kernel_optimize_test/drivers/base/property.c
Sakari Ailus cf89a31ca5 device property: Make fwnode_handle_get() return the fwnode
The fwnode_handle_get() function is used to obtain a reference to an
fwnode. A common usage pattern for the OF equivalent of the function is:

	mynode = of_node_get(node);

Similarly make fwnode_handle_get() return the fwnode to which the
reference was obtained.

Signed-off-by: Sakari Ailus <sakari.ailus@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-11-09 00:17:22 +01:00

1343 lines
40 KiB
C

/*
* property.c - Unified device property interface.
*
* Copyright (C) 2014, Intel Corporation
* Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
* Mika Westerberg <mika.westerberg@linux.intel.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/acpi.h>
#include <linux/export.h>
#include <linux/kernel.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_graph.h>
#include <linux/property.h>
#include <linux/etherdevice.h>
#include <linux/phy.h>
struct property_set {
struct device *dev;
struct fwnode_handle fwnode;
const struct property_entry *properties;
};
static const struct fwnode_operations pset_fwnode_ops;
static inline bool is_pset_node(const struct fwnode_handle *fwnode)
{
return !IS_ERR_OR_NULL(fwnode) && fwnode->ops == &pset_fwnode_ops;
}
#define to_pset_node(__fwnode) \
({ \
typeof(__fwnode) __to_pset_node_fwnode = __fwnode; \
\
is_pset_node(__to_pset_node_fwnode) ? \
container_of(__to_pset_node_fwnode, \
struct property_set, fwnode) : \
NULL; \
})
static const struct property_entry *
pset_prop_get(const struct property_set *pset, const char *name)
{
const struct property_entry *prop;
if (!pset || !pset->properties)
return NULL;
for (prop = pset->properties; prop->name; prop++)
if (!strcmp(name, prop->name))
return prop;
return NULL;
}
static const void *pset_prop_find(const struct property_set *pset,
const char *propname, size_t length)
{
const struct property_entry *prop;
const void *pointer;
prop = pset_prop_get(pset, propname);
if (!prop)
return ERR_PTR(-EINVAL);
if (prop->is_array)
pointer = prop->pointer.raw_data;
else
pointer = &prop->value.raw_data;
if (!pointer)
return ERR_PTR(-ENODATA);
if (length > prop->length)
return ERR_PTR(-EOVERFLOW);
return pointer;
}
static int pset_prop_read_u8_array(const struct property_set *pset,
const char *propname,
u8 *values, size_t nval)
{
const void *pointer;
size_t length = nval * sizeof(*values);
pointer = pset_prop_find(pset, propname, length);
if (IS_ERR(pointer))
return PTR_ERR(pointer);
memcpy(values, pointer, length);
return 0;
}
static int pset_prop_read_u16_array(const struct property_set *pset,
const char *propname,
u16 *values, size_t nval)
{
const void *pointer;
size_t length = nval * sizeof(*values);
pointer = pset_prop_find(pset, propname, length);
if (IS_ERR(pointer))
return PTR_ERR(pointer);
memcpy(values, pointer, length);
return 0;
}
static int pset_prop_read_u32_array(const struct property_set *pset,
const char *propname,
u32 *values, size_t nval)
{
const void *pointer;
size_t length = nval * sizeof(*values);
pointer = pset_prop_find(pset, propname, length);
if (IS_ERR(pointer))
return PTR_ERR(pointer);
memcpy(values, pointer, length);
return 0;
}
static int pset_prop_read_u64_array(const struct property_set *pset,
const char *propname,
u64 *values, size_t nval)
{
const void *pointer;
size_t length = nval * sizeof(*values);
pointer = pset_prop_find(pset, propname, length);
if (IS_ERR(pointer))
return PTR_ERR(pointer);
memcpy(values, pointer, length);
return 0;
}
static int pset_prop_count_elems_of_size(const struct property_set *pset,
const char *propname, size_t length)
{
const struct property_entry *prop;
prop = pset_prop_get(pset, propname);
if (!prop)
return -EINVAL;
return prop->length / length;
}
static int pset_prop_read_string_array(const struct property_set *pset,
const char *propname,
const char **strings, size_t nval)
{
const struct property_entry *prop;
const void *pointer;
size_t array_len, length;
/* Find out the array length. */
prop = pset_prop_get(pset, propname);
if (!prop)
return -EINVAL;
if (!prop->is_array)
/* The array length for a non-array string property is 1. */
array_len = 1;
else
/* Find the length of an array. */
array_len = pset_prop_count_elems_of_size(pset, propname,
sizeof(const char *));
/* Return how many there are if strings is NULL. */
if (!strings)
return array_len;
array_len = min(nval, array_len);
length = array_len * sizeof(*strings);
pointer = pset_prop_find(pset, propname, length);
if (IS_ERR(pointer))
return PTR_ERR(pointer);
memcpy(strings, pointer, length);
return array_len;
}
struct fwnode_handle *dev_fwnode(struct device *dev)
{
return IS_ENABLED(CONFIG_OF) && dev->of_node ?
&dev->of_node->fwnode : dev->fwnode;
}
EXPORT_SYMBOL_GPL(dev_fwnode);
static bool pset_fwnode_property_present(const struct fwnode_handle *fwnode,
const char *propname)
{
return !!pset_prop_get(to_pset_node(fwnode), propname);
}
static int pset_fwnode_read_int_array(const struct fwnode_handle *fwnode,
const char *propname,
unsigned int elem_size, void *val,
size_t nval)
{
const struct property_set *node = to_pset_node(fwnode);
if (!val)
return pset_prop_count_elems_of_size(node, propname, elem_size);
switch (elem_size) {
case sizeof(u8):
return pset_prop_read_u8_array(node, propname, val, nval);
case sizeof(u16):
return pset_prop_read_u16_array(node, propname, val, nval);
case sizeof(u32):
return pset_prop_read_u32_array(node, propname, val, nval);
case sizeof(u64):
return pset_prop_read_u64_array(node, propname, val, nval);
}
return -ENXIO;
}
static int
pset_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
const char *propname,
const char **val, size_t nval)
{
return pset_prop_read_string_array(to_pset_node(fwnode), propname,
val, nval);
}
static const struct fwnode_operations pset_fwnode_ops = {
.property_present = pset_fwnode_property_present,
.property_read_int_array = pset_fwnode_read_int_array,
.property_read_string_array = pset_fwnode_property_read_string_array,
};
/**
* device_property_present - check if a property of a device is present
* @dev: Device whose property is being checked
* @propname: Name of the property
*
* Check if property @propname is present in the device firmware description.
*/
bool device_property_present(struct device *dev, const char *propname)
{
return fwnode_property_present(dev_fwnode(dev), propname);
}
EXPORT_SYMBOL_GPL(device_property_present);
/**
* fwnode_property_present - check if a property of a firmware node is present
* @fwnode: Firmware node whose property to check
* @propname: Name of the property
*/
bool fwnode_property_present(const struct fwnode_handle *fwnode,
const char *propname)
{
bool ret;
ret = fwnode_call_bool_op(fwnode, property_present, propname);
if (ret == false && !IS_ERR_OR_NULL(fwnode) &&
!IS_ERR_OR_NULL(fwnode->secondary))
ret = fwnode_call_bool_op(fwnode->secondary, property_present,
propname);
return ret;
}
EXPORT_SYMBOL_GPL(fwnode_property_present);
/**
* device_property_read_u8_array - return a u8 array property of a device
* @dev: Device to get the property of
* @propname: Name of the property
* @val: The values are stored here or %NULL to return the number of values
* @nval: Size of the @val array
*
* Function reads an array of u8 properties with @propname from the device
* firmware description and stores them to @val if found.
*
* Return: number of values if @val was %NULL,
* %0 if the property was found (success),
* %-EINVAL if given arguments are not valid,
* %-ENODATA if the property does not have a value,
* %-EPROTO if the property is not an array of numbers,
* %-EOVERFLOW if the size of the property is not as expected.
* %-ENXIO if no suitable firmware interface is present.
*/
int device_property_read_u8_array(struct device *dev, const char *propname,
u8 *val, size_t nval)
{
return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
}
EXPORT_SYMBOL_GPL(device_property_read_u8_array);
/**
* device_property_read_u16_array - return a u16 array property of a device
* @dev: Device to get the property of
* @propname: Name of the property
* @val: The values are stored here or %NULL to return the number of values
* @nval: Size of the @val array
*
* Function reads an array of u16 properties with @propname from the device
* firmware description and stores them to @val if found.
*
* Return: number of values if @val was %NULL,
* %0 if the property was found (success),
* %-EINVAL if given arguments are not valid,
* %-ENODATA if the property does not have a value,
* %-EPROTO if the property is not an array of numbers,
* %-EOVERFLOW if the size of the property is not as expected.
* %-ENXIO if no suitable firmware interface is present.
*/
int device_property_read_u16_array(struct device *dev, const char *propname,
u16 *val, size_t nval)
{
return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
}
EXPORT_SYMBOL_GPL(device_property_read_u16_array);
/**
* device_property_read_u32_array - return a u32 array property of a device
* @dev: Device to get the property of
* @propname: Name of the property
* @val: The values are stored here or %NULL to return the number of values
* @nval: Size of the @val array
*
* Function reads an array of u32 properties with @propname from the device
* firmware description and stores them to @val if found.
*
* Return: number of values if @val was %NULL,
* %0 if the property was found (success),
* %-EINVAL if given arguments are not valid,
* %-ENODATA if the property does not have a value,
* %-EPROTO if the property is not an array of numbers,
* %-EOVERFLOW if the size of the property is not as expected.
* %-ENXIO if no suitable firmware interface is present.
*/
int device_property_read_u32_array(struct device *dev, const char *propname,
u32 *val, size_t nval)
{
return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
}
EXPORT_SYMBOL_GPL(device_property_read_u32_array);
/**
* device_property_read_u64_array - return a u64 array property of a device
* @dev: Device to get the property of
* @propname: Name of the property
* @val: The values are stored here or %NULL to return the number of values
* @nval: Size of the @val array
*
* Function reads an array of u64 properties with @propname from the device
* firmware description and stores them to @val if found.
*
* Return: number of values if @val was %NULL,
* %0 if the property was found (success),
* %-EINVAL if given arguments are not valid,
* %-ENODATA if the property does not have a value,
* %-EPROTO if the property is not an array of numbers,
* %-EOVERFLOW if the size of the property is not as expected.
* %-ENXIO if no suitable firmware interface is present.
*/
int device_property_read_u64_array(struct device *dev, const char *propname,
u64 *val, size_t nval)
{
return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
}
EXPORT_SYMBOL_GPL(device_property_read_u64_array);
/**
* device_property_read_string_array - return a string array property of device
* @dev: Device to get the property of
* @propname: Name of the property
* @val: The values are stored here or %NULL to return the number of values
* @nval: Size of the @val array
*
* Function reads an array of string properties with @propname from the device
* firmware description and stores them to @val if found.
*
* Return: number of values read on success if @val is non-NULL,
* number of values available on success if @val is NULL,
* %-EINVAL if given arguments are not valid,
* %-ENODATA if the property does not have a value,
* %-EPROTO or %-EILSEQ if the property is not an array of strings,
* %-EOVERFLOW if the size of the property is not as expected.
* %-ENXIO if no suitable firmware interface is present.
*/
int device_property_read_string_array(struct device *dev, const char *propname,
const char **val, size_t nval)
{
return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
}
EXPORT_SYMBOL_GPL(device_property_read_string_array);
/**
* device_property_read_string - return a string property of a device
* @dev: Device to get the property of
* @propname: Name of the property
* @val: The value is stored here
*
* Function reads property @propname from the device firmware description and
* stores the value into @val if found. The value is checked to be a string.
*
* Return: %0 if the property was found (success),
* %-EINVAL if given arguments are not valid,
* %-ENODATA if the property does not have a value,
* %-EPROTO or %-EILSEQ if the property type is not a string.
* %-ENXIO if no suitable firmware interface is present.
*/
int device_property_read_string(struct device *dev, const char *propname,
const char **val)
{
return fwnode_property_read_string(dev_fwnode(dev), propname, val);
}
EXPORT_SYMBOL_GPL(device_property_read_string);
/**
* device_property_match_string - find a string in an array and return index
* @dev: Device to get the property of
* @propname: Name of the property holding the array
* @string: String to look for
*
* Find a given string in a string array and if it is found return the
* index back.
*
* Return: %0 if the property was found (success),
* %-EINVAL if given arguments are not valid,
* %-ENODATA if the property does not have a value,
* %-EPROTO if the property is not an array of strings,
* %-ENXIO if no suitable firmware interface is present.
*/
int device_property_match_string(struct device *dev, const char *propname,
const char *string)
{
return fwnode_property_match_string(dev_fwnode(dev), propname, string);
}
EXPORT_SYMBOL_GPL(device_property_match_string);
static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
const char *propname,
unsigned int elem_size, void *val,
size_t nval)
{
int ret;
ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
elem_size, val, nval);
if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
!IS_ERR_OR_NULL(fwnode->secondary))
ret = fwnode_call_int_op(
fwnode->secondary, property_read_int_array, propname,
elem_size, val, nval);
return ret;
}
/**
* fwnode_property_read_u8_array - return a u8 array property of firmware node
* @fwnode: Firmware node to get the property of
* @propname: Name of the property
* @val: The values are stored here or %NULL to return the number of values
* @nval: Size of the @val array
*
* Read an array of u8 properties with @propname from @fwnode and stores them to
* @val if found.
*
* Return: number of values if @val was %NULL,
* %0 if the property was found (success),
* %-EINVAL if given arguments are not valid,
* %-ENODATA if the property does not have a value,
* %-EPROTO if the property is not an array of numbers,
* %-EOVERFLOW if the size of the property is not as expected,
* %-ENXIO if no suitable firmware interface is present.
*/
int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
const char *propname, u8 *val, size_t nval)
{
return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
val, nval);
}
EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
/**
* fwnode_property_read_u16_array - return a u16 array property of firmware node
* @fwnode: Firmware node to get the property of
* @propname: Name of the property
* @val: The values are stored here or %NULL to return the number of values
* @nval: Size of the @val array
*
* Read an array of u16 properties with @propname from @fwnode and store them to
* @val if found.
*
* Return: number of values if @val was %NULL,
* %0 if the property was found (success),
* %-EINVAL if given arguments are not valid,
* %-ENODATA if the property does not have a value,
* %-EPROTO if the property is not an array of numbers,
* %-EOVERFLOW if the size of the property is not as expected,
* %-ENXIO if no suitable firmware interface is present.
*/
int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
const char *propname, u16 *val, size_t nval)
{
return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
val, nval);
}
EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
/**
* fwnode_property_read_u32_array - return a u32 array property of firmware node
* @fwnode: Firmware node to get the property of
* @propname: Name of the property
* @val: The values are stored here or %NULL to return the number of values
* @nval: Size of the @val array
*
* Read an array of u32 properties with @propname from @fwnode store them to
* @val if found.
*
* Return: number of values if @val was %NULL,
* %0 if the property was found (success),
* %-EINVAL if given arguments are not valid,
* %-ENODATA if the property does not have a value,
* %-EPROTO if the property is not an array of numbers,
* %-EOVERFLOW if the size of the property is not as expected,
* %-ENXIO if no suitable firmware interface is present.
*/
int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
const char *propname, u32 *val, size_t nval)
{
return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
val, nval);
}
EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
/**
* fwnode_property_read_u64_array - return a u64 array property firmware node
* @fwnode: Firmware node to get the property of
* @propname: Name of the property
* @val: The values are stored here or %NULL to return the number of values
* @nval: Size of the @val array
*
* Read an array of u64 properties with @propname from @fwnode and store them to
* @val if found.
*
* Return: number of values if @val was %NULL,
* %0 if the property was found (success),
* %-EINVAL if given arguments are not valid,
* %-ENODATA if the property does not have a value,
* %-EPROTO if the property is not an array of numbers,
* %-EOVERFLOW if the size of the property is not as expected,
* %-ENXIO if no suitable firmware interface is present.
*/
int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
const char *propname, u64 *val, size_t nval)
{
return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
val, nval);
}
EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
/**
* fwnode_property_read_string_array - return string array property of a node
* @fwnode: Firmware node to get the property of
* @propname: Name of the property
* @val: The values are stored here or %NULL to return the number of values
* @nval: Size of the @val array
*
* Read an string list property @propname from the given firmware node and store
* them to @val if found.
*
* Return: number of values read on success if @val is non-NULL,
* number of values available on success if @val is NULL,
* %-EINVAL if given arguments are not valid,
* %-ENODATA if the property does not have a value,
* %-EPROTO or %-EILSEQ if the property is not an array of strings,
* %-EOVERFLOW if the size of the property is not as expected,
* %-ENXIO if no suitable firmware interface is present.
*/
int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
const char *propname, const char **val,
size_t nval)
{
int ret;
ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
val, nval);
if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
!IS_ERR_OR_NULL(fwnode->secondary))
ret = fwnode_call_int_op(fwnode->secondary,
property_read_string_array, propname,
val, nval);
return ret;
}
EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
/**
* fwnode_property_read_string - return a string property of a firmware node
* @fwnode: Firmware node to get the property of
* @propname: Name of the property
* @val: The value is stored here
*
* Read property @propname from the given firmware node and store the value into
* @val if found. The value is checked to be a string.
*
* Return: %0 if the property was found (success),
* %-EINVAL if given arguments are not valid,
* %-ENODATA if the property does not have a value,
* %-EPROTO or %-EILSEQ if the property is not a string,
* %-ENXIO if no suitable firmware interface is present.
*/
int fwnode_property_read_string(const struct fwnode_handle *fwnode,
const char *propname, const char **val)
{
int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
return ret < 0 ? ret : 0;
}
EXPORT_SYMBOL_GPL(fwnode_property_read_string);
/**
* fwnode_property_match_string - find a string in an array and return index
* @fwnode: Firmware node to get the property of
* @propname: Name of the property holding the array
* @string: String to look for
*
* Find a given string in a string array and if it is found return the
* index back.
*
* Return: %0 if the property was found (success),
* %-EINVAL if given arguments are not valid,
* %-ENODATA if the property does not have a value,
* %-EPROTO if the property is not an array of strings,
* %-ENXIO if no suitable firmware interface is present.
*/
int fwnode_property_match_string(const struct fwnode_handle *fwnode,
const char *propname, const char *string)
{
const char **values;
int nval, ret;
nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
if (nval < 0)
return nval;
if (nval == 0)
return -ENODATA;
values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
if (!values)
return -ENOMEM;
ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
if (ret < 0)
goto out;
ret = match_string(values, nval, string);
if (ret < 0)
ret = -ENODATA;
out:
kfree(values);
return ret;
}
EXPORT_SYMBOL_GPL(fwnode_property_match_string);
/**
* fwnode_property_get_reference_args() - Find a reference with arguments
* @fwnode: Firmware node where to look for the reference
* @prop: The name of the property
* @nargs_prop: The name of the property telling the number of
* arguments in the referred node. NULL if @nargs is known,
* otherwise @nargs is ignored. Only relevant on OF.
* @nargs: Number of arguments. Ignored if @nargs_prop is non-NULL.
* @index: Index of the reference, from zero onwards.
* @args: Result structure with reference and integer arguments.
*
* Obtain a reference based on a named property in an fwnode, with
* integer arguments.
*
* Caller is responsible to call fwnode_handle_put() on the returned
* args->fwnode pointer.
*
* Returns: %0 on success
* %-ENOENT when the index is out of bounds, the index has an empty
* reference or the property was not found
* %-EINVAL on parse error
*/
int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
const char *prop, const char *nargs_prop,
unsigned int nargs, unsigned int index,
struct fwnode_reference_args *args)
{
return fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
nargs, index, args);
}
EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
static int property_copy_string_array(struct property_entry *dst,
const struct property_entry *src)
{
char **d;
size_t nval = src->length / sizeof(*d);
int i;
d = kcalloc(nval, sizeof(*d), GFP_KERNEL);
if (!d)
return -ENOMEM;
for (i = 0; i < nval; i++) {
d[i] = kstrdup(src->pointer.str[i], GFP_KERNEL);
if (!d[i] && src->pointer.str[i]) {
while (--i >= 0)
kfree(d[i]);
kfree(d);
return -ENOMEM;
}
}
dst->pointer.raw_data = d;
return 0;
}
static int property_entry_copy_data(struct property_entry *dst,
const struct property_entry *src)
{
int error;
dst->name = kstrdup(src->name, GFP_KERNEL);
if (!dst->name)
return -ENOMEM;
if (src->is_array) {
if (!src->length) {
error = -ENODATA;
goto out_free_name;
}
if (src->is_string) {
error = property_copy_string_array(dst, src);
if (error)
goto out_free_name;
} else {
dst->pointer.raw_data = kmemdup(src->pointer.raw_data,
src->length, GFP_KERNEL);
if (!dst->pointer.raw_data) {
error = -ENOMEM;
goto out_free_name;
}
}
} else if (src->is_string) {
dst->value.str = kstrdup(src->value.str, GFP_KERNEL);
if (!dst->value.str && src->value.str) {
error = -ENOMEM;
goto out_free_name;
}
} else {
dst->value.raw_data = src->value.raw_data;
}
dst->length = src->length;
dst->is_array = src->is_array;
dst->is_string = src->is_string;
return 0;
out_free_name:
kfree(dst->name);
return error;
}
static void property_entry_free_data(const struct property_entry *p)
{
size_t i, nval;
if (p->is_array) {
if (p->is_string && p->pointer.str) {
nval = p->length / sizeof(const char *);
for (i = 0; i < nval; i++)
kfree(p->pointer.str[i]);
}
kfree(p->pointer.raw_data);
} else if (p->is_string) {
kfree(p->value.str);
}
kfree(p->name);
}
/**
* property_entries_dup - duplicate array of properties
* @properties: array of properties to copy
*
* This function creates a deep copy of the given NULL-terminated array
* of property entries.
*/
struct property_entry *
property_entries_dup(const struct property_entry *properties)
{
struct property_entry *p;
int i, n = 0;
while (properties[n].name)
n++;
p = kcalloc(n + 1, sizeof(*p), GFP_KERNEL);
if (!p)
return ERR_PTR(-ENOMEM);
for (i = 0; i < n; i++) {
int ret = property_entry_copy_data(&p[i], &properties[i]);
if (ret) {
while (--i >= 0)
property_entry_free_data(&p[i]);
kfree(p);
return ERR_PTR(ret);
}
}
return p;
}
EXPORT_SYMBOL_GPL(property_entries_dup);
/**
* property_entries_free - free previously allocated array of properties
* @properties: array of properties to destroy
*
* This function frees given NULL-terminated array of property entries,
* along with their data.
*/
void property_entries_free(const struct property_entry *properties)
{
const struct property_entry *p;
for (p = properties; p->name; p++)
property_entry_free_data(p);
kfree(properties);
}
EXPORT_SYMBOL_GPL(property_entries_free);
/**
* pset_free_set - releases memory allocated for copied property set
* @pset: Property set to release
*
* Function takes previously copied property set and releases all the
* memory allocated to it.
*/
static void pset_free_set(struct property_set *pset)
{
if (!pset)
return;
property_entries_free(pset->properties);
kfree(pset);
}
/**
* pset_copy_set - copies property set
* @pset: Property set to copy
*
* This function takes a deep copy of the given property set and returns
* pointer to the copy. Call device_free_property_set() to free resources
* allocated in this function.
*
* Return: Pointer to the new property set or error pointer.
*/
static struct property_set *pset_copy_set(const struct property_set *pset)
{
struct property_entry *properties;
struct property_set *p;
p = kzalloc(sizeof(*p), GFP_KERNEL);
if (!p)
return ERR_PTR(-ENOMEM);
properties = property_entries_dup(pset->properties);
if (IS_ERR(properties)) {
kfree(p);
return ERR_CAST(properties);
}
p->properties = properties;
return p;
}
/**
* device_remove_properties - Remove properties from a device object.
* @dev: Device whose properties to remove.
*
* The function removes properties previously associated to the device
* secondary firmware node with device_add_properties(). Memory allocated
* to the properties will also be released.
*/
void device_remove_properties(struct device *dev)
{
struct fwnode_handle *fwnode;
struct property_set *pset;
fwnode = dev_fwnode(dev);
if (!fwnode)
return;
/*
* Pick either primary or secondary node depending which one holds
* the pset. If there is no real firmware node (ACPI/DT) primary
* will hold the pset.
*/
pset = to_pset_node(fwnode);
if (pset) {
set_primary_fwnode(dev, NULL);
} else {
pset = to_pset_node(fwnode->secondary);
if (pset && dev == pset->dev)
set_secondary_fwnode(dev, NULL);
}
if (pset && dev == pset->dev)
pset_free_set(pset);
}
EXPORT_SYMBOL_GPL(device_remove_properties);
/**
* device_add_properties - Add a collection of properties to a device object.
* @dev: Device to add properties to.
* @properties: Collection of properties to add.
*
* Associate a collection of device properties represented by @properties with
* @dev as its secondary firmware node. The function takes a copy of
* @properties.
*/
int device_add_properties(struct device *dev,
const struct property_entry *properties)
{
struct property_set *p, pset;
if (!properties)
return -EINVAL;
pset.properties = properties;
p = pset_copy_set(&pset);
if (IS_ERR(p))
return PTR_ERR(p);
p->fwnode.ops = &pset_fwnode_ops;
set_secondary_fwnode(dev, &p->fwnode);
p->dev = dev;
return 0;
}
EXPORT_SYMBOL_GPL(device_add_properties);
/**
* fwnode_get_next_parent - Iterate to the node's parent
* @fwnode: Firmware whose parent is retrieved
*
* This is like fwnode_get_parent() except that it drops the refcount
* on the passed node, making it suitable for iterating through a
* node's parents.
*
* Returns a node pointer with refcount incremented, use
* fwnode_handle_node() on it when done.
*/
struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
{
struct fwnode_handle *parent = fwnode_get_parent(fwnode);
fwnode_handle_put(fwnode);
return parent;
}
EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
/**
* fwnode_get_parent - Return parent firwmare node
* @fwnode: Firmware whose parent is retrieved
*
* Return parent firmware node of the given node if possible or %NULL if no
* parent was available.
*/
struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
{
return fwnode_call_ptr_op(fwnode, get_parent);
}
EXPORT_SYMBOL_GPL(fwnode_get_parent);
/**
* fwnode_get_next_child_node - Return the next child node handle for a node
* @fwnode: Firmware node to find the next child node for.
* @child: Handle to one of the node's child nodes or a %NULL handle.
*/
struct fwnode_handle *
fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
struct fwnode_handle *child)
{
return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
}
EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
/**
* device_get_next_child_node - Return the next child node handle for a device
* @dev: Device to find the next child node for.
* @child: Handle to one of the device's child nodes or a null handle.
*/
struct fwnode_handle *device_get_next_child_node(struct device *dev,
struct fwnode_handle *child)
{
struct acpi_device *adev = ACPI_COMPANION(dev);
struct fwnode_handle *fwnode = NULL;
if (dev->of_node)
fwnode = &dev->of_node->fwnode;
else if (adev)
fwnode = acpi_fwnode_handle(adev);
return fwnode_get_next_child_node(fwnode, child);
}
EXPORT_SYMBOL_GPL(device_get_next_child_node);
/**
* fwnode_get_named_child_node - Return first matching named child node handle
* @fwnode: Firmware node to find the named child node for.
* @childname: String to match child node name against.
*/
struct fwnode_handle *
fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
const char *childname)
{
return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
}
EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
/**
* device_get_named_child_node - Return first matching named child node handle
* @dev: Device to find the named child node for.
* @childname: String to match child node name against.
*/
struct fwnode_handle *device_get_named_child_node(struct device *dev,
const char *childname)
{
return fwnode_get_named_child_node(dev_fwnode(dev), childname);
}
EXPORT_SYMBOL_GPL(device_get_named_child_node);
/**
* fwnode_handle_get - Obtain a reference to a device node
* @fwnode: Pointer to the device node to obtain the reference to.
*
* Returns the fwnode handle.
*/
struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
{
if (!fwnode_has_op(fwnode, get))
return fwnode;
return fwnode_call_ptr_op(fwnode, get);
}
EXPORT_SYMBOL_GPL(fwnode_handle_get);
/**
* fwnode_handle_put - Drop reference to a device node
* @fwnode: Pointer to the device node to drop the reference to.
*
* This has to be used when terminating device_for_each_child_node() iteration
* with break or return to prevent stale device node references from being left
* behind.
*/
void fwnode_handle_put(struct fwnode_handle *fwnode)
{
fwnode_call_void_op(fwnode, put);
}
EXPORT_SYMBOL_GPL(fwnode_handle_put);
/**
* fwnode_device_is_available - check if a device is available for use
* @fwnode: Pointer to the fwnode of the device.
*/
bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
{
return fwnode_call_bool_op(fwnode, device_is_available);
}
EXPORT_SYMBOL_GPL(fwnode_device_is_available);
/**
* device_get_child_node_count - return the number of child nodes for device
* @dev: Device to cound the child nodes for
*/
unsigned int device_get_child_node_count(struct device *dev)
{
struct fwnode_handle *child;
unsigned int count = 0;
device_for_each_child_node(dev, child)
count++;
return count;
}
EXPORT_SYMBOL_GPL(device_get_child_node_count);
bool device_dma_supported(struct device *dev)
{
/* For DT, this is always supported.
* For ACPI, this depends on CCA, which
* is determined by the acpi_dma_supported().
*/
if (IS_ENABLED(CONFIG_OF) && dev->of_node)
return true;
return acpi_dma_supported(ACPI_COMPANION(dev));
}
EXPORT_SYMBOL_GPL(device_dma_supported);
enum dev_dma_attr device_get_dma_attr(struct device *dev)
{
enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;
if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
if (of_dma_is_coherent(dev->of_node))
attr = DEV_DMA_COHERENT;
else
attr = DEV_DMA_NON_COHERENT;
} else
attr = acpi_get_dma_attr(ACPI_COMPANION(dev));
return attr;
}
EXPORT_SYMBOL_GPL(device_get_dma_attr);
/**
* device_get_phy_mode - Get phy mode for given device
* @dev: Pointer to the given device
*
* The function gets phy interface string from property 'phy-mode' or
* 'phy-connection-type', and return its index in phy_modes table, or errno in
* error case.
*/
int device_get_phy_mode(struct device *dev)
{
const char *pm;
int err, i;
err = device_property_read_string(dev, "phy-mode", &pm);
if (err < 0)
err = device_property_read_string(dev,
"phy-connection-type", &pm);
if (err < 0)
return err;
for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
if (!strcasecmp(pm, phy_modes(i)))
return i;
return -ENODEV;
}
EXPORT_SYMBOL_GPL(device_get_phy_mode);
static void *device_get_mac_addr(struct device *dev,
const char *name, char *addr,
int alen)
{
int ret = device_property_read_u8_array(dev, name, addr, alen);
if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
return addr;
return NULL;
}
/**
* device_get_mac_address - Get the MAC for a given device
* @dev: Pointer to the device
* @addr: Address of buffer to store the MAC in
* @alen: Length of the buffer pointed to by addr, should be ETH_ALEN
*
* Search the firmware node for the best MAC address to use. 'mac-address' is
* checked first, because that is supposed to contain to "most recent" MAC
* address. If that isn't set, then 'local-mac-address' is checked next,
* because that is the default address. If that isn't set, then the obsolete
* 'address' is checked, just in case we're using an old device tree.
*
* Note that the 'address' property is supposed to contain a virtual address of
* the register set, but some DTS files have redefined that property to be the
* MAC address.
*
* All-zero MAC addresses are rejected, because those could be properties that
* exist in the firmware tables, but were not updated by the firmware. For
* example, the DTS could define 'mac-address' and 'local-mac-address', with
* zero MAC addresses. Some older U-Boots only initialized 'local-mac-address'.
* In this case, the real MAC is in 'local-mac-address', and 'mac-address'
* exists but is all zeros.
*/
void *device_get_mac_address(struct device *dev, char *addr, int alen)
{
char *res;
res = device_get_mac_addr(dev, "mac-address", addr, alen);
if (res)
return res;
res = device_get_mac_addr(dev, "local-mac-address", addr, alen);
if (res)
return res;
return device_get_mac_addr(dev, "address", addr, alen);
}
EXPORT_SYMBOL(device_get_mac_address);
/**
* device_graph_get_next_endpoint - Get next endpoint firmware node
* @fwnode: Pointer to the parent firmware node
* @prev: Previous endpoint node or %NULL to get the first
*
* Returns an endpoint firmware node pointer or %NULL if no more endpoints
* are available.
*/
struct fwnode_handle *
fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
struct fwnode_handle *prev)
{
return fwnode_call_ptr_op(fwnode, graph_get_next_endpoint, prev);
}
EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
/**
* fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
* @endpoint: Endpoint firmware node of the port
*
* Return: the firmware node of the device the @endpoint belongs to.
*/
struct fwnode_handle *
fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
{
struct fwnode_handle *port, *parent;
port = fwnode_get_parent(endpoint);
parent = fwnode_call_ptr_op(port, graph_get_port_parent);
fwnode_handle_put(port);
return parent;
}
EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
/**
* fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
* @fwnode: Endpoint firmware node pointing to the remote endpoint
*
* Extracts firmware node of a remote device the @fwnode points to.
*/
struct fwnode_handle *
fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
{
struct fwnode_handle *endpoint, *parent;
endpoint = fwnode_graph_get_remote_endpoint(fwnode);
parent = fwnode_graph_get_port_parent(endpoint);
fwnode_handle_put(endpoint);
return parent;
}
EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
/**
* fwnode_graph_get_remote_port - Return fwnode of a remote port
* @fwnode: Endpoint firmware node pointing to the remote endpoint
*
* Extracts firmware node of a remote port the @fwnode points to.
*/
struct fwnode_handle *
fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
{
return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
}
EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
/**
* fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
* @fwnode: Endpoint firmware node pointing to the remote endpoint
*
* Extracts firmware node of a remote endpoint the @fwnode points to.
*/
struct fwnode_handle *
fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
{
return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
}
EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
/**
* fwnode_graph_get_remote_node - get remote parent node for given port/endpoint
* @fwnode: pointer to parent fwnode_handle containing graph port/endpoint
* @port_id: identifier of the parent port node
* @endpoint_id: identifier of the endpoint node
*
* Return: Remote fwnode handle associated with remote endpoint node linked
* to @node. Use fwnode_node_put() on it when done.
*/
struct fwnode_handle *
fwnode_graph_get_remote_node(const struct fwnode_handle *fwnode, u32 port_id,
u32 endpoint_id)
{
struct fwnode_handle *endpoint = NULL;
while ((endpoint = fwnode_graph_get_next_endpoint(fwnode, endpoint))) {
struct fwnode_endpoint fwnode_ep;
struct fwnode_handle *remote;
int ret;
ret = fwnode_graph_parse_endpoint(endpoint, &fwnode_ep);
if (ret < 0)
continue;
if (fwnode_ep.port != port_id || fwnode_ep.id != endpoint_id)
continue;
remote = fwnode_graph_get_remote_port_parent(endpoint);
if (!remote)
return NULL;
return fwnode_device_is_available(remote) ? remote : NULL;
}
return NULL;
}
EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_node);
/**
* fwnode_graph_parse_endpoint - parse common endpoint node properties
* @fwnode: pointer to endpoint fwnode_handle
* @endpoint: pointer to the fwnode endpoint data structure
*
* Parse @fwnode representing a graph endpoint node and store the
* information in @endpoint. The caller must hold a reference to
* @fwnode.
*/
int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
struct fwnode_endpoint *endpoint)
{
memset(endpoint, 0, sizeof(*endpoint));
return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
}
EXPORT_SYMBOL(fwnode_graph_parse_endpoint);