* in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
|
|
case 2: {
|
|
int t, times = entry->eax & 0xff;
|
|
|
|
entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
|
|
entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
|
|
for (t = 1; t < times && *nent < maxnent; ++t) {
|
|
do_cpuid_1_ent(&entry[t], function, 0);
|
|
entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
|
|
++*nent;
|
|
}
|
|
break;
|
|
}
|
|
/* function 4 and 0xb have additional index. */
|
|
case 4: {
|
|
int i, cache_type;
|
|
|
|
entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
|
|
/* read more entries until cache_type is zero */
|
|
for (i = 1; *nent < maxnent; ++i) {
|
|
cache_type = entry[i - 1].eax & 0x1f;
|
|
if (!cache_type)
|
|
break;
|
|
do_cpuid_1_ent(&entry[i], function, i);
|
|
entry[i].flags |=
|
|
KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
|
|
++*nent;
|
|
}
|
|
break;
|
|
}
|
|
case 0xb: {
|
|
int i, level_type;
|
|
|
|
entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
|
|
/* read more entries until level_type is zero */
|
|
for (i = 1; *nent < maxnent; ++i) {
|
|
level_type = entry[i - 1].ecx & 0xff00;
|
|
if (!level_type)
|
|
break;
|
|
do_cpuid_1_ent(&entry[i], function, i);
|
|
entry[i].flags |=
|
|
KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
|
|
++*nent;
|
|
}
|
|
break;
|
|
}
|
|
case 0xd: {
|
|
int i;
|
|
|
|
entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
|
|
for (i = 1; *nent < maxnent; ++i) {
|
|
if (entry[i - 1].eax == 0 && i != 2)
|
|
break;
|
|
do_cpuid_1_ent(&entry[i], function, i);
|
|
entry[i].flags |=
|
|
KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
|
|
++*nent;
|
|
}
|
|
break;
|
|
}
|
|
case KVM_CPUID_SIGNATURE: {
|
|
char signature[12] = "KVMKVMKVM\0\0";
|
|
u32 *sigptr = (u32 *)signature;
|
|
entry->eax = 0;
|
|
entry->ebx = sigptr[0];
|
|
entry->ecx = sigptr[1];
|
|
entry->edx = sigptr[2];
|
|
break;
|
|
}
|
|
case KVM_CPUID_FEATURES:
|
|
entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
|
|
(1 << KVM_FEATURE_NOP_IO_DELAY) |
|
|
(1 << KVM_FEATURE_CLOCKSOURCE2) |
|
|
(1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
|
|
entry->ebx = 0;
|
|
entry->ecx = 0;
|
|
entry->edx = 0;
|
|
break;
|
|
case 0x80000000:
|
|
entry->eax = min(entry->eax, 0x8000001a);
|
|
break;
|
|
case 0x80000001:
|
|
entry->edx &= kvm_supported_word1_x86_features;
|
|
cpuid_mask(&entry->edx, 1);
|
|
entry->ecx &= kvm_supported_word6_x86_features;
|
|
cpuid_mask(&entry->ecx, 6);
|
|
break;
|
|
}
|
|
|
|
kvm_x86_ops->set_supported_cpuid(function, entry);
|
|
|
|
put_cpu();
|
|
}
|
|
|
|
#undef F
|
|
|
|
static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
|
|
struct kvm_cpuid_entry2 __user *entries)
|
|
{
|
|
struct kvm_cpuid_entry2 *cpuid_entries;
|
|
int limit, nent = 0, r = -E2BIG;
|
|
u32 func;
|
|
|
|
if (cpuid->nent < 1)
|
|
goto out;
|
|
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
|
|
cpuid->nent = KVM_MAX_CPUID_ENTRIES;
|
|
r = -ENOMEM;
|
|
cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
|
|
if (!cpuid_entries)
|
|
goto out;
|
|
|
|
do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
|
|
limit = cpuid_entries[0].eax;
|
|
for (func = 1; func <= limit && nent < cpuid->nent; ++func)
|
|
do_cpuid_ent(&cpuid_entries[nent], func, 0,
|
|
&nent, cpuid->nent);
|
|
r = -E2BIG;
|
|
if (nent >= cpuid->nent)
|
|
goto out_free;
|
|
|
|
do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
|
|
limit = cpuid_entries[nent - 1].eax;
|
|
for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
|
|
do_cpuid_ent(&cpuid_entries[nent], func, 0,
|
|
&nent, cpuid->nent);
|
|
|
|
|
|
|
|
r = -E2BIG;
|
|
if (nent >= cpuid->nent)
|
|
goto out_free;
|
|
|
|
do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
|
|
cpuid->nent);
|
|
|
|
r = -E2BIG;
|
|
if (nent >= cpuid->nent)
|
|
goto out_free;
|
|
|
|
do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
|
|
cpuid->nent);
|
|
|
|
r = -E2BIG;
|
|
if (nent >= cpuid->nent)
|
|
goto out_free;
|
|
|
|
r = -EFAULT;
|
|
if (copy_to_user(entries, cpuid_entries,
|
|
nent * sizeof(struct kvm_cpuid_entry2)))
|
|
goto out_free;
|
|
cpuid->nent = nent;
|
|
r = 0;
|
|
|
|
out_free:
|
|
vfree(cpuid_entries);
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
|
|
struct kvm_lapic_state *s)
|
|
{
|
|
memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
|
|
struct kvm_lapic_state *s)
|
|
{
|
|
memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
|
|
kvm_apic_post_state_restore(vcpu);
|
|
update_cr8_intercept(vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
|
|
struct kvm_interrupt *irq)
|
|
{
|
|
if (irq->irq < 0 || irq->irq >= 256)
|
|
return -EINVAL;
|
|
if (irqchip_in_kernel(vcpu->kvm))
|
|
return -ENXIO;
|
|
|
|
kvm_queue_interrupt(vcpu, irq->irq, false);
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_inject_nmi(vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
|
|
struct kvm_tpr_access_ctl *tac)
|
|
{
|
|
if (tac->flags)
|
|
return -EINVAL;
|
|
vcpu->arch.tpr_access_reporting = !!tac->enabled;
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
|
|
u64 mcg_cap)
|
|
{
|
|
int r;
|
|
unsigned bank_num = mcg_cap & 0xff, bank;
|
|
|
|
r = -EINVAL;
|
|
if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
|
|
goto out;
|
|
if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
|
|
goto out;
|
|
r = 0;
|
|
vcpu->arch.mcg_cap = mcg_cap;
|
|
/* Init IA32_MCG_CTL to all 1s */
|
|
if (mcg_cap & MCG_CTL_P)
|
|
vcpu->arch.mcg_ctl = ~(u64)0;
|
|
/* Init IA32_MCi_CTL to all 1s */
|
|
for (bank = 0; bank < bank_num; bank++)
|
|
vcpu->arch.mce_banks[bank*4] = ~(u64)0;
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
|
|
struct kvm_x86_mce *mce)
|
|
{
|
|
u64 mcg_cap = vcpu->arch.mcg_cap;
|
|
unsigned bank_num = mcg_cap & 0xff;
|
|
u64 *banks = vcpu->arch.mce_banks;
|
|
|
|
if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
|
|
return -EINVAL;
|
|
/*
|
|
* if IA32_MCG_CTL is not all 1s, the uncorrected error
|
|
* reporting is disabled
|
|
*/
|
|
if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
|
|
vcpu->arch.mcg_ctl != ~(u64)0)
|
|
return 0;
|
|
banks += 4 * mce->bank;
|
|
/*
|
|
* if IA32_MCi_CTL is not all 1s, the uncorrected error
|
|
* reporting is disabled for the bank
|
|
*/
|
|
if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
|
|
return 0;
|
|
if (mce->status & MCI_STATUS_UC) {
|
|
if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
|
|
!kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
|
|
printk(KERN_DEBUG "kvm: set_mce: "
|
|
"injects mce exception while "
|
|
"previous one is in progress!\n");
|
|
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
|
|
return 0;
|
|
}
|
|
if (banks[1] & MCI_STATUS_VAL)
|
|
mce->status |= MCI_STATUS_OVER;
|
|
banks[2] = mce->addr;
|
|
banks[3] = mce->misc;
|
|
vcpu->arch.mcg_status = mce->mcg_status;
|
|
banks[1] = mce->status;
|
|
kvm_queue_exception(vcpu, MC_VECTOR);
|
|
} else if (!(banks[1] & MCI_STATUS_VAL)
|
|
|| !(banks[1] & MCI_STATUS_UC)) {
|
|
if (banks[1] & MCI_STATUS_VAL)
|
|
mce->status |= MCI_STATUS_OVER;
|
|
banks[2] = mce->addr;
|
|
banks[3] = mce->misc;
|
|
banks[1] = mce->status;
|
|
} else
|
|
banks[1] |= MCI_STATUS_OVER;
|
|
return 0;
|
|
}
|
|
|
|
static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
|
|
struct kvm_vcpu_events *events)
|
|
{
|
|
events->exception.injected =
|
|
vcpu->arch.exception.pending &&
|
|
!kvm_exception_is_soft(vcpu->arch.exception.nr);
|
|
events->exception.nr = vcpu->arch.exception.nr;
|
|
events->exception.has_error_code = vcpu->arch.exception.has_error_code;
|
|
events->exception.pad = 0;
|
|
events->exception.error_code = vcpu->arch.exception.error_code;
|
|
|
|
events->interrupt.injected =
|
|
vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
|
|
events->interrupt.nr = vcpu->arch.interrupt.nr;
|
|
events->interrupt.soft = 0;
|
|
events->interrupt.shadow =
|
|
kvm_x86_ops->get_interrupt_shadow(vcpu,
|
|
KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
|
|
|
|
events->nmi.injected = vcpu->arch.nmi_injected;
|
|
events->nmi.pending = vcpu->arch.nmi_pending;
|
|
events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
|
|
events->nmi.pad = 0;
|
|
|
|
events->sipi_vector = vcpu->arch.sipi_vector;
|
|
|
|
events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
|
|
| KVM_VCPUEVENT_VALID_SIPI_VECTOR
|
|
| KVM_VCPUEVENT_VALID_SHADOW);
|
|
memset(&events->reserved, 0, sizeof(events->reserved));
|
|
}
|
|
|
|
static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
|
|
struct kvm_vcpu_events *events)
|
|
{
|
|
if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
|
|
| KVM_VCPUEVENT_VALID_SIPI_VECTOR
|
|
| KVM_VCPUEVENT_VALID_SHADOW))
|
|
return -EINVAL;
|
|
|
|
vcpu->arch.exception.pending = events->exception.injected;
|
|
vcpu->arch.exception.nr = events->exception.nr;
|
|
vcpu->arch.exception.has_error_code = events->exception.has_error_code;
|
|
vcpu->arch.exception.error_code = events->exception.error_code;
|
|
|
|
vcpu->arch.interrupt.pending = events->interrupt.injected;
|
|
vcpu->arch.interrupt.nr = events->interrupt.nr;
|
|
vcpu->arch.interrupt.soft = events->interrupt.soft;
|
|
if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
|
|
kvm_pic_clear_isr_ack(vcpu->kvm);
|
|
if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
|
|
kvm_x86_ops->set_interrupt_shadow(vcpu,
|
|
events->interrupt.shadow);
|
|
|
|
vcpu->arch.nmi_injected = events->nmi.injected;
|
|
if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
|
|
vcpu->arch.nmi_pending = events->nmi.pending;
|
|
kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
|
|
|
|
if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
|
|
vcpu->arch.sipi_vector = events->sipi_vector;
|
|
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
|
|
struct kvm_debugregs *dbgregs)
|
|
{
|
|
memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
|
|
dbgregs->dr6 = vcpu->arch.dr6;
|
|
dbgregs->dr7 = vcpu->arch.dr7;
|
|
dbgregs->flags = 0;
|
|
memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
|
|
}
|
|
|
|
static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
|
|
struct kvm_debugregs *dbgregs)
|
|
{
|
|
if (dbgregs->flags)
|
|
return -EINVAL;
|
|
|
|
memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
|
|
vcpu->arch.dr6 = dbgregs->dr6;
|
|
vcpu->arch.dr7 = dbgregs->dr7;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
|
|
struct kvm_xsave *guest_xsave)
|
|
{
|
|
if (cpu_has_xsave)
|
|
memcpy(guest_xsave->region,
|
|
&vcpu->arch.guest_fpu.state->xsave,
|
|
xstate_size);
|
|
else {
|
|
memcpy(guest_xsave->region,
|
|
&vcpu->arch.guest_fpu.state->fxsave,
|
|
sizeof(struct i387_fxsave_struct));
|
|
*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
|
|
XSTATE_FPSSE;
|
|
}
|
|
}
|
|
|
|
static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
|
|
struct kvm_xsave *guest_xsave)
|
|
{
|
|
u64 xstate_bv =
|
|
*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
|
|
|
|
if (cpu_has_xsave)
|
|
memcpy(&vcpu->arch.guest_fpu.state->xsave,
|
|
guest_xsave->region, xstate_size);
|
|
else {
|
|
if (xstate_bv & ~XSTATE_FPSSE)
|
|
return -EINVAL;
|
|
memcpy(&vcpu->arch.guest_fpu.state->fxsave,
|
|
guest_xsave->region, sizeof(struct i387_fxsave_struct));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
|
|
struct kvm_xcrs *guest_xcrs)
|
|
{
|
|
if (!cpu_has_xsave) {
|
|
guest_xcrs->nr_xcrs = 0;
|
|
return;
|
|
}
|
|
|
|
guest_xcrs->nr_xcrs = 1;
|
|
guest_xcrs->flags = 0;
|
|
guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
|
|
guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
|
|
}
|
|
|
|
static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
|
|
struct kvm_xcrs *guest_xcrs)
|
|
{
|
|
int i, r = 0;
|
|
|
|
if (!cpu_has_xsave)
|
|
return -EINVAL;
|
|
|
|
if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
|
|
return -EINVAL;
|
|
|
|
for (i = 0; i < guest_xcrs->nr_xcrs; i++)
|
|
/* Only support XCR0 currently */
|
|
if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
|
|
r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
|
|
guest_xcrs->xcrs[0].value);
|
|
break;
|
|
}
|
|
if (r)
|
|
r = -EINVAL;
|
|
return r;
|
|
}
|
|
|
|
long kvm_arch_vcpu_ioctl(struct file *filp,
|
|
unsigned int ioctl, unsigned long arg)
|
|
{
|
|
struct kvm_vcpu *vcpu = filp->private_data;
|
|
void __user *argp = (void __user *)arg;
|
|
int r;
|
|
union {
|
|
struct kvm_lapic_state *lapic;
|
|
struct kvm_xsave *xsave;
|
|
struct kvm_xcrs *xcrs;
|
|
void *buffer;
|
|
} u;
|
|
|
|
u.buffer = NULL;
|
|
switch (ioctl) {
|
|
case KVM_GET_LAPIC: {
|
|
r = -EINVAL;
|
|
if (!vcpu->arch.apic)
|
|
goto out;
|
|
u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
|
|
|
|
r = -ENOMEM;
|
|
if (!u.lapic)
|
|
goto out;
|
|
r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
|
|
if (r)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_SET_LAPIC: {
|
|
r = -EINVAL;
|
|
if (!vcpu->arch.apic)
|
|
goto out;
|
|
u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
|
|
r = -ENOMEM;
|
|
if (!u.lapic)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
|
|
goto out;
|
|
r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
|
|
if (r)
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_INTERRUPT: {
|
|
struct kvm_interrupt irq;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&irq, argp, sizeof irq))
|
|
goto out;
|
|
r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
|
|
if (r)
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_NMI: {
|
|
r = kvm_vcpu_ioctl_nmi(vcpu);
|
|
if (r)
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_SET_CPUID: {
|
|
struct kvm_cpuid __user *cpuid_arg = argp;
|
|
struct kvm_cpuid cpuid;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
|
|
goto out;
|
|
r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
|
|
if (r)
|
|
goto out;
|
|
break;
|
|
}
|
|
case KVM_SET_CPUID2: {
|
|
struct kvm_cpuid2 __user *cpuid_arg = argp;
|
|
struct kvm_cpuid2 cpuid;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
|
|
goto out;
|
|
r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
|
|
cpuid_arg->entries);
|
|
if (r)
|
|
goto out;
|
|
break;
|
|
}
|
|
case KVM_GET_CPUID2: {
|
|
struct kvm_cpuid2 __user *cpuid_arg = argp;
|
|
struct kvm_cpuid2 cpuid;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
|
|
goto out;
|
|
r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
|
|
cpuid_arg->entries);
|
|
if (r)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_GET_MSRS:
|
|
r = msr_io(vcpu, argp, kvm_get_msr, 1);
|
|
break;
|
|
case KVM_SET_MSRS:
|
|
r = msr_io(vcpu, argp, do_set_msr, 0);
|
|
break;
|
|
case KVM_TPR_ACCESS_REPORTING: {
|
|
struct kvm_tpr_access_ctl tac;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&tac, argp, sizeof tac))
|
|
goto out;
|
|
r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
|
|
if (r)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, &tac, sizeof tac))
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
};
|
|
case KVM_SET_VAPIC_ADDR: {
|
|
struct kvm_vapic_addr va;
|
|
|
|
r = -EINVAL;
|
|
if (!irqchip_in_kernel(vcpu->kvm))
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_from_user(&va, argp, sizeof va))
|
|
goto out;
|
|
r = 0;
|
|
kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
|
|
break;
|
|
}
|
|
case KVM_X86_SETUP_MCE: {
|
|
u64 mcg_cap;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
|
|
goto out;
|
|
r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
|
|
break;
|
|
}
|
|
case KVM_X86_SET_MCE: {
|
|
struct kvm_x86_mce mce;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&mce, argp, sizeof mce))
|
|
goto out;
|
|
r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
|
|
break;
|
|
}
|
|
case KVM_GET_VCPU_EVENTS: {
|
|
struct kvm_vcpu_events events;
|
|
|
|
kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
|
|
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
|
|
break;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_SET_VCPU_EVENTS: {
|
|
struct kvm_vcpu_events events;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
|
|
break;
|
|
|
|
r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
|
|
break;
|
|
}
|
|
case KVM_GET_DEBUGREGS: {
|
|
struct kvm_debugregs dbgregs;
|
|
|
|
kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
|
|
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, &dbgregs,
|
|
sizeof(struct kvm_debugregs)))
|
|
break;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_SET_DEBUGREGS: {
|
|
struct kvm_debugregs dbgregs;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&dbgregs, argp,
|
|
sizeof(struct kvm_debugregs)))
|
|
break;
|
|
|
|
r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
|
|
break;
|
|
}
|
|
case KVM_GET_XSAVE: {
|
|
u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
|
|
r = -ENOMEM;
|
|
if (!u.xsave)
|
|
break;
|
|
|
|
kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
|
|
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
|
|
break;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_SET_XSAVE: {
|
|
u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
|
|
r = -ENOMEM;
|
|
if (!u.xsave)
|
|
break;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
|
|
break;
|
|
|
|
r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
|
|
break;
|
|
}
|
|
case KVM_GET_XCRS: {
|
|
u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
|
|
r = -ENOMEM;
|
|
if (!u.xcrs)
|
|
break;
|
|
|
|
kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
|
|
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, u.xcrs,
|
|
sizeof(struct kvm_xcrs)))
|
|
break;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_SET_XCRS: {
|
|
u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
|
|
r = -ENOMEM;
|
|
if (!u.xcrs)
|
|
break;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(u.xcrs, argp,
|
|
sizeof(struct kvm_xcrs)))
|
|
break;
|
|
|
|
r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
|
|
break;
|
|
}
|
|
default:
|
|
r = -EINVAL;
|
|
}
|
|
out:
|
|
kfree(u.buffer);
|
|
return r;
|
|
}
|
|
|
|
static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
|
|
{
|
|
int ret;
|
|
|
|
if (addr > (unsigned int)(-3 * PAGE_SIZE))
|
|
return -1;
|
|
ret = kvm_x86_ops->set_tss_addr(kvm, addr);
|
|
return ret;
|
|
}
|
|
|
|
static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
|
|
u64 ident_addr)
|
|
{
|
|
kvm->arch.ept_identity_map_addr = ident_addr;
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
|
|
u32 kvm_nr_mmu_pages)
|
|
{
|
|
if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&kvm->slots_lock);
|
|
spin_lock(&kvm->mmu_lock);
|
|
|
|
kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
|
|
kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
|
|
|
|
spin_unlock(&kvm->mmu_lock);
|
|
mutex_unlock(&kvm->slots_lock);
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
|
|
{
|
|
return kvm->arch.n_max_mmu_pages;
|
|
}
|
|
|
|
static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
|
|
{
|
|
int r;
|
|
|
|
r = 0;
|
|
switch (chip->chip_id) {
|
|
case KVM_IRQCHIP_PIC_MASTER:
|
|
memcpy(&chip->chip.pic,
|
|
&pic_irqchip(kvm)->pics[0],
|
|
sizeof(struct kvm_pic_state));
|
|
break;
|
|
case KVM_IRQCHIP_PIC_SLAVE:
|
|
memcpy(&chip->chip.pic,
|
|
&pic_irqchip(kvm)->pics[1],
|
|
sizeof(struct kvm_pic_state));
|
|
break;
|
|
case KVM_IRQCHIP_IOAPIC:
|
|
r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
|
|
break;
|
|
default:
|
|
r = -EINVAL;
|
|
break;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
|
|
{
|
|
int r;
|
|
|
|
r = 0;
|
|
switch (chip->chip_id) {
|
|
case KVM_IRQCHIP_PIC_MASTER:
|
|
spin_lock(&pic_irqchip(kvm)->lock);
|
|
memcpy(&pic_irqchip(kvm)->pics[0],
|
|
&chip->chip.pic,
|
|
sizeof(struct kvm_pic_state));
|
|
spin_unlock(&pic_irqchip(kvm)->lock);
|
|
break;
|
|
case KVM_IRQCHIP_PIC_SLAVE:
|
|
spin_lock(&pic_irqchip(kvm)->lock);
|
|
memcpy(&pic_irqchip(kvm)->pics[1],
|
|
&chip->chip.pic,
|
|
sizeof(struct kvm_pic_state));
|
|
spin_unlock(&pic_irqchip(kvm)->lock);
|
|
break;
|
|
case KVM_IRQCHIP_IOAPIC:
|
|
r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
|
|
break;
|
|
default:
|
|
r = -EINVAL;
|
|
break;
|
|
}
|
|
kvm_pic_update_irq(pic_irqchip(kvm));
|
|
return r;
|
|
}
|
|
|
|
static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
|
|
{
|
|
int r = 0;
|
|
|
|
mutex_lock(&kvm->arch.vpit->pit_state.lock);
|
|
memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
|
|
mutex_unlock(&kvm->arch.vpit->pit_state.lock);
|
|
return r;
|
|
}
|
|
|
|
static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
|
|
{
|
|
int r = 0;
|
|
|
|
mutex_lock(&kvm->arch.vpit->pit_state.lock);
|
|
memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
|
|
kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
|
|
mutex_unlock(&kvm->arch.vpit->pit_state.lock);
|
|
return r;
|
|
}
|
|
|
|
static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
|
|
{
|
|
int r = 0;
|
|
|
|
mutex_lock(&kvm->arch.vpit->pit_state.lock);
|
|
memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
|
|
sizeof(ps->channels));
|
|
ps->flags = kvm->arch.vpit->pit_state.flags;
|
|
mutex_unlock(&kvm->arch.vpit->pit_state.lock);
|
|
memset(&ps->reserved, 0, sizeof(ps->reserved));
|
|
return r;
|
|
}
|
|
|
|
static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
|
|
{
|
|
int r = 0, start = 0;
|
|
u32 prev_legacy, cur_legacy;
|
|
mutex_lock(&kvm->arch.vpit->pit_state.lock);
|
|
prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
|
|
cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
|
|
if (!prev_legacy && cur_legacy)
|
|
start = 1;
|
|
memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
|
|
sizeof(kvm->arch.vpit->pit_state.channels));
|
|
kvm->arch.vpit->pit_state.flags = ps->flags;
|
|
kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
|
|
mutex_unlock(&kvm->arch.vpit->pit_state.lock);
|
|
return r;
|
|
}
|
|
|
|
static int kvm_vm_ioctl_reinject(struct kvm *kvm,
|
|
struct kvm_reinject_control *control)
|
|
{
|
|
if (!kvm->arch.vpit)
|
|
return -ENXIO;
|
|
mutex_lock(&kvm->arch.vpit->pit_state.lock);
|
|
kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
|
|
mutex_unlock(&kvm->arch.vpit->pit_state.lock);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Get (and clear) the dirty memory log for a memory slot.
|
|
*/
|
|
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
|
|
struct kvm_dirty_log *log)
|
|
{
|
|
int r, i;
|
|
struct kvm_memory_slot *memslot;
|
|
unsigned long n;
|
|
unsigned long is_dirty = 0;
|
|
|
|
mutex_lock(&kvm->slots_lock);
|
|
|
|
r = -EINVAL;
|
|
if (log->slot >= KVM_MEMORY_SLOTS)
|
|
goto out;
|
|
|
|
memslot = &kvm->memslots->memslots[log->slot];
|
|
r = -ENOENT;
|
|
if (!memslot->dirty_bitmap)
|
|
goto out;
|
|
|
|
n = kvm_dirty_bitmap_bytes(memslot);
|
|
|
|
for (i = 0; !is_dirty && i < n/sizeof(long); i++)
|
|
is_dirty = memslot->dirty_bitmap[i];
|
|
|
|
/* If nothing is dirty, don't bother messing with page tables. */
|
|
if (is_dirty) {
|
|
struct kvm_memslots *slots, *old_slots;
|
|
unsigned long *dirty_bitmap;
|
|
|
|
dirty_bitmap = memslot->dirty_bitmap_head;
|
|
if (memslot->dirty_bitmap == dirty_bitmap)
|
|
dirty_bitmap += n / sizeof(long);
|
|
memset(dirty_bitmap, 0, n);
|
|
|
|
r = -ENOMEM;
|
|
slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
|
|
if (!slots)
|
|
goto out;
|
|
memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
|
|
slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
|
|
slots->generation++;
|
|
|
|
old_slots = kvm->memslots;
|
|
rcu_assign_pointer(kvm->memslots, slots);
|
|
synchronize_srcu_expedited(&kvm->srcu);
|
|
dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
|
|
kfree(old_slots);
|
|
|
|
spin_lock(&kvm->mmu_lock);
|
|
kvm_mmu_slot_remove_write_access(kvm, log->slot);
|
|
spin_unlock(&kvm->mmu_lock);
|
|
|
|
r = -EFAULT;
|
|
if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
|
|
goto out;
|
|
} else {
|
|
r = -EFAULT;
|
|
if (clear_user(log->dirty_bitmap, n))
|
|
goto out;
|
|
}
|
|
|
|
r = 0;
|
|
out:
|
|
mutex_unlock(&kvm->slots_lock);
|
|
return r;
|
|
}
|
|
|
|
long kvm_arch_vm_ioctl(struct file *filp,
|
|
unsigned int ioctl, unsigned long arg)
|
|
{
|
|
struct kvm *kvm = filp->private_data;
|
|
void __user *argp = (void __user *)arg;
|
|
int r = -ENOTTY;
|
|
/*
|
|
* This union makes it completely explicit to gcc-3.x
|
|
* that these two variables' stack usage should be
|
|
* combined, not added together.
|
|
*/
|
|
union {
|
|
struct kvm_pit_state ps;
|
|
struct kvm_pit_state2 ps2;
|
|
struct kvm_pit_config pit_config;
|
|
} u;
|
|
|
|
switch (ioctl) {
|
|
case KVM_SET_TSS_ADDR:
|
|
r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
|
|
if (r < 0)
|
|
goto out;
|
|
break;
|
|
case KVM_SET_IDENTITY_MAP_ADDR: {
|
|
u64 ident_addr;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
|
|
goto out;
|
|
r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
|
|
if (r < 0)
|
|
goto out;
|
|
break;
|
|
}
|
|
case KVM_SET_NR_MMU_PAGES:
|
|
r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
|
|
if (r)
|
|
goto out;
|
|
break;
|
|
case KVM_GET_NR_MMU_PAGES:
|
|
r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
|
|
break;
|
|
case KVM_CREATE_IRQCHIP: {
|
|
struct kvm_pic *vpic;
|
|
|
|
mutex_lock(&kvm->lock);
|
|
r = -EEXIST;
|
|
if (kvm->arch.vpic)
|
|
goto create_irqchip_unlock;
|
|
r = -ENOMEM;
|
|
vpic = kvm_create_pic(kvm);
|
|
if (vpic) {
|
|
r = kvm_ioapic_init(kvm);
|
|
if (r) {
|
|
kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
|
|
&vpic->dev);
|
|
kfree(vpic);
|
|
goto create_irqchip_unlock;
|
|
}
|
|
} else
|
|
goto create_irqchip_unlock;
|
|
smp_wmb();
|
|
kvm->arch.vpic = vpic;
|
|
smp_wmb();
|
|
r = kvm_setup_default_irq_routing(kvm);
|
|
if (r) {
|
|
mutex_lock(&kvm->irq_lock);
|
|
kvm_ioapic_destroy(kvm);
|
|
kvm_destroy_pic(kvm);
|
|
mutex_unlock(&kvm->irq_lock);
|
|
}
|
|
create_irqchip_unlock:
|
|
mutex_unlock(&kvm->lock);
|
|
break;
|
|
}
|
|
case KVM_CREATE_PIT:
|
|
u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
|
|
goto create_pit;
|
|
case KVM_CREATE_PIT2:
|
|
r = -EFAULT;
|
|
if (copy_from_user(&u.pit_config, argp,
|
|
sizeof(struct kvm_pit_config)))
|
|
goto out;
|
|
create_pit:
|
|
mutex_lock(&kvm->slots_lock);
|
|
r = -EEXIST;
|
|
if (kvm->arch.vpit)
|
|
goto create_pit_unlock;
|
|
r = -ENOMEM;
|
|
kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
|
|
if (kvm->arch.vpit)
|
|
r = 0;
|
|
create_pit_unlock:
|
|
mutex_unlock(&kvm->slots_lock);
|
|
break;
|
|
case KVM_IRQ_LINE_STATUS:
|
|
case KVM_IRQ_LINE: {
|
|
struct kvm_irq_level irq_event;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&irq_event, argp, sizeof irq_event))
|
|
goto out;
|
|
r = -ENXIO;
|
|
if (irqchip_in_kernel(kvm)) {
|
|
__s32 status;
|
|
status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
|
|
irq_event.irq, irq_event.level);
|
|
if (ioctl == KVM_IRQ_LINE_STATUS) {
|
|
r = -EFAULT;
|
|
irq_event.status = status;
|
|
if (copy_to_user(argp, &irq_event,
|
|
sizeof irq_event))
|
|
goto out;
|
|
}
|
|
r = 0;
|
|
}
|
|
break;
|
|
}
|
|
case KVM_GET_IRQCHIP: {
|
|
/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
|
|
struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
|
|
|
|
r = -ENOMEM;
|
|
if (!chip)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_from_user(chip, argp, sizeof *chip))
|
|
goto get_irqchip_out;
|
|
r = -ENXIO;
|
|
if (!irqchip_in_kernel(kvm))
|
|
goto get_irqchip_out;
|
|
r = kvm_vm_ioctl_get_irqchip(kvm, chip);
|
|
if (r)
|
|
goto get_irqchip_out;
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, chip, sizeof *chip))
|
|
goto get_irqchip_out;
|
|
r = 0;
|
|
get_irqchip_out:
|
|
kfree(chip);
|
|
if (r)
|
|
goto out;
|
|
break;
|
|
}
|
|
case KVM_SET_IRQCHIP: {
|
|
/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
|
|
struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
|
|
|
|
r = -ENOMEM;
|
|
if (!chip)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_from_user(chip, argp, sizeof *chip))
|
|
goto set_irqchip_out;
|
|
r = -ENXIO;
|
|
if (!irqchip_in_kernel(kvm))
|
|
goto set_irqchip_out;
|
|
r = kvm_vm_ioctl_set_irqchip(kvm, chip);
|
|
if (r)
|
|
goto set_irqchip_out;
|
|
r = 0;
|
|
set_irqchip_out:
|
|
kfree(chip);
|
|
if (r)
|
|
goto out;
|
|
break;
|
|
}
|
|
case KVM_GET_PIT: {
|
|
r = -EFAULT;
|
|
if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
|
|
goto out;
|
|
r = -ENXIO;
|
|
if (!kvm->arch.vpit)
|
|
goto out;
|
|
r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
|
|
if (r)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_SET_PIT: {
|
|
r = -EFAULT;
|
|
if (copy_from_user(&u.ps, argp, sizeof u.ps))
|
|
goto out;
|
|
r = -ENXIO;
|
|
if (!kvm->arch.vpit)
|
|
goto out;
|
|
r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
|
|
if (r)
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_GET_PIT2: {
|
|
r = -ENXIO;
|
|
if (!kvm->arch.vpit)
|
|
goto out;
|
|
r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
|
|
if (r)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_SET_PIT2: {
|
|
r = -EFAULT;
|
|
if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
|
|
goto out;
|
|
r = -ENXIO;
|
|
if (!kvm->arch.vpit)
|
|
goto out;
|
|
r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
|
|
if (r)
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_REINJECT_CONTROL: {
|
|
struct kvm_reinject_control control;
|
|
r = -EFAULT;
|
|
if (copy_from_user(&control, argp, sizeof(control)))
|
|
goto out;
|
|
r = kvm_vm_ioctl_reinject(kvm, &control);
|
|
if (r)
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_XEN_HVM_CONFIG: {
|
|
r = -EFAULT;
|
|
if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
|
|
sizeof(struct kvm_xen_hvm_config)))
|
|
goto out;
|
|
r = -EINVAL;
|
|
if (kvm->arch.xen_hvm_config.flags)
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_SET_CLOCK: {
|
|
struct kvm_clock_data user_ns;
|
|
u64 now_ns;
|
|
s64 delta;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
|
|
goto out;
|
|
|
|
r = -EINVAL;
|
|
if (user_ns.flags)
|
|
goto out;
|
|
|
|
r = 0;
|
|
local_irq_disable();
|
|
now_ns = get_kernel_ns();
|
|
delta = user_ns.clock - now_ns;
|
|
local_irq_enable();
|
|
kvm->arch.kvmclock_offset = delta;
|
|
break;
|
|
}
|
|
case KVM_GET_CLOCK: {
|
|
struct kvm_clock_data user_ns;
|
|
u64 now_ns;
|
|
|
|
local_irq_disable();
|
|
now_ns = get_kernel_ns();
|
|
user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
|
|
local_irq_enable();
|
|
user_ns.flags = 0;
|
|
memset(&user_ns.pad, 0, sizeof(user_ns.pad));
|
|
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
;
|
|
}
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
static void kvm_init_msr_list(void)
|
|
{
|
|
u32 dummy[2];
|
|
unsigned i, j;
|
|
|
|
/* skip the first msrs in the list. KVM-specific */
|
|
for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
|
|
if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
|
|
continue;
|
|
if (j < i)
|
|
msrs_to_save[j] = msrs_to_save[i];
|
|
j++;
|
|
}
|
|
num_msrs_to_save = j;
|
|
}
|
|
|
|
static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
|
|
const void *v)
|
|
{
|
|
if (vcpu->arch.apic &&
|
|
!kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
|
|
return 0;
|
|
|
|
return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
|
|
}
|
|
|
|
static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
|
|
{
|
|
if (vcpu->arch.apic &&
|
|
!kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
|
|
return 0;
|
|
|
|
return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
|
|
}
|
|
|
|
static void kvm_set_segment(struct kvm_vcpu *vcpu,
|
|
struct kvm_segment *var, int seg)
|
|
{
|
|
kvm_x86_ops->set_segment(vcpu, var, seg);
|
|
}
|
|
|
|
void kvm_get_segment(struct kvm_vcpu *vcpu,
|
|
struct kvm_segment *var, int seg)
|
|
{
|
|
kvm_x86_ops->get_segment(vcpu, var, seg);
|
|
}
|
|
|
|
static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
|
|
{
|
|
return gpa;
|
|
}
|
|
|
|
static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
|
|
{
|
|
gpa_t t_gpa;
|
|
struct x86_exception exception;
|
|
|
|
BUG_ON(!mmu_is_nested(vcpu));
|
|
|
|
/* NPT walks are always user-walks */
|
|
access |= PFERR_USER_MASK;
|
|
t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
|
|
|
|
return t_gpa;
|
|
}
|
|
|
|
gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
|
|
struct x86_exception *exception)
|
|
{
|
|
u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
|
|
return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
|
|
}
|
|
|
|
gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
|
|
struct x86_exception *exception)
|
|
{
|
|
u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
|
|
access |= PFERR_FETCH_MASK;
|
|
return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
|
|
}
|
|
|
|
gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
|
|
struct x86_exception *exception)
|
|
{
|
|
u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
|
|
access |= PFERR_WRITE_MASK;
|
|
return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
|
|
}
|
|
|
|
/* uses this to access any guest's mapped memory without checking CPL */
|
|
gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
|
|
struct x86_exception *exception)
|
|
{
|
|
return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
|
|
}
|
|
|
|
static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
|
|
struct kvm_vcpu *vcpu, u32 access,
|
|
struct x86_exception *exception)
|
|
{
|
|
void *data = val;
|
|
int r = X86EMUL_CONTINUE;
|
|
|
|
while (bytes) {
|
|
gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
|
|
exception);
|
|
unsigned offset = addr & (PAGE_SIZE-1);
|
|
unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
|
|
int ret;
|
|
|
|
if (gpa == UNMAPPED_GVA)
|
|
return X86EMUL_PROPAGATE_FAULT;
|
|
ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
|
|
if (ret < 0) {
|
|
r = X86EMUL_IO_NEEDED;
|
|
goto out;
|
|
}
|
|
|
|
bytes -= toread;
|
|
data += toread;
|
|
addr += toread;
|
|
}
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
/* used for instruction fetching */
|
|
static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
|
|
struct kvm_vcpu *vcpu,
|
|
struct x86_exception *exception)
|
|
{
|
|
u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
|
|
return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
|
|
access | PFERR_FETCH_MASK,
|
|
exception);
|
|
}
|
|
|
|
static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
|
|
struct kvm_vcpu *vcpu,
|
|
struct x86_exception *exception)
|
|
{
|
|
u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
|
|
return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
|
|
exception);
|
|
}
|
|
|
|
static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
|
|
struct kvm_vcpu *vcpu,
|
|
struct x86_exception *exception)
|
|
{
|
|
return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
|
|
}
|
|
|
|
static int kvm_write_guest_virt_system(gva_t addr, void *val,
|
|
unsigned int bytes,
|
|
struct kvm_vcpu *vcpu,
|
|
struct x86_exception *exception)
|
|
{
|
|
void *data = val;
|
|
int r = X86EMUL_CONTINUE;
|
|
|
|
while (bytes) {
|
|
gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
|
|
PFERR_WRITE_MASK,
|
|
exception);
|
|
unsigned offset = addr & (PAGE_SIZE-1);
|
|
unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
|
|
int ret;
|
|
|
|
if (gpa == UNMAPPED_GVA)
|
|
return X86EMUL_PROPAGATE_FAULT;
|
|
ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
|
|
if (ret < 0) {
|
|
r = X86EMUL_IO_NEEDED;
|
|
goto out;
|
|
}
|
|
|
|
bytes -= towrite;
|
|
data += towrite;
|
|
addr += towrite;
|
|
}
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
static int emulator_read_emulated(unsigned long addr,
|
|
void *val,
|
|
unsigned int bytes,
|
|
struct x86_exception *exception,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
gpa_t gpa;
|
|
|
|
if (vcpu->mmio_read_completed) {
|
|
memcpy(val, vcpu->mmio_data, bytes);
|
|
trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
|
|
vcpu->mmio_phys_addr, *(u64 *)val);
|
|
vcpu->mmio_read_completed = 0;
|
|
return X86EMUL_CONTINUE;
|
|
}
|
|
|
|
gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, exception);
|
|
|
|
if (gpa == UNMAPPED_GVA)
|
|
return X86EMUL_PROPAGATE_FAULT;
|
|
|
|
/* For APIC access vmexit */
|
|
if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
|
|
goto mmio;
|
|
|
|
if (kvm_read_guest_virt(addr, val, bytes, vcpu, exception)
|
|
== X86EMUL_CONTINUE)
|
|
return X86EMUL_CONTINUE;
|
|
|
|
mmio:
|
|
/*
|
|
* Is this MMIO handled locally?
|
|
*/
|
|
if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
|
|
trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
|
|
return X86EMUL_CONTINUE;
|
|
}
|
|
|
|
trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
|
|
|
|
vcpu->mmio_needed = 1;
|
|
vcpu->run->exit_reason = KVM_EXIT_MMIO;
|
|
vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
|
|
vcpu->run->mmio.len = vcpu->mmio_size = bytes;
|
|
vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
|
|
|
|
return X86EMUL_IO_NEEDED;
|
|
}
|
|
|
|
int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
|
|
const void *val, int bytes)
|
|
{
|
|
int ret;
|
|
|
|
ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
|
|
if (ret < 0)
|
|
return 0;
|
|
kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
|
|
return 1;
|
|
}
|
|
|
|
static int emulator_write_emulated_onepage(unsigned long addr,
|
|
const void *val,
|
|
unsigned int bytes,
|
|
struct x86_exception *exception,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
gpa_t gpa;
|
|
|
|
gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, exception);
|
|
|
|
if (gpa == UNMAPPED_GVA)
|
|
return X86EMUL_PROPAGATE_FAULT;
|
|
|
|
/* For APIC access vmexit */
|
|
if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
|
|
goto mmio;
|
|
|
|
if (emulator_write_phys(vcpu, gpa, val, bytes))
|
|
return X86EMUL_CONTINUE;
|
|
|
|
mmio:
|
|
trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
|
|
/*
|
|
* Is this MMIO handled locally?
|
|
*/
|
|
if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
|
|
return X86EMUL_CONTINUE;
|
|
|
|
vcpu->mmio_needed = 1;
|
|
vcpu->run->exit_reason = KVM_EXIT_MMIO;
|
|
vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
|
|
vcpu->run->mmio.len = vcpu->mmio_size = bytes;
|
|
vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
|
|
memcpy(vcpu->run->mmio.data, val, bytes);
|
|
|
|
return X86EMUL_CONTINUE;
|
|
}
|
|
|
|
int emulator_write_emulated(unsigned long addr,
|
|
const void *val,
|
|
unsigned int bytes,
|
|
struct x86_exception *exception,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
/* Crossing a page boundary? */
|
|
if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
|
|
int rc, now;
|
|
|
|
now = -addr & ~PAGE_MASK;
|
|
rc = emulator_write_emulated_onepage(addr, val, now, exception,
|
|
vcpu);
|
|
if (rc != X86EMUL_CONTINUE)
|
|
return rc;
|
|
addr += now;
|
|
val += now;
|
|
bytes -= now;
|
|
}
|
|
return emulator_write_emulated_onepage(addr, val, bytes, exception,
|
|
vcpu);
|
|
}
|
|
|
|
#define CMPXCHG_TYPE(t, ptr, old, new) \
|
|
(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
|
|
|
|
#ifdef CONFIG_X86_64
|
|
# define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
|
|
#else
|
|
# define CMPXCHG64(ptr, old, new) \
|
|
(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
|
|
#endif
|
|
|
|
static int emulator_cmpxchg_emulated(unsigned long addr,
|
|
const void *old,
|
|
const void *new,
|
|
unsigned int bytes,
|
|
struct x86_exception *exception,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
gpa_t gpa;
|
|
struct page *page;
|
|
char *kaddr;
|
|
bool exchanged;
|
|
|
|
/* guests cmpxchg8b have to be emulated atomically */
|
|
if (bytes > 8 || (bytes & (bytes - 1)))
|
|
goto emul_write;
|
|
|
|
gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
|
|
|
|
if (gpa == UNMAPPED_GVA ||
|
|
(gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
|
|
goto emul_write;
|
|
|
|
if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
|
|
goto emul_write;
|
|
|
|
page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
|
|
if (is_error_page(page)) {
|
|
kvm_release_page_clean(page);
|
|
goto emul_write;
|
|
}
|
|
|
|
kaddr = kmap_atomic(page, KM_USER0);
|
|
kaddr += offset_in_page(gpa);
|
|
switch (bytes) {
|
|
case 1:
|
|
exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
|
|
break;
|
|
case 2:
|
|
exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
|
|
break;
|
|
case 4:
|
|
exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
|
|
break;
|
|
case 8:
|
|
exchanged = CMPXCHG64(kaddr, old, new);
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
kunmap_atomic(kaddr, KM_USER0);
|
|
kvm_release_page_dirty(page);
|
|
|
|
if (!exchanged)
|
|
return X86EMUL_CMPXCHG_FAILED;
|
|
|
|
kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
|
|
|
|
return X86EMUL_CONTINUE;
|
|
|
|
emul_write:
|
|
printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
|
|
|
|
return emulator_write_emulated(addr, new, bytes, exception, vcpu);
|
|
}
|
|
|
|
static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
|
|
{
|
|
/* TODO: String I/O for in kernel device */
|
|
int r;
|
|
|
|
if (vcpu->arch.pio.in)
|
|
r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
|
|
vcpu->arch.pio.size, pd);
|
|
else
|
|
r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
|
|
vcpu->arch.pio.port, vcpu->arch.pio.size,
|
|
pd);
|
|
return r;
|
|
}
|
|
|
|
|
|
static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
|
|
unsigned int count, struct kvm_vcpu *vcpu)
|
|
{
|
|
if (vcpu->arch.pio.count)
|
|
goto data_avail;
|
|
|
|
trace_kvm_pio(0, port, size, 1);
|
|
|
|
vcpu->arch.pio.port = port;
|
|
vcpu->arch.pio.in = 1;
|
|
vcpu->arch.pio.count = count;
|
|
vcpu->arch.pio.size = size;
|
|
|
|
if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
|
|
data_avail:
|
|
memcpy(val, vcpu->arch.pio_data, size * count);
|
|
vcpu->arch.pio.count = 0;
|
|
return 1;
|
|
}
|
|
|
|
vcpu->run->exit_reason = KVM_EXIT_IO;
|
|
vcpu->run->io.direction = KVM_EXIT_IO_IN;
|
|
vcpu->run->io.size = size;
|
|
vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
|
|
vcpu->run->io.count = count;
|
|
vcpu->run->io.port = port;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int emulator_pio_out_emulated(int size, unsigned short port,
|
|
const void *val, unsigned int count,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
trace_kvm_pio(1, port, size, 1);
|
|
|
|
vcpu->arch.pio.port = port;
|
|
vcpu->arch.pio.in = 0;
|
|
vcpu->arch.pio.count = count;
|
|
vcpu->arch.pio.size = size;
|
|
|
|
memcpy(vcpu->arch.pio_data, val, size * count);
|
|
|
|
if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
|
|
vcpu->arch.pio.count = 0;
|
|
return 1;
|
|
}
|
|
|
|
vcpu->run->exit_reason = KVM_EXIT_IO;
|
|
vcpu->run->io.direction = KVM_EXIT_IO_OUT;
|
|
vcpu->run->io.size = size;
|
|
vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
|
|
vcpu->run->io.count = count;
|
|
vcpu->run->io.port = port;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
|
|
{
|
|
return kvm_x86_ops->get_segment_base(vcpu, seg);
|
|
}
|
|
|
|
int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
|
|
{
|
|
kvm_mmu_invlpg(vcpu, address);
|
|
return X86EMUL_CONTINUE;
|
|
}
|
|
|
|
int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!need_emulate_wbinvd(vcpu))
|
|
return X86EMUL_CONTINUE;
|
|
|
|
if (kvm_x86_ops->has_wbinvd_exit()) {
|
|
int cpu = get_cpu();
|
|
|
|
cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
|
|
smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
|
|
wbinvd_ipi, NULL, 1);
|
|
put_cpu();
|
|
cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
|
|
} else
|
|
wbinvd();
|
|
return X86EMUL_CONTINUE;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
|
|
|
|
int emulate_clts(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
|
|
kvm_x86_ops->fpu_activate(vcpu);
|
|
return X86EMUL_CONTINUE;
|
|
}
|
|
|
|
int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
|
|
{
|
|
return _kvm_get_dr(vcpu, dr, dest);
|
|
}
|
|
|
|
int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
|
|
{
|
|
|
|
return __kvm_set_dr(vcpu, dr, value);
|
|
}
|
|
|
|
static u64 mk_cr_64(u64 curr_cr, u32 new_val)
|
|
{
|
|
return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
|
|
}
|
|
|
|
static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long value;
|
|
|
|
switch (cr) {
|
|
case 0:
|
|
value = kvm_read_cr0(vcpu);
|
|
break;
|
|
case 2:
|
|
value = vcpu->arch.cr2;
|
|
break;
|
|
case 3:
|
|
value = vcpu->arch.cr3;
|
|
break;
|
|
case 4:
|
|
value = kvm_read_cr4(vcpu);
|
|
break;
|
|
case 8:
|
|
value = kvm_get_cr8(vcpu);
|
|
break;
|
|
default:
|
|
vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
|
|
return 0;
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
|
|
{
|
|
int res = 0;
|
|
|
|
switch (cr) {
|
|
case 0:
|
|
res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
|
|
break;
|
|
case 2:
|
|
vcpu->arch.cr2 = val;
|
|
break;
|
|
case 3:
|
|
res = kvm_set_cr3(vcpu, val);
|
|
break;
|
|
case 4:
|
|
res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
|
|
break;
|
|
case 8:
|
|
res = __kvm_set_cr8(vcpu, val & 0xfUL);
|
|
break;
|
|
default:
|
|
vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
|
|
res = -1;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
static int emulator_get_cpl(struct kvm_vcpu *vcpu)
|
|
{
|
|
return kvm_x86_ops->get_cpl(vcpu);
|
|
}
|
|
|
|
static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_x86_ops->get_gdt(vcpu, dt);
|
|
}
|
|
|
|
static void emulator_get_idt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_x86_ops->get_idt(vcpu, dt);
|
|
}
|
|
|
|
static unsigned long emulator_get_cached_segment_base(int seg,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
return get_segment_base(vcpu, seg);
|
|
}
|
|
|
|
static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_segment var;
|
|
|
|
kvm_get_segment(vcpu, &var, seg);
|
|
|
|
if (var.unusable)
|
|
return false;
|
|
|
|
if (var.g)
|
|
var.limit >>= 12;
|
|
set_desc_limit(desc, var.limit);
|
|
set_desc_base(desc, (unsigned long)var.base);
|
|
desc->type = var.type;
|
|
desc->s = var.s;
|
|
desc->dpl = var.dpl;
|
|
desc->p = var.present;
|
|
desc->avl = var.avl;
|
|
desc->l = var.l;
|
|
desc->d = var.db;
|
|
desc->g = var.g;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_segment var;
|
|
|
|
/* needed to preserve selector */
|
|
kvm_get_segment(vcpu, &var, seg);
|
|
|
|
var.base = get_desc_base(desc);
|
|
var.limit = get_desc_limit(desc);
|
|
if (desc->g)
|
|
var.limit = (var.limit << 12) | 0xfff;
|
|
var.type = desc->type;
|
|
var.present = desc->p;
|
|
var.dpl = desc->dpl;
|
|
var.db = desc->d;
|
|
var.s = desc->s;
|
|
var.l = desc->l;
|
|
var.g = desc->g;
|
|
var.avl = desc->avl;
|
|
var.present = desc->p;
|
|
var.unusable = !var.present;
|
|
var.padding = 0;
|
|
|
|
kvm_set_segment(vcpu, &var, seg);
|
|
return;
|
|
}
|
|
|
|
static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_segment kvm_seg;
|
|
|
|
kvm_get_segment(vcpu, &kvm_seg, seg);
|
|
return kvm_seg.selector;
|
|
}
|
|
|
|
static void emulator_set_segment_selector(u16 sel, int seg,
|
|
struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_segment kvm_seg;
|
|
|
|
kvm_get_segment(vcpu, &kvm_seg, seg);
|
|
kvm_seg.selector = sel;
|
|
kvm_set_segment(vcpu, &kvm_seg, seg);
|
|
}
|
|
|
|
static struct x86_emulate_ops emulate_ops = {
|
|
.read_std = kvm_read_guest_virt_system,
|
|
.write_std = kvm_write_guest_virt_system,
|
|
.fetch = kvm_fetch_guest_virt,
|
|
.read_emulated = emulator_read_emulated,
|
|
.write_emulated = emulator_write_emulated,
|
|
.cmpxchg_emulated = emulator_cmpxchg_emulated,
|
|
.pio_in_emulated = emulator_pio_in_emulated,
|
|
.pio_out_emulated = emulator_pio_out_emulated,
|
|
.get_cached_descriptor = emulator_get_cached_descriptor,
|
|
.set_cached_descriptor = emulator_set_cached_descriptor,
|
|
.get_segment_selector = emulator_get_segment_selector,
|
|
.set_segment_selector = emulator_set_segment_selector,
|
|
.get_cached_segment_base = emulator_get_cached_segment_base,
|
|
.get_gdt = emulator_get_gdt,
|
|
.get_idt = emulator_get_idt,
|
|
.get_cr = emulator_get_cr,
|
|
.set_cr = emulator_set_cr,
|
|
.cpl = emulator_get_cpl,
|
|
.get_dr = emulator_get_dr,
|
|
.set_dr = emulator_set_dr,
|
|
.set_msr = kvm_set_msr,
|
|
.get_msr = kvm_get_msr,
|
|
};
|
|
|
|
static void cache_all_regs(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_register_read(vcpu, VCPU_REGS_RAX);
|
|
kvm_register_read(vcpu, VCPU_REGS_RSP);
|
|
kvm_register_read(vcpu, VCPU_REGS_RIP);
|
|
vcpu->arch.regs_dirty = ~0;
|
|
}
|
|
|
|
static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
|
|
{
|
|
u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
|
|
/*
|
|
* an sti; sti; sequence only disable interrupts for the first
|
|
* instruction. So, if the last instruction, be it emulated or
|
|
* not, left the system with the INT_STI flag enabled, it
|
|
* means that the last instruction is an sti. We should not
|
|
* leave the flag on in this case. The same goes for mov ss
|
|
*/
|
|
if (!(int_shadow & mask))
|
|
kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
|
|
}
|
|
|
|
static void inject_emulated_exception(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
|
|
if (ctxt->exception.vector == PF_VECTOR)
|
|
kvm_propagate_fault(vcpu, &ctxt->exception);
|
|
else if (ctxt->exception.error_code_valid)
|
|
kvm_queue_exception_e(vcpu, ctxt->exception.vector,
|
|
ctxt->exception.error_code);
|
|
else
|
|
kvm_queue_exception(vcpu, ctxt->exception.vector);
|
|
}
|
|
|
|
static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
|
|
int cs_db, cs_l;
|
|
|
|
cache_all_regs(vcpu);
|
|
|
|
kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
|
|
|
|
vcpu->arch.emulate_ctxt.vcpu = vcpu;
|
|
vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
|
|
vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
|
|
vcpu->arch.emulate_ctxt.mode =
|
|
(!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
|
|
(vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
|
|
? X86EMUL_MODE_VM86 : cs_l
|
|
? X86EMUL_MODE_PROT64 : cs_db
|
|
? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
|
|
memset(c, 0, sizeof(struct decode_cache));
|
|
memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
|
|
}
|
|
|
|
int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq)
|
|
{
|
|
struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
|
|
int ret;
|
|
|
|
init_emulate_ctxt(vcpu);
|
|
|
|
vcpu->arch.emulate_ctxt.decode.op_bytes = 2;
|
|
vcpu->arch.emulate_ctxt.decode.ad_bytes = 2;
|
|
vcpu->arch.emulate_ctxt.decode.eip = vcpu->arch.emulate_ctxt.eip;
|
|
ret = emulate_int_real(&vcpu->arch.emulate_ctxt, &emulate_ops, irq);
|
|
|
|
if (ret != X86EMUL_CONTINUE)
|
|
return EMULATE_FAIL;
|
|
|
|
vcpu->arch.emulate_ctxt.eip = c->eip;
|
|
memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
|
|
kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
|
|
kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
|
|
|
|
if (irq == NMI_VECTOR)
|
|
vcpu->arch.nmi_pending = false;
|
|
else
|
|
vcpu->arch.interrupt.pending = false;
|
|
|
|
return EMULATE_DONE;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
|
|
|
|
static int handle_emulation_failure(struct kvm_vcpu *vcpu)
|
|
{
|
|
int r = EMULATE_DONE;
|
|
|
|
++vcpu->stat.insn_emulation_fail;
|
|
trace_kvm_emulate_insn_failed(vcpu);
|
|
if (!is_guest_mode(vcpu)) {
|
|
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
|
|
vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
|
|
vcpu->run->internal.ndata = 0;
|
|
r = EMULATE_FAIL;
|
|
}
|
|
kvm_queue_exception(vcpu, UD_VECTOR);
|
|
|
|
return r;
|
|
}
|
|
|
|
static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
|
|
{
|
|
gpa_t gpa;
|
|
|
|
if (tdp_enabled)
|
|
return false;
|
|
|
|
/*
|
|
* if emulation was due to access to shadowed page table
|
|
* and it failed try to unshadow page and re-entetr the
|
|
* guest to let CPU execute the instruction.
|
|
*/
|
|
if (kvm_mmu_unprotect_page_virt(vcpu, gva))
|
|
return true;
|
|
|
|
gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
|
|
|
|
if (gpa == UNMAPPED_GVA)
|
|
return true; /* let cpu generate fault */
|
|
|
|
if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
int emulate_instruction(struct kvm_vcpu *vcpu,
|
|
unsigned long cr2,
|
|
u16 error_code,
|
|
int emulation_type)
|
|
{
|
|
int r;
|
|
struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
|
|
|
|
kvm_clear_exception_queue(vcpu);
|
|
vcpu->arch.mmio_fault_cr2 = cr2;
|
|
/*
|
|
* TODO: fix emulate.c to use guest_read/write_register
|
|
* instead of direct ->regs accesses, can save hundred cycles
|
|
* on Intel for instructions that don't read/change RSP, for
|
|
* for example.
|
|
*/
|
|
cache_all_regs(vcpu);
|
|
|
|
if (!(emulation_type & EMULTYPE_NO_DECODE)) {
|
|
init_emulate_ctxt(vcpu);
|
|
vcpu->arch.emulate_ctxt.interruptibility = 0;
|
|
vcpu->arch.emulate_ctxt.have_exception = false;
|
|
vcpu->arch.emulate_ctxt.perm_ok = false;
|
|
|
|
r = x86_decode_insn(&vcpu->arch.emulate_ctxt);
|
|
if (r == X86EMUL_PROPAGATE_FAULT)
|
|
goto done;
|
|
|
|
trace_kvm_emulate_insn_start(vcpu);
|
|
|
|
/* Only allow emulation of specific instructions on #UD
|
|
* (namely VMMCALL, sysenter, sysexit, syscall)*/
|
|
if (emulation_type & EMULTYPE_TRAP_UD) {
|
|
if (!c->twobyte)
|
|
return EMULATE_FAIL;
|
|
switch (c->b) {
|
|
case 0x01: /* VMMCALL */
|
|
if (c->modrm_mod != 3 || c->modrm_rm != 1)
|
|
return EMULATE_FAIL;
|
|
break;
|
|
case 0x34: /* sysenter */
|
|
case 0x35: /* sysexit */
|
|
if (c->modrm_mod != 0 || c->modrm_rm != 0)
|
|
return EMULATE_FAIL;
|
|
break;
|
|
case 0x05: /* syscall */
|
|
if (c->modrm_mod != 0 || c->modrm_rm != 0)
|
|
return EMULATE_FAIL;
|
|
break;
|
|
default:
|
|
return EMULATE_FAIL;
|
|
}
|
|
|
|
if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
|
|
return EMULATE_FAIL;
|
|
}
|
|
|
|
++vcpu->stat.insn_emulation;
|
|
if (r) {
|
|
if (reexecute_instruction(vcpu, cr2))
|
|
return EMULATE_DONE;
|
|
if (emulation_type & EMULTYPE_SKIP)
|
|
return EMULATE_FAIL;
|
|
return handle_emulation_failure(vcpu);
|
|
}
|
|
}
|
|
|
|
if (emulation_type & EMULTYPE_SKIP) {
|
|
kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
|
|
return EMULATE_DONE;
|
|
}
|
|
|
|
/* this is needed for vmware backdor interface to work since it
|
|
changes registers values during IO operation */
|
|
memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
|
|
|
|
restart:
|
|
r = x86_emulate_insn(&vcpu->arch.emulate_ctxt);
|
|
|
|
if (r == EMULATION_FAILED) {
|
|
if (reexecute_instruction(vcpu, cr2))
|
|
return EMULATE_DONE;
|
|
|
|
return handle_emulation_failure(vcpu);
|
|
}
|
|
|
|
done:
|
|
if (vcpu->arch.emulate_ctxt.have_exception) {
|
|
inject_emulated_exception(vcpu);
|
|
r = EMULATE_DONE;
|
|
} else if (vcpu->arch.pio.count) {
|
|
if (!vcpu->arch.pio.in)
|
|
vcpu->arch.pio.count = 0;
|
|
r = EMULATE_DO_MMIO;
|
|
} else if (vcpu->mmio_needed) {
|
|
if (vcpu->mmio_is_write)
|
|
vcpu->mmio_needed = 0;
|
|
r = EMULATE_DO_MMIO;
|
|
} else if (r == EMULATION_RESTART)
|
|
goto restart;
|
|
else
|
|
r = EMULATE_DONE;
|
|
|
|
toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
|
|
kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
|
|
kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
|
|
|
|
return r;
|
|
}
|
|
EXPORT_SYMBOL_GPL(emulate_instruction);
|
|
|
|
int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
|
|
{
|
|
unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
|
|
int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
|
|
/* do not return to emulator after return from userspace */
|
|
vcpu->arch.pio.count = 0;
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
|
|
|
|
static void tsc_bad(void *info)
|
|
{
|
|
__get_cpu_var(cpu_tsc_khz) = 0;
|
|
}
|
|
|
|
static void tsc_khz_changed(void *data)
|
|
{
|
|
struct cpufreq_freqs *freq = data;
|
|
unsigned long khz = 0;
|
|
|
|
if (data)
|
|
khz = freq->new;
|
|
else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
|
|
khz = cpufreq_quick_get(raw_smp_processor_id());
|
|
if (!khz)
|
|
khz = tsc_khz;
|
|
__get_cpu_var(cpu_tsc_khz) = khz;
|
|
}
|
|
|
|
static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
|
|
void *data)
|
|
{
|
|
struct cpufreq_freqs *freq = data;
|
|
struct kvm *kvm;
|
|
struct kvm_vcpu *vcpu;
|
|
int i, send_ipi = 0;
|
|
|
|
/*
|
|
* We allow guests to temporarily run on slowing clocks,
|
|
* provided we notify them after, or to run on accelerating
|
|
* clocks, provided we notify them before. Thus time never
|
|
* goes backwards.
|
|
*
|
|
* However, we have a problem. We can't atomically update
|
|
* the frequency of a given CPU from this function; it is
|
|
* merely a notifier, which can be called from any CPU.
|
|
* Changing the TSC frequency at arbitrary points in time
|
|
* requires a recomputation of local variables related to
|
|
* the TSC for each VCPU. We must flag these local variables
|
|
* to be updated and be sure the update takes place with the
|
|
* new frequency before any guests proceed.
|
|
*
|
|
* Unfortunately, the combination of hotplug CPU and frequency
|
|
* change creates an intractable locking scenario; the order
|
|
* of when these callouts happen is undefined with respect to
|
|
* CPU hotplug, and they can race with each other. As such,
|
|
* merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
|
|
* undefined; you can actually have a CPU frequency change take
|
|
* place in between the computation of X and the setting of the
|
|
* variable. To protect against this problem, all updates of
|
|
* the per_cpu tsc_khz variable are done in an interrupt
|
|
* protected IPI, and all callers wishing to update the value
|
|
* must wait for a synchronous IPI to complete (which is trivial
|
|
* if the caller is on the CPU already). This establishes the
|
|
* necessary total order on variable updates.
|
|
*
|
|
* Note that because a guest time update may take place
|
|
* anytime after the setting of the VCPU's request bit, the
|
|
* correct TSC value must be set before the request. However,
|
|
* to ensure the update actually makes it to any guest which
|
|
* starts running in hardware virtualization between the set
|
|
* and the acquisition of the spinlock, we must also ping the
|
|
* CPU after setting the request bit.
|
|
*
|
|
*/
|
|
|
|
if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
|
|
return 0;
|
|
if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
|
|
return 0;
|
|
|
|
smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
|
|
|
|
spin_lock(&kvm_lock);
|
|
list_for_each_entry(kvm, &vm_list, vm_list) {
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
if (vcpu->cpu != freq->cpu)
|
|
continue;
|
|
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
|
|
if (vcpu->cpu != smp_processor_id())
|
|
send_ipi = 1;
|
|
}
|
|
}
|
|
spin_unlock(&kvm_lock);
|
|
|
|
if (freq->old < freq->new && send_ipi) {
|
|
/*
|
|
* We upscale the frequency. Must make the guest
|
|
* doesn't see old kvmclock values while running with
|
|
* the new frequency, otherwise we risk the guest sees
|
|
* time go backwards.
|
|
*
|
|
* In case we update the frequency for another cpu
|
|
* (which might be in guest context) send an interrupt
|
|
* to kick the cpu out of guest context. Next time
|
|
* guest context is entered kvmclock will be updated,
|
|
* so the guest will not see stale values.
|
|
*/
|
|
smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct notifier_block kvmclock_cpufreq_notifier_block = {
|
|
.notifier_call = kvmclock_cpufreq_notifier
|
|
};
|
|
|
|
static int kvmclock_cpu_notifier(struct notifier_block *nfb,
|
|
unsigned long action, void *hcpu)
|
|
{
|
|
unsigned int cpu = (unsigned long)hcpu;
|
|
|
|
switch (action) {
|
|
case CPU_ONLINE:
|
|
case CPU_DOWN_FAILED:
|
|
smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
|
|
break;
|
|
case CPU_DOWN_PREPARE:
|
|
smp_call_function_single(cpu, tsc_bad, NULL, 1);
|
|
break;
|
|
}
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block kvmclock_cpu_notifier_block = {
|
|
.notifier_call = kvmclock_cpu_notifier,
|
|
.priority = -INT_MAX
|
|
};
|
|
|
|
static void kvm_timer_init(void)
|
|
{
|
|
int cpu;
|
|
|
|
max_tsc_khz = tsc_khz;
|
|
register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
|
|
if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
|
|
#ifdef CONFIG_CPU_FREQ
|
|
struct cpufreq_policy policy;
|
|
memset(&policy, 0, sizeof(policy));
|
|
cpu = get_cpu();
|
|
cpufreq_get_policy(&policy, cpu);
|
|
if (policy.cpuinfo.max_freq)
|
|
max_tsc_khz = policy.cpuinfo.max_freq;
|
|
put_cpu();
|
|
#endif
|
|
cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
|
|
CPUFREQ_TRANSITION_NOTIFIER);
|
|
}
|
|
pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
|
|
for_each_online_cpu(cpu)
|
|
smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
|
|
}
|
|
|
|
static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
|
|
|
|
static int kvm_is_in_guest(void)
|
|
{
|
|
return percpu_read(current_vcpu) != NULL;
|
|
}
|
|
|
|
static int kvm_is_user_mode(void)
|
|
{
|
|
int user_mode = 3;
|
|
|
|
if (percpu_read(current_vcpu))
|
|
user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
|
|
|
|
return user_mode != 0;
|
|
}
|
|
|
|
static unsigned long kvm_get_guest_ip(void)
|
|
{
|
|
unsigned long ip = 0;
|
|
|
|
if (percpu_read(current_vcpu))
|
|
ip = kvm_rip_read(percpu_read(current_vcpu));
|
|
|
|
return ip;
|
|
}
|
|
|
|
static struct perf_guest_info_callbacks kvm_guest_cbs = {
|
|
.is_in_guest = kvm_is_in_guest,
|
|
.is_user_mode = kvm_is_user_mode,
|
|
.get_guest_ip = kvm_get_guest_ip,
|
|
};
|
|
|
|
void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
|
|
{
|
|
percpu_write(current_vcpu, vcpu);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
|
|
|
|
void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
|
|
{
|
|
percpu_write(current_vcpu, NULL);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
|
|
|
|
int kvm_arch_init(void *opaque)
|
|
{
|
|
int r;
|
|
struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
|
|
|
|
if (kvm_x86_ops) {
|
|
printk(KERN_ERR "kvm: already loaded the other module\n");
|
|
r = -EEXIST;
|
|
goto out;
|
|
}
|
|
|
|
if (!ops->cpu_has_kvm_support()) {
|
|
printk(KERN_ERR "kvm: no hardware support\n");
|
|
r = -EOPNOTSUPP;
|
|
goto out;
|
|
}
|
|
if (ops->disabled_by_bios()) {
|
|
printk(KERN_ERR "kvm: disabled by bios\n");
|
|
r = -EOPNOTSUPP;
|
|
goto out;
|
|
}
|
|
|
|
r = kvm_mmu_module_init();
|
|
if (r)
|
|
goto out;
|
|
|
|
kvm_init_msr_list();
|
|
|
|
kvm_x86_ops = ops;
|
|
kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
|
|
kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
|
|
PT_DIRTY_MASK, PT64_NX_MASK, 0);
|
|
|
|
kvm_timer_init();
|
|
|
|
perf_register_guest_info_callbacks(&kvm_guest_cbs);
|
|
|
|
if (cpu_has_xsave)
|
|
host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
|
|
|
|
return 0;
|
|
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
void kvm_arch_exit(void)
|
|
{
|
|
perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
|
|
cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
|
|
CPUFREQ_TRANSITION_NOTIFIER);
|
|
unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
|
|
kvm_x86_ops = NULL;
|
|
kvm_mmu_module_exit();
|
|
}
|
|
|
|
int kvm_emulate_halt(struct kvm_vcpu *vcpu)
|
|
{
|
|
++vcpu->stat.halt_exits;
|
|
if (irqchip_in_kernel(vcpu->kvm)) {
|
|
vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
|
|
return 1;
|
|
} else {
|
|
vcpu->run->exit_reason = KVM_EXIT_HLT;
|
|
return 0;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_emulate_halt);
|
|
|
|
static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
|
|
unsigned long a1)
|
|
{
|
|
if (is_long_mode(vcpu))
|
|
return a0;
|
|
else
|
|
return a0 | ((gpa_t)a1 << 32);
|
|
}
|
|
|
|
int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 param, ingpa, outgpa, ret;
|
|
uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
|
|
bool fast, longmode;
|
|
int cs_db, cs_l;
|
|
|
|
/*
|
|
* hypercall generates UD from non zero cpl and real mode
|
|
* per HYPER-V spec
|
|
*/
|
|
if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
|
|
kvm_queue_exception(vcpu, UD_VECTOR);
|
|
return 0;
|
|
}
|
|
|
|
kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
|
|
longmode = is_long_mode(vcpu) && cs_l == 1;
|
|
|
|
if (!longmode) {
|
|
param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
|
|
(kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
|
|
ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
|
|
(kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
|
|
outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
|
|
(kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
|
|
}
|
|
#ifdef CONFIG_X86_64
|
|
else {
|
|
param = kvm_register_read(vcpu, VCPU_REGS_RCX);
|
|
ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
|
|
outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
|
|
}
|
|
#endif
|
|
|
|
code = param & 0xffff;
|
|
fast = (param >> 16) & 0x1;
|
|
rep_cnt = (param >> 32) & 0xfff;
|
|
rep_idx = (param >> 48) & 0xfff;
|
|
|
|
trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
|
|
|
|
switch (code) {
|
|
case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
|
|
kvm_vcpu_on_spin(vcpu);
|
|
break;
|
|
default:
|
|
res = HV_STATUS_INVALID_HYPERCALL_CODE;
|
|
break;
|
|
}
|
|
|
|
ret = res | (((u64)rep_done & 0xfff) << 32);
|
|
if (longmode) {
|
|
kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
|
|
} else {
|
|
kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
|
|
kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long nr, a0, a1, a2, a3, ret;
|
|
int r = 1;
|
|
|
|
if (kvm_hv_hypercall_enabled(vcpu->kvm))
|
|
return kvm_hv_hypercall(vcpu);
|
|
|
|
nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
|
|
a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
|
|
a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
|
|
a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
|
|
a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
|
|
|
|
trace_kvm_hypercall(nr, a0, a1, a2, a3);
|
|
|
|
if (!is_long_mode(vcpu)) {
|
|
nr &= 0xFFFFFFFF;
|
|
a0 &= 0xFFFFFFFF;
|
|
a1 &= 0xFFFFFFFF;
|
|
a2 &= 0xFFFFFFFF;
|
|
a3 &= 0xFFFFFFFF;
|
|
}
|
|
|
|
if (kvm_x86_ops->get_cpl(vcpu) != 0) {
|
|
ret = -KVM_EPERM;
|
|
goto out;
|
|
}
|
|
|
|
switch (nr) {
|
|
case KVM_HC_VAPIC_POLL_IRQ:
|
|
ret = 0;
|
|
break;
|
|
case KVM_HC_MMU_OP:
|
|
r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
|
|
break;
|
|
default:
|
|
ret = -KVM_ENOSYS;
|
|
break;
|
|
}
|
|
out:
|
|
kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
|
|
++vcpu->stat.hypercalls;
|
|
return r;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
|
|
|
|
int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
|
|
{
|
|
char instruction[3];
|
|
unsigned long rip = kvm_rip_read(vcpu);
|
|
|
|
/*
|
|
* Blow out the MMU to ensure that no other VCPU has an active mapping
|
|
* to ensure that the updated hypercall appears atomically across all
|
|
* VCPUs.
|
|
*/
|
|
kvm_mmu_zap_all(vcpu->kvm);
|
|
|
|
kvm_x86_ops->patch_hypercall(vcpu, instruction);
|
|
|
|
return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
|
|
}
|
|
|
|
void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
|
|
{
|
|
struct desc_ptr dt = { limit, base };
|
|
|
|
kvm_x86_ops->set_gdt(vcpu, &dt);
|
|
}
|
|
|
|
void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
|
|
{
|
|
struct desc_ptr dt = { limit, base };
|
|
|
|
kvm_x86_ops->set_idt(vcpu, &dt);
|
|
}
|
|
|
|
static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
|
|
{
|
|
struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
|
|
int j, nent = vcpu->arch.cpuid_nent;
|
|
|
|
e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
|
|
/* when no next entry is found, the current entry[i] is reselected */
|
|
for (j = i + 1; ; j = (j + 1) % nent) {
|
|
struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
|
|
if (ej->function == e->function) {
|
|
ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
|
|
return j;
|
|
}
|
|
}
|
|
return 0; /* silence gcc, even though control never reaches here */
|
|
}
|
|
|
|
/* find an entry with matching function, matching index (if needed), and that
|
|
* should be read next (if it's stateful) */
|
|
static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
|
|
u32 function, u32 index)
|
|
{
|
|
if (e->function != function)
|
|
return 0;
|
|
if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
|
|
return 0;
|
|
if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
|
|
!(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
|
|
u32 function, u32 index)
|
|
{
|
|
int i;
|
|
struct kvm_cpuid_entry2 *best = NULL;
|
|
|
|
for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
|
|
struct kvm_cpuid_entry2 *e;
|
|
|
|
e = &vcpu->arch.cpuid_entries[i];
|
|
if (is_matching_cpuid_entry(e, function, index)) {
|
|
if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
|
|
move_to_next_stateful_cpuid_entry(vcpu, i);
|
|
best = e;
|
|
break;
|
|
}
|
|
/*
|
|
* Both basic or both extended?
|
|
*/
|
|
if (((e->function ^ function) & 0x80000000) == 0)
|
|
if (!best || e->function > best->function)
|
|
best = e;
|
|
}
|
|
return best;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
|
|
|
|
int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_cpuid_entry2 *best;
|
|
|
|
best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
|
|
if (!best || best->eax < 0x80000008)
|
|
goto not_found;
|
|
best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
|
|
if (best)
|
|
return best->eax & 0xff;
|
|
not_found:
|
|
return 36;
|
|
}
|
|
|
|
void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
|
|
{
|
|
u32 function, index;
|
|
struct kvm_cpuid_entry2 *best;
|
|
|
|
function = kvm_register_read(vcpu, VCPU_REGS_RAX);
|
|
index = kvm_register_read(vcpu, VCPU_REGS_RCX);
|
|
kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
|
|
kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
|
|
kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
|
|
kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
|
|
best = kvm_find_cpuid_entry(vcpu, function, index);
|
|
if (best) {
|
|
kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
|
|
kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
|
|
kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
|
|
kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
|
|
}
|
|
kvm_x86_ops->skip_emulated_instruction(vcpu);
|
|
trace_kvm_cpuid(function,
|
|
kvm_register_read(vcpu, VCPU_REGS_RAX),
|
|
kvm_register_read(vcpu, VCPU_REGS_RBX),
|
|
kvm_register_read(vcpu, VCPU_REGS_RCX),
|
|
kvm_register_read(vcpu, VCPU_REGS_RDX));
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
|
|
|
|
/*
|
|
* Check if userspace requested an interrupt window, and that the
|
|
* interrupt window is open.
|
|
*
|
|
* No need to exit to userspace if we already have an interrupt queued.
|
|
*/
|
|
static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
|
|
{
|
|
return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
|
|
vcpu->run->request_interrupt_window &&
|
|
kvm_arch_interrupt_allowed(vcpu));
|
|
}
|
|
|
|
static void post_kvm_run_save(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_run *kvm_run = vcpu->run;
|
|
|
|
kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
|
|
kvm_run->cr8 = kvm_get_cr8(vcpu);
|
|
kvm_run->apic_base = kvm_get_apic_base(vcpu);
|
|
if (irqchip_in_kernel(vcpu->kvm))
|
|
kvm_run->ready_for_interrupt_injection = 1;
|
|
else
|
|
kvm_run->ready_for_interrupt_injection =
|
|
kvm_arch_interrupt_allowed(vcpu) &&
|
|
!kvm_cpu_has_interrupt(vcpu) &&
|
|
!kvm_event_needs_reinjection(vcpu);
|
|
}
|
|
|
|
static void vapic_enter(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_lapic *apic = vcpu->arch.apic;
|
|
struct page *page;
|
|
|
|
if (!apic || !apic->vapic_addr)
|
|
return;
|
|
|
|
page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
|
|
|
|
vcpu->arch.apic->vapic_page = page;
|
|
}
|
|
|
|
static void vapic_exit(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_lapic *apic = vcpu->arch.apic;
|
|
int idx;
|
|
|
|
if (!apic || !apic->vapic_addr)
|
|
return;
|
|
|
|
idx = srcu_read_lock(&vcpu->kvm->srcu);
|
|
kvm_release_page_dirty(apic->vapic_page);
|
|
mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
|
|
srcu_read_unlock(&vcpu->kvm->srcu, idx);
|
|
}
|
|
|
|
static void update_cr8_intercept(struct kvm_vcpu *vcpu)
|
|
{
|
|
int max_irr, tpr;
|
|
|
|
if (!kvm_x86_ops->update_cr8_intercept)
|
|
return;
|
|
|
|
if (!vcpu->arch.apic)
|
|
return;
|
|
|
|
if (!vcpu->arch.apic->vapic_addr)
|
|
max_irr = kvm_lapic_find_highest_irr(vcpu);
|
|
else
|
|
max_irr = -1;
|
|
|
|
if (max_irr != -1)
|
|
max_irr >>= 4;
|
|
|
|
tpr = kvm_lapic_get_cr8(vcpu);
|
|
|
|
kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
|
|
}
|
|
|
|
static void inject_pending_event(struct kvm_vcpu *vcpu)
|
|
{
|
|
/* try to reinject previous events if any */
|
|
if (vcpu->arch.exception.pending) {
|
|
trace_kvm_inj_exception(vcpu->arch.exception.nr,
|
|
vcpu->arch.exception.has_error_code,
|
|
vcpu->arch.exception.error_code);
|
|
kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
|
|
vcpu->arch.exception.has_error_code,
|
|
vcpu->arch.exception.error_code,
|
|
vcpu->arch.exception.reinject);
|
|
return;
|
|
}
|
|
|
|
if (vcpu->arch.nmi_injected) {
|
|
kvm_x86_ops->set_nmi(vcpu);
|
|
return;
|
|
}
|
|
|
|
if (vcpu->arch.interrupt.pending) {
|
|
kvm_x86_ops->set_irq(vcpu);
|
|
return;
|
|
}
|
|
|
|
/* try to inject new event if pending */
|
|
if (vcpu->arch.nmi_pending) {
|
|
if (kvm_x86_ops->nmi_allowed(vcpu)) {
|
|
vcpu->arch.nmi_pending = false;
|
|
vcpu->arch.nmi_injected = true;
|
|
kvm_x86_ops->set_nmi(vcpu);
|
|
}
|
|
} else if (kvm_cpu_has_interrupt(vcpu)) {
|
|
if (kvm_x86_ops->interrupt_allowed(vcpu)) {
|
|
kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
|
|
false);
|
|
kvm_x86_ops->set_irq(vcpu);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
|
|
!vcpu->guest_xcr0_loaded) {
|
|
/* kvm_set_xcr() also depends on this */
|
|
xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
|
|
vcpu->guest_xcr0_loaded = 1;
|
|
}
|
|
}
|
|
|
|
static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (vcpu->guest_xcr0_loaded) {
|
|
if (vcpu->arch.xcr0 != host_xcr0)
|
|
xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
|
|
vcpu->guest_xcr0_loaded = 0;
|
|
}
|
|
}
|
|
|
|
static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
|
|
{
|
|
int r;
|
|
bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
|
|
vcpu->run->request_interrupt_window;
|
|
|
|
if (vcpu->requests) {
|
|
if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
|
|
kvm_mmu_unload(vcpu);
|
|
if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
|
|
__kvm_migrate_timers(vcpu);
|
|
if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
|
|
r = kvm_guest_time_update(vcpu);
|
|
if (unlikely(r))
|
|
goto out;
|
|
}
|
|
if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
|
|
kvm_mmu_sync_roots(vcpu);
|
|
if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
|
|
kvm_x86_ops->tlb_flush(vcpu);
|
|
if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
|
|
vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
|
|
r = 0;
|
|
goto out;
|
|
}
|
|
if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
|
|
vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
|
|
r = 0;
|
|
goto out;
|
|
}
|
|
if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
|
|
vcpu->fpu_active = 0;
|
|
kvm_x86_ops->fpu_deactivate(vcpu);
|
|
}
|
|
if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
|
|
/* Page is swapped out. Do synthetic halt */
|
|
vcpu->arch.apf.halted = true;
|
|
r = 1;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
r = kvm_mmu_reload(vcpu);
|
|
if (unlikely(r))
|
|
goto out;
|
|
|
|
if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
|
|
inject_pending_event(vcpu);
|
|
|
|
/* enable NMI/IRQ window open exits if needed */
|
|
if (vcpu->arch.nmi_pending)
|
|
kvm_x86_ops->enable_nmi_window(vcpu);
|
|
else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
|
|
kvm_x86_ops->enable_irq_window(vcpu);
|
|
|
|
if (kvm_lapic_enabled(vcpu)) {
|
|
update_cr8_intercept(vcpu);
|
|
kvm_lapic_sync_to_vapic(vcpu);
|
|
}
|
|
}
|
|
|
|
preempt_disable();
|
|
|
|
kvm_x86_ops->prepare_guest_switch(vcpu);
|
|
if (vcpu->fpu_active)
|
|
kvm_load_guest_fpu(vcpu);
|
|
kvm_load_guest_xcr0(vcpu);
|
|
|
|
atomic_set(&vcpu->guest_mode, 1);
|
|
smp_wmb();
|
|
|
|
local_irq_disable();
|
|
|
|
if (!atomic_read(&vcpu->guest_mode) || vcpu->requests
|
|
|| need_resched() || signal_pending(current)) {
|
|
atomic_set(&vcpu->guest_mode, 0);
|
|
smp_wmb();
|
|
local_irq_enable();
|
|
preempt_enable();
|
|
kvm_x86_ops->cancel_injection(vcpu);
|
|
r = 1;
|
|
goto out;
|
|
}
|
|
|
|
srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
|
|
|
|
kvm_guest_enter();
|
|
|
|
if (unlikely(vcpu->arch.switch_db_regs)) {
|
|
set_debugreg(0, 7);
|
|
set_debugreg(vcpu->arch.eff_db[0], 0);
|
|
set_debugreg(vcpu->arch.eff_db[1], 1);
|
|
set_debugreg(vcpu->arch.eff_db[2], 2);
|
|
set_debugreg(vcpu->arch.eff_db[3], 3);
|
|
}
|
|
|
|
trace_kvm_entry(vcpu->vcpu_id);
|
|
kvm_x86_ops->run(vcpu);
|
|
|
|
/*
|
|
* If the guest has used debug registers, at least dr7
|
|
* will be disabled while returning to the host.
|
|
* If we don't have active breakpoints in the host, we don't
|
|
* care about the messed up debug address registers. But if
|
|
* we have some of them active, restore the old state.
|
|
*/
|
|
if (hw_breakpoint_active())
|
|
hw_breakpoint_restore();
|
|
|
|
kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
|
|
|
|
atomic_set(&vcpu->guest_mode, 0);
|
|
smp_wmb();
|
|
local_irq_enable();
|
|
|
|
++vcpu->stat.exits;
|
|
|
|
/*
|
|
* We must have an instruction between local_irq_enable() and
|
|
* kvm_guest_exit(), so the timer interrupt isn't delayed by
|
|
* the interrupt shadow. The stat.exits increment will do nicely.
|
|
* But we need to prevent reordering, hence this barrier():
|
|
*/
|
|
barrier();
|
|
|
|
kvm_guest_exit();
|
|
|
|
preempt_enable();
|
|
|
|
vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
|
|
|
|
/*
|
|
* Profile KVM exit RIPs:
|
|
*/
|
|
if (unlikely(prof_on == KVM_PROFILING)) {
|
|
unsigned long rip = kvm_rip_read(vcpu);
|
|
profile_hit(KVM_PROFILING, (void *)rip);
|
|
}
|
|
|
|
|
|
kvm_lapic_sync_from_vapic(vcpu);
|
|
|
|
r = kvm_x86_ops->handle_exit(vcpu);
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
|
|
static int __vcpu_run(struct kvm_vcpu *vcpu)
|
|
{
|
|
int r;
|
|
struct kvm *kvm = vcpu->kvm;
|
|
|
|
if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
|
|
pr_debug("vcpu %d received sipi with vector # %x\n",
|
|
vcpu->vcpu_id, vcpu->arch.sipi_vector);
|
|
kvm_lapic_reset(vcpu);
|
|
r = kvm_arch_vcpu_reset(vcpu);
|
|
if (r)
|
|
return r;
|
|
vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
|
|
}
|
|
|
|
vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
|
|
vapic_enter(vcpu);
|
|
|
|
r = 1;
|
|
while (r > 0) {
|
|
if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
|
|
!vcpu->arch.apf.halted)
|
|
r = vcpu_enter_guest(vcpu);
|
|
else {
|
|
srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
|
|
kvm_vcpu_block(vcpu);
|
|
vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
|
|
if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
|
|
{
|
|
switch(vcpu->arch.mp_state) {
|
|
case KVM_MP_STATE_HALTED:
|
|
vcpu->arch.mp_state =
|
|
KVM_MP_STATE_RUNNABLE;
|
|
case KVM_MP_STATE_RUNNABLE:
|
|
vcpu->arch.apf.halted = false;
|
|
break;
|
|
case KVM_MP_STATE_SIPI_RECEIVED:
|
|
default:
|
|
r = -EINTR;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (r <= 0)
|
|
break;
|
|
|
|
clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
|
|
if (kvm_cpu_has_pending_timer(vcpu))
|
|
kvm_inject_pending_timer_irqs(vcpu);
|
|
|
|
if (dm_request_for_irq_injection(vcpu)) {
|
|
r = -EINTR;
|
|
vcpu->run->exit_reason = KVM_EXIT_INTR;
|
|
++vcpu->stat.request_irq_exits;
|
|
}
|
|
|
|
kvm_check_async_pf_completion(vcpu);
|
|
|
|
if (signal_pending(current)) {
|
|
r = -EINTR;
|
|
vcpu->run->exit_reason = KVM_EXIT_INTR;
|
|
++vcpu->stat.signal_exits;
|
|
}
|
|
if (need_resched()) {
|
|
srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
|
|
kvm_resched(vcpu);
|
|
vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
|
|
}
|
|
}
|
|
|
|
srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
|
|
|
|
vapic_exit(vcpu);
|
|
|
|
return r;
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
|
|
{
|
|
int r;
|
|
sigset_t sigsaved;
|
|
|
|
if (vcpu->sigset_active)
|
|
sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
|
|
|
|
if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
|
|
kvm_vcpu_block(vcpu);
|
|
clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
|
|
r = -EAGAIN;
|
|
goto out;
|
|
}
|
|
|
|
/* re-sync apic's tpr */
|
|
if (!irqchip_in_kernel(vcpu->kvm))
|
|
kvm_set_cr8(vcpu, kvm_run->cr8);
|
|
|
|
if (vcpu->arch.pio.count || vcpu->mmio_needed) {
|
|
if (vcpu->mmio_needed) {
|
|
memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
|
|
vcpu->mmio_read_completed = 1;
|
|
vcpu->mmio_needed = 0;
|
|
}
|
|
vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
|
|
r = emulate_instruction(vcpu, 0, 0, EMULTYPE_NO_DECODE);
|
|
srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
|
|
if (r != EMULATE_DONE) {
|
|
r = 0;
|
|
goto out;
|
|
}
|
|
}
|
|
if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
|
|
kvm_register_write(vcpu, VCPU_REGS_RAX,
|
|
kvm_run->hypercall.ret);
|
|
|
|
r = __vcpu_run(vcpu);
|
|
|
|
out:
|
|
post_kvm_run_save(vcpu);
|
|
if (vcpu->sigset_active)
|
|
sigprocmask(SIG_SETMASK, &sigsaved, NULL);
|
|
|
|
return r;
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
|
|
{
|
|
regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
|
|
regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
|
|
regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
|
|
regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
|
|
regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
|
|
regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
|
|
regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
|
|
regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
|
|
#ifdef CONFIG_X86_64
|
|
regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
|
|
regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
|
|
regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
|
|
regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
|
|
regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
|
|
regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
|
|
regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
|
|
regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
|
|
#endif
|
|
|
|
regs->rip = kvm_rip_read(vcpu);
|
|
regs->rflags = kvm_get_rflags(vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
|
|
{
|
|
kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
|
|
kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
|
|
kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
|
|
kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
|
|
kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
|
|
kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
|
|
kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
|
|
kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
|
|
#ifdef CONFIG_X86_64
|
|
kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
|
|
kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
|
|
kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
|
|
kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
|
|
kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
|
|
kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
|
|
kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
|
|
kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
|
|
#endif
|
|
|
|
kvm_rip_write(vcpu, regs->rip);
|
|
kvm_set_rflags(vcpu, regs->rflags);
|
|
|
|
vcpu->arch.exception.pending = false;
|
|
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
|
|
{
|
|
struct kvm_segment cs;
|
|
|
|
kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
|
|
*db = cs.db;
|
|
*l = cs.l;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
|
|
|
|
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
|
|
struct kvm_sregs *sregs)
|
|
{
|
|
struct desc_ptr dt;
|
|
|
|
kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
|
|
kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
|
|
kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
|
|
kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
|
|
kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
|
|
kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
|
|
|
|
kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
|
|
kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
|
|
|
|
kvm_x86_ops->get_idt(vcpu, &dt);
|
|
sregs->idt.limit = dt.size;
|
|
sregs->idt.base = dt.address;
|
|
kvm_x86_ops->get_gdt(vcpu, &dt);
|
|
sregs->gdt.limit = dt.size;
|
|
sregs->gdt.base = dt.address;
|
|
|
|
sregs->cr0 = kvm_read_cr0(vcpu);
|
|
sregs->cr2 = vcpu->arch.cr2;
|
|
sregs->cr3 = vcpu->arch.cr3;
|
|
sregs->cr4 = kvm_read_cr4(vcpu);
|
|
sregs->cr8 = kvm_get_cr8(vcpu);
|
|
sregs->efer = vcpu->arch.efer;
|
|
sregs->apic_base = kvm_get_apic_base(vcpu);
|
|
|
|
memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
|
|
|
|
if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
|
|
set_bit(vcpu->arch.interrupt.nr,
|
|
(unsigned long *)sregs->interrupt_bitmap);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
|
|
struct kvm_mp_state *mp_state)
|
|
{
|
|
mp_state->mp_state = vcpu->arch.mp_state;
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
|
|
struct kvm_mp_state *mp_state)
|
|
{
|
|
vcpu->arch.mp_state = mp_state->mp_state;
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
return 0;
|
|
}
|
|
|
|
int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
|
|
bool has_error_code, u32 error_code)
|
|
{
|
|
struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
|
|
int ret;
|
|
|
|
init_emulate_ctxt(vcpu);
|
|
|
|
ret = emulator_task_switch(&vcpu->arch.emulate_ctxt,
|
|
tss_selector, reason, has_error_code,
|
|
error_code);
|
|
|
|
if (ret)
|
|
return EMULATE_FAIL;
|
|
|
|
memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
|
|
kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
|
|
kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
return EMULATE_DONE;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_task_switch);
|
|
|
|
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
|
|
struct kvm_sregs *sregs)
|
|
{
|
|
int mmu_reset_needed = 0;
|
|
int pending_vec, max_bits;
|
|
struct desc_ptr dt;
|
|
|
|
dt.size = sregs->idt.limit;
|
|
dt.address = sregs->idt.base;
|
|
kvm_x86_ops->set_idt(vcpu, &dt);
|
|
dt.size = sregs->gdt.limit;
|
|
dt.address = sregs->gdt.base;
|
|
kvm_x86_ops->set_gdt(vcpu, &dt);
|
|
|
|
vcpu->arch.cr2 = sregs->cr2;
|
|
mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
|
|
vcpu->arch.cr3 = sregs->cr3;
|
|
|
|
kvm_set_cr8(vcpu, sregs->cr8);
|
|
|
|
mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
|
|
kvm_x86_ops->set_efer(vcpu, sregs->efer);
|
|
kvm_set_apic_base(vcpu, sregs->apic_base);
|
|
|
|
mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
|
|
kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
|
|
vcpu->arch.cr0 = sregs->cr0;
|
|
|
|
mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
|
|
kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
|
|
if (sregs->cr4 & X86_CR4_OSXSAVE)
|
|
update_cpuid(vcpu);
|
|
if (!is_long_mode(vcpu) && is_pae(vcpu)) {
|
|
load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3);
|
|
mmu_reset_needed = 1;
|
|
}
|
|
|
|
if (mmu_reset_needed)
|
|
kvm_mmu_reset_context(vcpu);
|
|
|
|
max_bits = (sizeof sregs->interrupt_bitmap) << 3;
|
|
pending_vec = find_first_bit(
|
|
(const unsigned long *)sregs->interrupt_bitmap, max_bits);
|
|
if (pending_vec < max_bits) {
|
|
kvm_queue_interrupt(vcpu, pending_vec, false);
|
|
pr_debug("Set back pending irq %d\n", pending_vec);
|
|
if (irqchip_in_kernel(vcpu->kvm))
|
|
kvm_pic_clear_isr_ack(vcpu->kvm);
|
|
}
|
|
|
|
kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
|
|
kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
|
|
kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
|
|
kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
|
|
kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
|
|
kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
|
|
|
|
kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
|
|
kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
|
|
|
|
update_cr8_intercept(vcpu);
|
|
|
|
/* Older userspace won't unhalt the vcpu on reset. */
|
|
if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
|
|
sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
|
|
!is_protmode(vcpu))
|
|
vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
|
|
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
|
|
struct kvm_guest_debug *dbg)
|
|
{
|
|
unsigned long rflags;
|
|
int i, r;
|
|
|
|
if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
|
|
r = -EBUSY;
|
|
if (vcpu->arch.exception.pending)
|
|
goto out;
|
|
if (dbg->control & KVM_GUESTDBG_INJECT_DB)
|
|
kvm_queue_exception(vcpu, DB_VECTOR);
|
|
else
|
|
kvm_queue_exception(vcpu, BP_VECTOR);
|
|
}
|
|
|
|
/*
|
|
* Read rflags as long as potentially injected trace flags are still
|
|
* filtered out.
|
|
*/
|
|
rflags = kvm_get_rflags(vcpu);
|
|
|
|
vcpu->guest_debug = dbg->control;
|
|
if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
|
|
vcpu->guest_debug = 0;
|
|
|
|
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
|
|
for (i = 0; i < KVM_NR_DB_REGS; ++i)
|
|
vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
|
|
vcpu->arch.switch_db_regs =
|
|
(dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
|
|
} else {
|
|
for (i = 0; i < KVM_NR_DB_REGS; i++)
|
|
vcpu->arch.eff_db[i] = vcpu->arch.db[i];
|
|
vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
|
|
}
|
|
|
|
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
|
|
vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
|
|
get_segment_base(vcpu, VCPU_SREG_CS);
|
|
|
|
/*
|
|
* Trigger an rflags update that will inject or remove the trace
|
|
* flags.
|
|
*/
|
|
kvm_set_rflags(vcpu, rflags);
|
|
|
|
kvm_x86_ops->set_guest_debug(vcpu, dbg);
|
|
|
|
r = 0;
|
|
|
|
out:
|
|
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* Translate a guest virtual address to a guest physical address.
|
|
*/
|
|
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
|
|
struct kvm_translation *tr)
|
|
{
|
|
unsigned long vaddr = tr->linear_address;
|
|
gpa_t gpa;
|
|
int idx;
|
|
|
|
idx = srcu_read_lock(&vcpu->kvm->srcu);
|
|
gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
|
|
srcu_read_unlock(&vcpu->kvm->srcu, idx);
|
|
tr->physical_address = gpa;
|
|
tr->valid = gpa != UNMAPPED_GVA;
|
|
tr->writeable = 1;
|
|
tr->usermode = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
|
|
{
|
|
struct i387_fxsave_struct *fxsave =
|
|
&vcpu->arch.guest_fpu.state->fxsave;
|
|
|
|
memcpy(fpu->fpr, fxsave->st_space, 128);
|
|
fpu->fcw = fxsave->cwd;
|
|
fpu->fsw = fxsave->swd;
|
|
fpu->ftwx = fxsave->twd;
|
|
fpu->last_opcode = fxsave->fop;
|
|
fpu->last_ip = fxsave->rip;
|
|
fpu->last_dp = fxsave->rdp;
|
|
memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
|
|
{
|
|
struct i387_fxsave_struct *fxsave =
|
|
&vcpu->arch.guest_fpu.state->fxsave;
|
|
|
|
memcpy(fxsave->st_space, fpu->fpr, 128);
|
|
fxsave->cwd = fpu->fcw;
|
|
fxsave->swd = fpu->fsw;
|
|
fxsave->twd = fpu->ftwx;
|
|
fxsave->fop = fpu->last_opcode;
|
|
fxsave->rip = fpu->last_ip;
|
|
fxsave->rdp = fpu->last_dp;
|
|
memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int fx_init(struct kvm_vcpu *vcpu)
|
|
{
|
|
int err;
|
|
|
|
err = fpu_alloc(&vcpu->arch.guest_fpu);
|
|
if (err)
|
|
return err;
|
|
|
|
fpu_finit(&vcpu->arch.guest_fpu);
|
|
|
|
/*
|
|
* Ensure guest xcr0 is valid for loading
|
|
*/
|
|
vcpu->arch.xcr0 = XSTATE_FP;
|
|
|
|
vcpu->arch.cr0 |= X86_CR0_ET;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(fx_init);
|
|
|
|
static void fx_free(struct kvm_vcpu *vcpu)
|
|
{
|
|
fpu_free(&vcpu->arch.guest_fpu);
|
|
}
|
|
|
|
void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (vcpu->guest_fpu_loaded)
|
|
return;
|
|
|
|
/*
|
|
* Restore all possible states in the guest,
|
|
* and assume host would use all available bits.
|
|
* Guest xcr0 would be loaded later.
|
|
*/
|
|
kvm_put_guest_xcr0(vcpu);
|
|
vcpu->guest_fpu_loaded = 1;
|
|
unlazy_fpu(current);
|
|
fpu_restore_checking(&vcpu->arch.guest_fpu);
|
|
trace_kvm_fpu(1);
|
|
}
|
|
|
|
void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_put_guest_xcr0(vcpu);
|
|
|
|
if (!vcpu->guest_fpu_loaded)
|
|
return;
|
|
|
|
vcpu->guest_fpu_loaded = 0;
|
|
fpu_save_init(&vcpu->arch.guest_fpu);
|
|
++vcpu->stat.fpu_reload;
|
|
kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
|
|
trace_kvm_fpu(0);
|
|
}
|
|
|
|
void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (vcpu->arch.time_page) {
|
|
kvm_release_page_dirty(vcpu->arch.time_page);
|
|
vcpu->arch.time_page = NULL;
|
|
}
|
|
|
|
free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
|
|
fx_free(vcpu);
|
|
kvm_x86_ops->vcpu_free(vcpu);
|
|
}
|
|
|
|
struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
|
|
unsigned int id)
|
|
{
|
|
if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
|
|
printk_once(KERN_WARNING
|
|
"kvm: SMP vm created on host with unstable TSC; "
|
|
"guest TSC will not be reliable\n");
|
|
return kvm_x86_ops->vcpu_create(kvm, id);
|
|
}
|
|
|
|
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
|
|
{
|
|
int r;
|
|
|
|
vcpu->arch.mtrr_state.have_fixed = 1;
|
|
vcpu_load(vcpu);
|
|
r = kvm_arch_vcpu_reset(vcpu);
|
|
if (r == 0)
|
|
r = kvm_mmu_setup(vcpu);
|
|
vcpu_put(vcpu);
|
|
if (r < 0)
|
|
goto free_vcpu;
|
|
|
|
return 0;
|
|
free_vcpu:
|
|
kvm_x86_ops->vcpu_free(vcpu);
|
|
return r;
|
|
}
|
|
|
|
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
|
|
{
|
|
vcpu->arch.apf.msr_val = 0;
|
|
|
|
vcpu_load(vcpu);
|
|
kvm_mmu_unload(vcpu);
|
|
vcpu_put(vcpu);
|
|
|
|
fx_free(vcpu);
|
|
kvm_x86_ops->vcpu_free(vcpu);
|
|
}
|
|
|
|
int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
|
|
{
|
|
vcpu->arch.nmi_pending = false;
|
|
vcpu->arch.nmi_injected = false;
|
|
|
|
vcpu->arch.switch_db_regs = 0;
|
|
memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
|
|
vcpu->arch.dr6 = DR6_FIXED_1;
|
|
vcpu->arch.dr7 = DR7_FIXED_1;
|
|
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
vcpu->arch.apf.msr_val = 0;
|
|
|
|
kvm_clear_async_pf_completion_queue(vcpu);
|
|
kvm_async_pf_hash_reset(vcpu);
|
|
vcpu->arch.apf.halted = false;
|
|
|
|
return kvm_x86_ops->vcpu_reset(vcpu);
|
|
}
|
|
|
|
int kvm_arch_hardware_enable(void *garbage)
|
|
{
|
|
struct kvm *kvm;
|
|
struct kvm_vcpu *vcpu;
|
|
int i;
|
|
|
|
kvm_shared_msr_cpu_online();
|
|
list_for_each_entry(kvm, &vm_list, vm_list)
|
|
kvm_for_each_vcpu(i, vcpu, kvm)
|
|
if (vcpu->cpu == smp_processor_id())
|
|
kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
|
|
return kvm_x86_ops->hardware_enable(garbage);
|
|
}
|
|
|
|
void kvm_arch_hardware_disable(void *garbage)
|
|
{
|
|
kvm_x86_ops->hardware_disable(garbage);
|
|
drop_user_return_notifiers(garbage);
|
|
}
|
|
|
|
int kvm_arch_hardware_setup(void)
|
|
{
|
|
return kvm_x86_ops->hardware_setup();
|
|
}
|
|
|
|
void kvm_arch_hardware_unsetup(void)
|
|
{
|
|
kvm_x86_ops->hardware_unsetup();
|
|
}
|
|
|
|
void kvm_arch_check_processor_compat(void *rtn)
|
|
{
|
|
kvm_x86_ops->check_processor_compatibility(rtn);
|
|
}
|
|
|
|
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct page *page;
|
|
struct kvm *kvm;
|
|
int r;
|
|
|
|
BUG_ON(vcpu->kvm == NULL);
|
|
kvm = vcpu->kvm;
|
|
|
|
vcpu->arch.emulate_ctxt.ops = &emulate_ops;
|
|
vcpu->arch.walk_mmu = &vcpu->arch.mmu;
|
|
vcpu->arch.mmu.root_hpa = INVALID_PAGE;
|
|
vcpu->arch.mmu.translate_gpa = translate_gpa;
|
|
vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
|
|
if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
|
|
vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
|
|
else
|
|
vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
|
|
|
|
page = alloc_page(GFP_KERNEL | __GFP_ZERO);
|
|
if (!page) {
|
|
r = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
vcpu->arch.pio_data = page_address(page);
|
|
|
|
if (!kvm->arch.virtual_tsc_khz)
|
|
kvm_arch_set_tsc_khz(kvm, max_tsc_khz);
|
|
|
|
r = kvm_mmu_create(vcpu);
|
|
if (r < 0)
|
|
goto fail_free_pio_data;
|
|
|
|
if (irqchip_in_kernel(kvm)) {
|
|
r = kvm_create_lapic(vcpu);
|
|
if (r < 0)
|
|
goto fail_mmu_destroy;
|
|
}
|
|
|
|
vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
|
|
GFP_KERNEL);
|
|
if (!vcpu->arch.mce_banks) {
|
|
r = -ENOMEM;
|
|
goto fail_free_lapic;
|
|
}
|
|
vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
|
|
|
|
if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
|
|
goto fail_free_mce_banks;
|
|
|
|
kvm_async_pf_hash_reset(vcpu);
|
|
|
|
return 0;
|
|
fail_free_mce_banks:
|
|
kfree(vcpu->arch.mce_banks);
|
|
fail_free_lapic:
|
|
kvm_free_lapic(vcpu);
|
|
fail_mmu_destroy:
|
|
kvm_mmu_destroy(vcpu);
|
|
fail_free_pio_data:
|
|
free_page((unsigned long)vcpu->arch.pio_data);
|
|
fail:
|
|
return r;
|
|
}
|
|
|
|
void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
|
|
{
|
|
int idx;
|
|
|
|
kfree(vcpu->arch.mce_banks);
|
|
kvm_free_lapic(vcpu);
|
|
idx = srcu_read_lock(&vcpu->kvm->srcu);
|
|
kvm_mmu_destroy(vcpu);
|
|
srcu_read_unlock(&vcpu->kvm->srcu, idx);
|
|
free_page((unsigned long)vcpu->arch.pio_data);
|
|
}
|
|
|
|
int kvm_arch_init_vm(struct kvm *kvm)
|
|
{
|
|
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
|
|
INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
|
|
|
|
/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
|
|
set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
|
|
|
|
spin_lock_init(&kvm->arch.tsc_write_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
|
|
{
|
|
vcpu_load(vcpu);
|
|
kvm_mmu_unload(vcpu);
|
|
vcpu_put(vcpu);
|
|
}
|
|
|
|
static void kvm_free_vcpus(struct kvm *kvm)
|
|
{
|
|
unsigned int i;
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
/*
|
|
* Unpin any mmu pages first.
|
|
*/
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
kvm_clear_async_pf_completion_queue(vcpu);
|
|
kvm_unload_vcpu_mmu(vcpu);
|
|
}
|
|
kvm_for_each_vcpu(i, vcpu, kvm)
|
|
kvm_arch_vcpu_free(vcpu);
|
|
|
|
mutex_lock(&kvm->lock);
|
|
for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
|
|
kvm->vcpus[i] = NULL;
|
|
|
|
atomic_set(&kvm->online_vcpus, 0);
|
|
mutex_unlock(&kvm->lock);
|
|
}
|
|
|
|
void kvm_arch_sync_events(struct kvm *kvm)
|
|
{
|
|
kvm_free_all_assigned_devices(kvm);
|
|
kvm_free_pit(kvm);
|
|
}
|
|
|
|
void kvm_arch_destroy_vm(struct kvm *kvm)
|
|
{
|
|
kvm_iommu_unmap_guest(kvm);
|
|
kfree(kvm->arch.vpic);
|
|
kfree(kvm->arch.vioapic);
|
|
kvm_free_vcpus(kvm);
|
|
if (kvm->arch.apic_access_page)
|
|
put_page(kvm->arch.apic_access_page);
|
|
if (kvm->arch.ept_identity_pagetable)
|
|
put_page(kvm->arch.ept_identity_pagetable);
|
|
}
|
|
|
|
int kvm_arch_prepare_memory_region(struct kvm *kvm,
|
|
struct kvm_memory_slot *memslot,
|
|
struct kvm_memory_slot old,
|
|
struct kvm_userspace_memory_region *mem,
|
|
int user_alloc)
|
|
{
|
|
int npages = memslot->npages;
|
|
int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
|
|
|
|
/* Prevent internal slot pages from being moved by fork()/COW. */
|
|
if (memslot->id >= KVM_MEMORY_SLOTS)
|
|
map_flags = MAP_SHARED | MAP_ANONYMOUS;
|
|
|
|
/*To keep backward compatibility with older userspace,
|
|
*x86 needs to hanlde !user_alloc case.
|
|
*/
|
|
if (!user_alloc) {
|
|
if (npages && !old.rmap) {
|
|
unsigned long userspace_addr;
|
|
|
|
down_write(¤t->mm->mmap_sem);
|
|
userspace_addr = do_mmap(NULL, 0,
|
|
npages * PAGE_SIZE,
|
|
PROT_READ | PROT_WRITE,
|
|
map_flags,
|
|
0);
|
|
up_write(¤t->mm->mmap_sem);
|
|
|
|
if (IS_ERR((void *)userspace_addr))
|
|
return PTR_ERR((void *)userspace_addr);
|
|
|
|
memslot->userspace_addr = userspace_addr;
|
|
}
|
|
}
|
|
|
|
|
|
return 0;
|
|
}
|
|
|
|
void kvm_arch_commit_memory_region(struct kvm *kvm,
|
|
struct kvm_userspace_memory_region *mem,
|
|
struct kvm_memory_slot old,
|
|
int user_alloc)
|
|
{
|
|
|
|
int npages = mem->memory_size >> PAGE_SHIFT;
|
|
|
|
if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
|
|
int ret;
|
|
|
|
down_write(¤t->mm->mmap_sem);
|
|
ret = do_munmap(current->mm, old.userspace_addr,
|
|
old.npages * PAGE_SIZE);
|
|
up_write(¤t->mm->mmap_sem);
|
|
if (ret < 0)
|
|
printk(KERN_WARNING
|
|
"kvm_vm_ioctl_set_memory_region: "
|
|
"failed to munmap memory\n");
|
|
}
|
|
|
|
spin_lock(&kvm->mmu_lock);
|
|
if (!kvm->arch.n_requested_mmu_pages) {
|
|
unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
|
|
kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
|
|
}
|
|
|
|
kvm_mmu_slot_remove_write_access(kvm, mem->slot);
|
|
spin_unlock(&kvm->mmu_lock);
|
|
}
|
|
|
|
void kvm_arch_flush_shadow(struct kvm *kvm)
|
|
{
|
|
kvm_mmu_zap_all(kvm);
|
|
kvm_reload_remote_mmus(kvm);
|
|
}
|
|
|
|
int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
|
|
{
|
|
return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
|
|
!vcpu->arch.apf.halted)
|
|
|| !list_empty_careful(&vcpu->async_pf.done)
|
|
|| vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
|
|
|| vcpu->arch.nmi_pending ||
|
|
(kvm_arch_interrupt_allowed(vcpu) &&
|
|
kvm_cpu_has_interrupt(vcpu));
|
|
}
|
|
|
|
void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
|
|
{
|
|
int me;
|
|
int cpu = vcpu->cpu;
|
|
|
|
if (waitqueue_active(&vcpu->wq)) {
|
|
wake_up_interruptible(&vcpu->wq);
|
|
++vcpu->stat.halt_wakeup;
|
|
}
|
|
|
|
me = get_cpu();
|
|
if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
|
|
if (atomic_xchg(&vcpu->guest_mode, 0))
|
|
smp_send_reschedule(cpu);
|
|
put_cpu();
|
|
}
|
|
|
|
int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
|
|
{
|
|
return kvm_x86_ops->interrupt_allowed(vcpu);
|
|
}
|
|
|
|
bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
|
|
{
|
|
unsigned long current_rip = kvm_rip_read(vcpu) +
|
|
get_segment_base(vcpu, VCPU_SREG_CS);
|
|
|
|
return current_rip == linear_rip;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
|
|
|
|
unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long rflags;
|
|
|
|
rflags = kvm_x86_ops->get_rflags(vcpu);
|
|
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
|
|
rflags &= ~X86_EFLAGS_TF;
|
|
return rflags;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_get_rflags);
|
|
|
|
void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
|
|
{
|
|
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
|
|
kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
|
|
rflags |= X86_EFLAGS_TF;
|
|
kvm_x86_ops->set_rflags(vcpu, rflags);
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_set_rflags);
|
|
|
|
void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
|
|
{
|
|
int r;
|
|
|
|
if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
|
|
is_error_page(work->page))
|
|
return;
|
|
|
|
r = kvm_mmu_reload(vcpu);
|
|
if (unlikely(r))
|
|
return;
|
|
|
|
if (!vcpu->arch.mmu.direct_map &&
|
|
work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
|
|
return;
|
|
|
|
vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
|
|
}
|
|
|
|
static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
|
|
{
|
|
return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
|
|
}
|
|
|
|
static inline u32 kvm_async_pf_next_probe(u32 key)
|
|
{
|
|
return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
|
|
}
|
|
|
|
static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
|
|
{
|
|
u32 key = kvm_async_pf_hash_fn(gfn);
|
|
|
|
while (vcpu->arch.apf.gfns[key] != ~0)
|
|
key = kvm_async_pf_next_probe(key);
|
|
|
|
vcpu->arch.apf.gfns[key] = gfn;
|
|
}
|
|
|
|
static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
|
|
{
|
|
int i;
|
|
u32 key = kvm_async_pf_hash_fn(gfn);
|
|
|
|
for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
|
|
(vcpu->arch.apf.gfns[key] != gfn &&
|
|
vcpu->arch.apf.gfns[key] != ~0); i++)
|
|
key = kvm_async_pf_next_probe(key);
|
|
|
|
return key;
|
|
}
|
|
|
|
bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
|
|
{
|
|
return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
|
|
}
|
|
|
|
static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
|
|
{
|
|
u32 i, j, k;
|
|
|
|
i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
|
|
while (true) {
|
|
vcpu->arch.apf.gfns[i] = ~0;
|
|
do {
|
|
j = kvm_async_pf_next_probe(j);
|
|
if (vcpu->arch.apf.gfns[j] == ~0)
|
|
return;
|
|
k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
|
|
/*
|
|
* k lies cyclically in ]i,j]
|
|
* | i.k.j |
|
|
* |....j i.k.| or |.k..j i...|
|
|
*/
|
|
} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
|
|
vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
|
|
i = j;
|
|
}
|
|
}
|
|
|
|
static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
|
|
{
|
|
|
|
return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
|
|
sizeof(val));
|
|
}
|
|
|
|
void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
|
|
struct kvm_async_pf *work)
|
|
{
|
|
struct x86_exception fault;
|
|
|
|
trace_kvm_async_pf_not_present(work->arch.token, work->gva);
|
|
kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
|
|
|
|
if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
|
|
(vcpu->arch.apf.send_user_only &&
|
|
kvm_x86_ops->get_cpl(vcpu) == 0))
|
|
kvm_make_request(KVM_REQ_APF_HALT, vcpu);
|
|
else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
|
|
fault.vector = PF_VECTOR;
|
|
fault.error_code_valid = true;
|
|
fault.error_code = 0;
|
|
fault.nested_page_fault = false;
|
|
fault.address = work->arch.token;
|
|
kvm_inject_page_fault(vcpu, &fault);
|
|
}
|
|
}
|
|
|
|
void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
|
|
struct kvm_async_pf *work)
|
|
{
|
|
struct x86_exception fault;
|
|
|
|
trace_kvm_async_pf_ready(work->arch.token, work->gva);
|
|
if (is_error_page(work->page))
|
|
work->arch.token = ~0; /* broadcast wakeup */
|
|
else
|
|
kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
|
|
|
|
if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
|
|
!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
|
|
fault.vector = PF_VECTOR;
|
|
fault.error_code_valid = true;
|
|
fault.error_code = 0;
|
|
fault.nested_page_fault = false;
|
|
fault.address = work->arch.token;
|
|
kvm_inject_page_fault(vcpu, &fault);
|
|
}
|
|
vcpu->arch.apf.halted = false;
|
|
}
|
|
|
|
bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
|
|
return true;
|
|
else
|
|
return !kvm_event_needs_reinjection(vcpu) &&
|
|
kvm_x86_ops->interrupt_allowed(vcpu);
|
|
}
|
|
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
|