kernel_optimize_test/drivers/usb/gadget/pxa2xx_udc.c
Linus Torvalds c6799ade4a Merge branch 'for-linus' of master.kernel.org:/home/rmk/linux-2.6-arm
* 'for-linus' of master.kernel.org:/home/rmk/linux-2.6-arm: (82 commits)
  [ARM] Add comments marking in-use ptrace numbers
  [ARM] Move syscall saving out of the way of utrace
  [ARM] 4360/1: S3C24XX: regs-udc.h remove unused macro
  [ARM] 4358/1: S3C24XX: mach-qt2410.c: remove linux/mmc/protocol.h header
  [ARM] mm 10: allow memory type to be specified with ioremap
  [ARM] mm 9: add additional device memory types
  [ARM] mm 8: define mem_types table L1 bit 4 to be for ARMv6
  [ARM] iop: add missing parens in macro
  [ARM] mm 7: remove duplicated __ioremap() prototypes
  ARM: OMAP: fix OMAP1 mpuio suspend/resume oops
  ARM: OMAP: MPUIO wake updates
  ARM: OMAP: speed up gpio irq handling
  ARM: OMAP: plat-omap changes for 2430 SDP
  ARM: OMAP: gpio object shrinkage, cleanup
  ARM: OMAP: /sys/kernel/debug/omap_gpio
  ARM: OMAP: Implement workaround for GPIO wakeup bug in OMAP2420 silicon
  ARM: OMAP: Enable 24xx GPIO autoidling
  [ARM] 4318/2: DSM-G600 Board Support
  [ARM] 4227/1: minor head.S fixups
  [ARM] 4328/1: Move i.MX UART regs to driver
  ...
2007-05-06 13:20:10 -07:00

2722 lines
67 KiB
C

/*
* linux/drivers/usb/gadget/pxa2xx_udc.c
* Intel PXA25x and IXP4xx on-chip full speed USB device controllers
*
* Copyright (C) 2002 Intrinsyc, Inc. (Frank Becker)
* Copyright (C) 2003 Robert Schwebel, Pengutronix
* Copyright (C) 2003 Benedikt Spranger, Pengutronix
* Copyright (C) 2003 David Brownell
* Copyright (C) 2003 Joshua Wise
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#undef DEBUG
// #define VERBOSE DBG_VERBOSE
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/ioport.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/timer.h>
#include <linux/list.h>
#include <linux/interrupt.h>
#include <linux/proc_fs.h>
#include <linux/mm.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/irq.h>
#include <asm/byteorder.h>
#include <asm/dma.h>
#include <asm/io.h>
#include <asm/system.h>
#include <asm/mach-types.h>
#include <asm/unaligned.h>
#include <asm/hardware.h>
#ifdef CONFIG_ARCH_PXA
#include <asm/arch/pxa-regs.h>
#endif
#include <linux/usb/ch9.h>
#include <linux/usb_gadget.h>
#include <asm/arch/udc.h>
/*
* This driver handles the USB Device Controller (UDC) in Intel's PXA 25x
* series processors. The UDC for the IXP 4xx series is very similar.
* There are fifteen endpoints, in addition to ep0.
*
* Such controller drivers work with a gadget driver. The gadget driver
* returns descriptors, implements configuration and data protocols used
* by the host to interact with this device, and allocates endpoints to
* the different protocol interfaces. The controller driver virtualizes
* usb hardware so that the gadget drivers will be more portable.
*
* This UDC hardware wants to implement a bit too much USB protocol, so
* it constrains the sorts of USB configuration change events that work.
* The errata for these chips are misleading; some "fixed" bugs from
* pxa250 a0/a1 b0/b1/b2 sure act like they're still there.
*/
#define DRIVER_VERSION "4-May-2005"
#define DRIVER_DESC "PXA 25x USB Device Controller driver"
static const char driver_name [] = "pxa2xx_udc";
static const char ep0name [] = "ep0";
// #define USE_DMA
// #define USE_OUT_DMA
// #define DISABLE_TEST_MODE
#ifdef CONFIG_ARCH_IXP4XX
#undef USE_DMA
/* cpu-specific register addresses are compiled in to this code */
#ifdef CONFIG_ARCH_PXA
#error "Can't configure both IXP and PXA"
#endif
#endif
#include "pxa2xx_udc.h"
#ifdef USE_DMA
static int use_dma = 1;
module_param(use_dma, bool, 0);
MODULE_PARM_DESC (use_dma, "true to use dma");
static void dma_nodesc_handler (int dmach, void *_ep);
static void kick_dma(struct pxa2xx_ep *ep, struct pxa2xx_request *req);
#ifdef USE_OUT_DMA
#define DMASTR " (dma support)"
#else
#define DMASTR " (dma in)"
#endif
#else /* !USE_DMA */
#define DMASTR " (pio only)"
#undef USE_OUT_DMA
#endif
#ifdef CONFIG_USB_PXA2XX_SMALL
#define SIZE_STR " (small)"
#else
#define SIZE_STR ""
#endif
#ifdef DISABLE_TEST_MODE
/* (mode == 0) == no undocumented chip tweaks
* (mode & 1) == double buffer bulk IN
* (mode & 2) == double buffer bulk OUT
* ... so mode = 3 (or 7, 15, etc) does it for both
*/
static ushort fifo_mode = 0;
module_param(fifo_mode, ushort, 0);
MODULE_PARM_DESC (fifo_mode, "pxa2xx udc fifo mode");
#endif
/* ---------------------------------------------------------------------------
* endpoint related parts of the api to the usb controller hardware,
* used by gadget driver; and the inner talker-to-hardware core.
* ---------------------------------------------------------------------------
*/
static void pxa2xx_ep_fifo_flush (struct usb_ep *ep);
static void nuke (struct pxa2xx_ep *, int status);
/* one GPIO should be used to detect VBUS from the host */
static int is_vbus_present(void)
{
struct pxa2xx_udc_mach_info *mach = the_controller->mach;
if (mach->gpio_vbus)
return udc_gpio_get(mach->gpio_vbus);
if (mach->udc_is_connected)
return mach->udc_is_connected();
return 1;
}
/* one GPIO should control a D+ pullup, so host sees this device (or not) */
static void pullup_off(void)
{
struct pxa2xx_udc_mach_info *mach = the_controller->mach;
if (mach->gpio_pullup)
udc_gpio_set(mach->gpio_pullup, 0);
else if (mach->udc_command)
mach->udc_command(PXA2XX_UDC_CMD_DISCONNECT);
}
static void pullup_on(void)
{
struct pxa2xx_udc_mach_info *mach = the_controller->mach;
if (mach->gpio_pullup)
udc_gpio_set(mach->gpio_pullup, 1);
else if (mach->udc_command)
mach->udc_command(PXA2XX_UDC_CMD_CONNECT);
}
static void pio_irq_enable(int bEndpointAddress)
{
bEndpointAddress &= 0xf;
if (bEndpointAddress < 8)
UICR0 &= ~(1 << bEndpointAddress);
else {
bEndpointAddress -= 8;
UICR1 &= ~(1 << bEndpointAddress);
}
}
static void pio_irq_disable(int bEndpointAddress)
{
bEndpointAddress &= 0xf;
if (bEndpointAddress < 8)
UICR0 |= 1 << bEndpointAddress;
else {
bEndpointAddress -= 8;
UICR1 |= 1 << bEndpointAddress;
}
}
/* The UDCCR reg contains mask and interrupt status bits,
* so using '|=' isn't safe as it may ack an interrupt.
*/
#define UDCCR_MASK_BITS (UDCCR_REM | UDCCR_SRM | UDCCR_UDE)
static inline void udc_set_mask_UDCCR(int mask)
{
UDCCR = (UDCCR & UDCCR_MASK_BITS) | (mask & UDCCR_MASK_BITS);
}
static inline void udc_clear_mask_UDCCR(int mask)
{
UDCCR = (UDCCR & UDCCR_MASK_BITS) & ~(mask & UDCCR_MASK_BITS);
}
static inline void udc_ack_int_UDCCR(int mask)
{
/* udccr contains the bits we dont want to change */
__u32 udccr = UDCCR & UDCCR_MASK_BITS;
UDCCR = udccr | (mask & ~UDCCR_MASK_BITS);
}
/*
* endpoint enable/disable
*
* we need to verify the descriptors used to enable endpoints. since pxa2xx
* endpoint configurations are fixed, and are pretty much always enabled,
* there's not a lot to manage here.
*
* because pxa2xx can't selectively initialize bulk (or interrupt) endpoints,
* (resetting endpoint halt and toggle), SET_INTERFACE is unusable except
* for a single interface (with only the default altsetting) and for gadget
* drivers that don't halt endpoints (not reset by set_interface). that also
* means that if you use ISO, you must violate the USB spec rule that all
* iso endpoints must be in non-default altsettings.
*/
static int pxa2xx_ep_enable (struct usb_ep *_ep,
const struct usb_endpoint_descriptor *desc)
{
struct pxa2xx_ep *ep;
struct pxa2xx_udc *dev;
ep = container_of (_ep, struct pxa2xx_ep, ep);
if (!_ep || !desc || ep->desc || _ep->name == ep0name
|| desc->bDescriptorType != USB_DT_ENDPOINT
|| ep->bEndpointAddress != desc->bEndpointAddress
|| ep->fifo_size < le16_to_cpu
(desc->wMaxPacketSize)) {
DMSG("%s, bad ep or descriptor\n", __FUNCTION__);
return -EINVAL;
}
/* xfer types must match, except that interrupt ~= bulk */
if (ep->bmAttributes != desc->bmAttributes
&& ep->bmAttributes != USB_ENDPOINT_XFER_BULK
&& desc->bmAttributes != USB_ENDPOINT_XFER_INT) {
DMSG("%s, %s type mismatch\n", __FUNCTION__, _ep->name);
return -EINVAL;
}
/* hardware _could_ do smaller, but driver doesn't */
if ((desc->bmAttributes == USB_ENDPOINT_XFER_BULK
&& le16_to_cpu (desc->wMaxPacketSize)
!= BULK_FIFO_SIZE)
|| !desc->wMaxPacketSize) {
DMSG("%s, bad %s maxpacket\n", __FUNCTION__, _ep->name);
return -ERANGE;
}
dev = ep->dev;
if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN) {
DMSG("%s, bogus device state\n", __FUNCTION__);
return -ESHUTDOWN;
}
ep->desc = desc;
ep->dma = -1;
ep->stopped = 0;
ep->pio_irqs = ep->dma_irqs = 0;
ep->ep.maxpacket = le16_to_cpu (desc->wMaxPacketSize);
/* flush fifo (mostly for OUT buffers) */
pxa2xx_ep_fifo_flush (_ep);
/* ... reset halt state too, if we could ... */
#ifdef USE_DMA
/* for (some) bulk and ISO endpoints, try to get a DMA channel and
* bind it to the endpoint. otherwise use PIO.
*/
switch (ep->bmAttributes) {
case USB_ENDPOINT_XFER_ISOC:
if (le16_to_cpu(desc->wMaxPacketSize) % 32)
break;
// fall through
case USB_ENDPOINT_XFER_BULK:
if (!use_dma || !ep->reg_drcmr)
break;
ep->dma = pxa_request_dma ((char *)_ep->name,
(le16_to_cpu (desc->wMaxPacketSize) > 64)
? DMA_PRIO_MEDIUM /* some iso */
: DMA_PRIO_LOW,
dma_nodesc_handler, ep);
if (ep->dma >= 0) {
*ep->reg_drcmr = DRCMR_MAPVLD | ep->dma;
DMSG("%s using dma%d\n", _ep->name, ep->dma);
}
}
#endif
DBG(DBG_VERBOSE, "enabled %s\n", _ep->name);
return 0;
}
static int pxa2xx_ep_disable (struct usb_ep *_ep)
{
struct pxa2xx_ep *ep;
unsigned long flags;
ep = container_of (_ep, struct pxa2xx_ep, ep);
if (!_ep || !ep->desc) {
DMSG("%s, %s not enabled\n", __FUNCTION__,
_ep ? ep->ep.name : NULL);
return -EINVAL;
}
local_irq_save(flags);
nuke (ep, -ESHUTDOWN);
#ifdef USE_DMA
if (ep->dma >= 0) {
*ep->reg_drcmr = 0;
pxa_free_dma (ep->dma);
ep->dma = -1;
}
#endif
/* flush fifo (mostly for IN buffers) */
pxa2xx_ep_fifo_flush (_ep);
ep->desc = NULL;
ep->stopped = 1;
local_irq_restore(flags);
DBG(DBG_VERBOSE, "%s disabled\n", _ep->name);
return 0;
}
/*-------------------------------------------------------------------------*/
/* for the pxa2xx, these can just wrap kmalloc/kfree. gadget drivers
* must still pass correctly initialized endpoints, since other controller
* drivers may care about how it's currently set up (dma issues etc).
*/
/*
* pxa2xx_ep_alloc_request - allocate a request data structure
*/
static struct usb_request *
pxa2xx_ep_alloc_request (struct usb_ep *_ep, gfp_t gfp_flags)
{
struct pxa2xx_request *req;
req = kzalloc(sizeof(*req), gfp_flags);
if (!req)
return NULL;
INIT_LIST_HEAD (&req->queue);
return &req->req;
}
/*
* pxa2xx_ep_free_request - deallocate a request data structure
*/
static void
pxa2xx_ep_free_request (struct usb_ep *_ep, struct usb_request *_req)
{
struct pxa2xx_request *req;
req = container_of (_req, struct pxa2xx_request, req);
WARN_ON (!list_empty (&req->queue));
kfree(req);
}
/* PXA cache needs flushing with DMA I/O (it's dma-incoherent), but there's
* no device-affinity and the heap works perfectly well for i/o buffers.
* It wastes much less memory than dma_alloc_coherent() would, and even
* prevents cacheline (32 bytes wide) sharing problems.
*/
static void *
pxa2xx_ep_alloc_buffer(struct usb_ep *_ep, unsigned bytes,
dma_addr_t *dma, gfp_t gfp_flags)
{
char *retval;
retval = kmalloc (bytes, gfp_flags & ~(__GFP_DMA|__GFP_HIGHMEM));
if (retval)
#ifdef USE_DMA
*dma = virt_to_bus (retval);
#else
*dma = (dma_addr_t)~0;
#endif
return retval;
}
static void
pxa2xx_ep_free_buffer(struct usb_ep *_ep, void *buf, dma_addr_t dma,
unsigned bytes)
{
kfree (buf);
}
/*-------------------------------------------------------------------------*/
/*
* done - retire a request; caller blocked irqs
*/
static void done(struct pxa2xx_ep *ep, struct pxa2xx_request *req, int status)
{
unsigned stopped = ep->stopped;
list_del_init(&req->queue);
if (likely (req->req.status == -EINPROGRESS))
req->req.status = status;
else
status = req->req.status;
if (status && status != -ESHUTDOWN)
DBG(DBG_VERBOSE, "complete %s req %p stat %d len %u/%u\n",
ep->ep.name, &req->req, status,
req->req.actual, req->req.length);
/* don't modify queue heads during completion callback */
ep->stopped = 1;
req->req.complete(&ep->ep, &req->req);
ep->stopped = stopped;
}
static inline void ep0_idle (struct pxa2xx_udc *dev)
{
dev->ep0state = EP0_IDLE;
}
static int
write_packet(volatile u32 *uddr, struct pxa2xx_request *req, unsigned max)
{
u8 *buf;
unsigned length, count;
buf = req->req.buf + req->req.actual;
prefetch(buf);
/* how big will this packet be? */
length = min(req->req.length - req->req.actual, max);
req->req.actual += length;
count = length;
while (likely(count--))
*uddr = *buf++;
return length;
}
/*
* write to an IN endpoint fifo, as many packets as possible.
* irqs will use this to write the rest later.
* caller guarantees at least one packet buffer is ready (or a zlp).
*/
static int
write_fifo (struct pxa2xx_ep *ep, struct pxa2xx_request *req)
{
unsigned max;
max = le16_to_cpu(ep->desc->wMaxPacketSize);
do {
unsigned count;
int is_last, is_short;
count = write_packet(ep->reg_uddr, req, max);
/* last packet is usually short (or a zlp) */
if (unlikely (count != max))
is_last = is_short = 1;
else {
if (likely(req->req.length != req->req.actual)
|| req->req.zero)
is_last = 0;
else
is_last = 1;
/* interrupt/iso maxpacket may not fill the fifo */
is_short = unlikely (max < ep->fifo_size);
}
DBG(DBG_VERY_NOISY, "wrote %s %d bytes%s%s %d left %p\n",
ep->ep.name, count,
is_last ? "/L" : "", is_short ? "/S" : "",
req->req.length - req->req.actual, req);
/* let loose that packet. maybe try writing another one,
* double buffering might work. TSP, TPC, and TFS
* bit values are the same for all normal IN endpoints.
*/
*ep->reg_udccs = UDCCS_BI_TPC;
if (is_short)
*ep->reg_udccs = UDCCS_BI_TSP;
/* requests complete when all IN data is in the FIFO */
if (is_last) {
done (ep, req, 0);
if (list_empty(&ep->queue) || unlikely(ep->dma >= 0)) {
pio_irq_disable (ep->bEndpointAddress);
#ifdef USE_DMA
/* unaligned data and zlps couldn't use dma */
if (unlikely(!list_empty(&ep->queue))) {
req = list_entry(ep->queue.next,
struct pxa2xx_request, queue);
kick_dma(ep,req);
return 0;
}
#endif
}
return 1;
}
// TODO experiment: how robust can fifo mode tweaking be?
// double buffering is off in the default fifo mode, which
// prevents TFS from being set here.
} while (*ep->reg_udccs & UDCCS_BI_TFS);
return 0;
}
/* caller asserts req->pending (ep0 irq status nyet cleared); starts
* ep0 data stage. these chips want very simple state transitions.
*/
static inline
void ep0start(struct pxa2xx_udc *dev, u32 flags, const char *tag)
{
UDCCS0 = flags|UDCCS0_SA|UDCCS0_OPR;
USIR0 = USIR0_IR0;
dev->req_pending = 0;
DBG(DBG_VERY_NOISY, "%s %s, %02x/%02x\n",
__FUNCTION__, tag, UDCCS0, flags);
}
static int
write_ep0_fifo (struct pxa2xx_ep *ep, struct pxa2xx_request *req)
{
unsigned count;
int is_short;
count = write_packet(&UDDR0, req, EP0_FIFO_SIZE);
ep->dev->stats.write.bytes += count;
/* last packet "must be" short (or a zlp) */
is_short = (count != EP0_FIFO_SIZE);
DBG(DBG_VERY_NOISY, "ep0in %d bytes %d left %p\n", count,
req->req.length - req->req.actual, req);
if (unlikely (is_short)) {
if (ep->dev->req_pending)
ep0start(ep->dev, UDCCS0_IPR, "short IN");
else
UDCCS0 = UDCCS0_IPR;
count = req->req.length;
done (ep, req, 0);
ep0_idle(ep->dev);
#ifndef CONFIG_ARCH_IXP4XX
#if 1
/* This seems to get rid of lost status irqs in some cases:
* host responds quickly, or next request involves config
* change automagic, or should have been hidden, or ...
*
* FIXME get rid of all udelays possible...
*/
if (count >= EP0_FIFO_SIZE) {
count = 100;
do {
if ((UDCCS0 & UDCCS0_OPR) != 0) {
/* clear OPR, generate ack */
UDCCS0 = UDCCS0_OPR;
break;
}
count--;
udelay(1);
} while (count);
}
#endif
#endif
} else if (ep->dev->req_pending)
ep0start(ep->dev, 0, "IN");
return is_short;
}
/*
* read_fifo - unload packet(s) from the fifo we use for usb OUT
* transfers and put them into the request. caller should have made
* sure there's at least one packet ready.
*
* returns true if the request completed because of short packet or the
* request buffer having filled (and maybe overran till end-of-packet).
*/
static int
read_fifo (struct pxa2xx_ep *ep, struct pxa2xx_request *req)
{
for (;;) {
u32 udccs;
u8 *buf;
unsigned bufferspace, count, is_short;
/* make sure there's a packet in the FIFO.
* UDCCS_{BO,IO}_RPC are all the same bit value.
* UDCCS_{BO,IO}_RNE are all the same bit value.
*/
udccs = *ep->reg_udccs;
if (unlikely ((udccs & UDCCS_BO_RPC) == 0))
break;
buf = req->req.buf + req->req.actual;
prefetchw(buf);
bufferspace = req->req.length - req->req.actual;
/* read all bytes from this packet */
if (likely (udccs & UDCCS_BO_RNE)) {
count = 1 + (0x0ff & *ep->reg_ubcr);
req->req.actual += min (count, bufferspace);
} else /* zlp */
count = 0;
is_short = (count < ep->ep.maxpacket);
DBG(DBG_VERY_NOISY, "read %s %02x, %d bytes%s req %p %d/%d\n",
ep->ep.name, udccs, count,
is_short ? "/S" : "",
req, req->req.actual, req->req.length);
while (likely (count-- != 0)) {
u8 byte = (u8) *ep->reg_uddr;
if (unlikely (bufferspace == 0)) {
/* this happens when the driver's buffer
* is smaller than what the host sent.
* discard the extra data.
*/
if (req->req.status != -EOVERFLOW)
DMSG("%s overflow %d\n",
ep->ep.name, count);
req->req.status = -EOVERFLOW;
} else {
*buf++ = byte;
bufferspace--;
}
}
*ep->reg_udccs = UDCCS_BO_RPC;
/* RPC/RSP/RNE could now reflect the other packet buffer */
/* iso is one request per packet */
if (ep->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
if (udccs & UDCCS_IO_ROF)
req->req.status = -EHOSTUNREACH;
/* more like "is_done" */
is_short = 1;
}
/* completion */
if (is_short || req->req.actual == req->req.length) {
done (ep, req, 0);
if (list_empty(&ep->queue))
pio_irq_disable (ep->bEndpointAddress);
return 1;
}
/* finished that packet. the next one may be waiting... */
}
return 0;
}
/*
* special ep0 version of the above. no UBCR0 or double buffering; status
* handshaking is magic. most device protocols don't need control-OUT.
* CDC vendor commands (and RNDIS), mass storage CB/CBI, and some other
* protocols do use them.
*/
static int
read_ep0_fifo (struct pxa2xx_ep *ep, struct pxa2xx_request *req)
{
u8 *buf, byte;
unsigned bufferspace;
buf = req->req.buf + req->req.actual;
bufferspace = req->req.length - req->req.actual;
while (UDCCS0 & UDCCS0_RNE) {
byte = (u8) UDDR0;
if (unlikely (bufferspace == 0)) {
/* this happens when the driver's buffer
* is smaller than what the host sent.
* discard the extra data.
*/
if (req->req.status != -EOVERFLOW)
DMSG("%s overflow\n", ep->ep.name);
req->req.status = -EOVERFLOW;
} else {
*buf++ = byte;
req->req.actual++;
bufferspace--;
}
}
UDCCS0 = UDCCS0_OPR | UDCCS0_IPR;
/* completion */
if (req->req.actual >= req->req.length)
return 1;
/* finished that packet. the next one may be waiting... */
return 0;
}
#ifdef USE_DMA
#define MAX_IN_DMA ((DCMD_LENGTH + 1) - BULK_FIFO_SIZE)
static void
start_dma_nodesc(struct pxa2xx_ep *ep, struct pxa2xx_request *req, int is_in)
{
u32 dcmd = req->req.length;
u32 buf = req->req.dma;
u32 fifo = io_v2p ((u32)ep->reg_uddr);
/* caller guarantees there's a packet or more remaining
* - IN may end with a short packet (TSP set separately),
* - OUT is always full length
*/
buf += req->req.actual;
dcmd -= req->req.actual;
ep->dma_fixup = 0;
/* no-descriptor mode can be simple for bulk-in, iso-in, iso-out */
DCSR(ep->dma) = DCSR_NODESC;
if (is_in) {
DSADR(ep->dma) = buf;
DTADR(ep->dma) = fifo;
if (dcmd > MAX_IN_DMA)
dcmd = MAX_IN_DMA;
else
ep->dma_fixup = (dcmd % ep->ep.maxpacket) != 0;
dcmd |= DCMD_BURST32 | DCMD_WIDTH1
| DCMD_FLOWTRG | DCMD_INCSRCADDR;
} else {
#ifdef USE_OUT_DMA
DSADR(ep->dma) = fifo;
DTADR(ep->dma) = buf;
if (ep->bmAttributes != USB_ENDPOINT_XFER_ISOC)
dcmd = ep->ep.maxpacket;
dcmd |= DCMD_BURST32 | DCMD_WIDTH1
| DCMD_FLOWSRC | DCMD_INCTRGADDR;
#endif
}
DCMD(ep->dma) = dcmd;
DCSR(ep->dma) = DCSR_RUN | DCSR_NODESC
| (unlikely(is_in)
? DCSR_STOPIRQEN /* use dma_nodesc_handler() */
: 0); /* use handle_ep() */
}
static void kick_dma(struct pxa2xx_ep *ep, struct pxa2xx_request *req)
{
int is_in = ep->bEndpointAddress & USB_DIR_IN;
if (is_in) {
/* unaligned tx buffers and zlps only work with PIO */
if ((req->req.dma & 0x0f) != 0
|| unlikely((req->req.length - req->req.actual)
== 0)) {
pio_irq_enable(ep->bEndpointAddress);
if ((*ep->reg_udccs & UDCCS_BI_TFS) != 0)
(void) write_fifo(ep, req);
} else {
start_dma_nodesc(ep, req, USB_DIR_IN);
}
} else {
if ((req->req.length - req->req.actual) < ep->ep.maxpacket) {
DMSG("%s short dma read...\n", ep->ep.name);
/* we're always set up for pio out */
read_fifo (ep, req);
} else {
*ep->reg_udccs = UDCCS_BO_DME
| (*ep->reg_udccs & UDCCS_BO_FST);
start_dma_nodesc(ep, req, USB_DIR_OUT);
}
}
}
static void cancel_dma(struct pxa2xx_ep *ep)
{
struct pxa2xx_request *req;
u32 tmp;
if (DCSR(ep->dma) == 0 || list_empty(&ep->queue))
return;
DCSR(ep->dma) = 0;
while ((DCSR(ep->dma) & DCSR_STOPSTATE) == 0)
cpu_relax();
req = list_entry(ep->queue.next, struct pxa2xx_request, queue);
tmp = DCMD(ep->dma) & DCMD_LENGTH;
req->req.actual = req->req.length - (tmp & DCMD_LENGTH);
/* the last tx packet may be incomplete, so flush the fifo.
* FIXME correct req.actual if we can
*/
if (ep->bEndpointAddress & USB_DIR_IN)
*ep->reg_udccs = UDCCS_BI_FTF;
}
/* dma channel stopped ... normal tx end (IN), or on error (IN/OUT) */
static void dma_nodesc_handler(int dmach, void *_ep)
{
struct pxa2xx_ep *ep = _ep;
struct pxa2xx_request *req;
u32 tmp, completed;
local_irq_disable();
req = list_entry(ep->queue.next, struct pxa2xx_request, queue);
ep->dma_irqs++;
ep->dev->stats.irqs++;
HEX_DISPLAY(ep->dev->stats.irqs);
/* ack/clear */
tmp = DCSR(ep->dma);
DCSR(ep->dma) = tmp;
if ((tmp & DCSR_STOPSTATE) == 0
|| (DDADR(ep->dma) & DDADR_STOP) != 0) {
DBG(DBG_VERBOSE, "%s, dcsr %08x ddadr %08x\n",
ep->ep.name, DCSR(ep->dma), DDADR(ep->dma));
goto done;
}
DCSR(ep->dma) = 0; /* clear DCSR_STOPSTATE */
/* update transfer status */
completed = tmp & DCSR_BUSERR;
if (ep->bEndpointAddress & USB_DIR_IN)
tmp = DSADR(ep->dma);
else
tmp = DTADR(ep->dma);
req->req.actual = tmp - req->req.dma;
/* FIXME seems we sometimes see partial transfers... */
if (unlikely(completed != 0))
req->req.status = -EIO;
else if (req->req.actual) {
/* these registers have zeroes in low bits; they miscount
* some (end-of-transfer) short packets: tx 14 as tx 12
*/
if (ep->dma_fixup)
req->req.actual = min(req->req.actual + 3,
req->req.length);
tmp = (req->req.length - req->req.actual);
completed = (tmp == 0);
if (completed && (ep->bEndpointAddress & USB_DIR_IN)) {
/* maybe validate final short packet ... */
if ((req->req.actual % ep->ep.maxpacket) != 0)
*ep->reg_udccs = UDCCS_BI_TSP/*|UDCCS_BI_TPC*/;
/* ... or zlp, using pio fallback */
else if (ep->bmAttributes == USB_ENDPOINT_XFER_BULK
&& req->req.zero) {
DMSG("%s zlp terminate ...\n", ep->ep.name);
completed = 0;
}
}
}
if (likely(completed)) {
done(ep, req, 0);
/* maybe re-activate after completion */
if (ep->stopped || list_empty(&ep->queue))
goto done;
req = list_entry(ep->queue.next, struct pxa2xx_request, queue);
}
kick_dma(ep, req);
done:
local_irq_enable();
}
#endif
/*-------------------------------------------------------------------------*/
static int
pxa2xx_ep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags)
{
struct pxa2xx_request *req;
struct pxa2xx_ep *ep;
struct pxa2xx_udc *dev;
unsigned long flags;
req = container_of(_req, struct pxa2xx_request, req);
if (unlikely (!_req || !_req->complete || !_req->buf
|| !list_empty(&req->queue))) {
DMSG("%s, bad params\n", __FUNCTION__);
return -EINVAL;
}
ep = container_of(_ep, struct pxa2xx_ep, ep);
if (unlikely (!_ep || (!ep->desc && ep->ep.name != ep0name))) {
DMSG("%s, bad ep\n", __FUNCTION__);
return -EINVAL;
}
dev = ep->dev;
if (unlikely (!dev->driver
|| dev->gadget.speed == USB_SPEED_UNKNOWN)) {
DMSG("%s, bogus device state\n", __FUNCTION__);
return -ESHUTDOWN;
}
/* iso is always one packet per request, that's the only way
* we can report per-packet status. that also helps with dma.
*/
if (unlikely (ep->bmAttributes == USB_ENDPOINT_XFER_ISOC
&& req->req.length > le16_to_cpu
(ep->desc->wMaxPacketSize)))
return -EMSGSIZE;
#ifdef USE_DMA
// FIXME caller may already have done the dma mapping
if (ep->dma >= 0) {
_req->dma = dma_map_single(dev->dev,
_req->buf, _req->length,
((ep->bEndpointAddress & USB_DIR_IN) != 0)
? DMA_TO_DEVICE
: DMA_FROM_DEVICE);
}
#endif
DBG(DBG_NOISY, "%s queue req %p, len %d buf %p\n",
_ep->name, _req, _req->length, _req->buf);
local_irq_save(flags);
_req->status = -EINPROGRESS;
_req->actual = 0;
/* kickstart this i/o queue? */
if (list_empty(&ep->queue) && !ep->stopped) {
if (ep->desc == 0 /* ep0 */) {
unsigned length = _req->length;
switch (dev->ep0state) {
case EP0_IN_DATA_PHASE:
dev->stats.write.ops++;
if (write_ep0_fifo(ep, req))
req = NULL;
break;
case EP0_OUT_DATA_PHASE:
dev->stats.read.ops++;
/* messy ... */
if (dev->req_config) {
DBG(DBG_VERBOSE, "ep0 config ack%s\n",
dev->has_cfr ? "" : " raced");
if (dev->has_cfr)
UDCCFR = UDCCFR_AREN|UDCCFR_ACM
|UDCCFR_MB1;
done(ep, req, 0);
dev->ep0state = EP0_END_XFER;
local_irq_restore (flags);
return 0;
}
if (dev->req_pending)
ep0start(dev, UDCCS0_IPR, "OUT");
if (length == 0 || ((UDCCS0 & UDCCS0_RNE) != 0
&& read_ep0_fifo(ep, req))) {
ep0_idle(dev);
done(ep, req, 0);
req = NULL;
}
break;
default:
DMSG("ep0 i/o, odd state %d\n", dev->ep0state);
local_irq_restore (flags);
return -EL2HLT;
}
#ifdef USE_DMA
/* either start dma or prime pio pump */
} else if (ep->dma >= 0) {
kick_dma(ep, req);
#endif
/* can the FIFO can satisfy the request immediately? */
} else if ((ep->bEndpointAddress & USB_DIR_IN) != 0) {
if ((*ep->reg_udccs & UDCCS_BI_TFS) != 0
&& write_fifo(ep, req))
req = NULL;
} else if ((*ep->reg_udccs & UDCCS_BO_RFS) != 0
&& read_fifo(ep, req)) {
req = NULL;
}
if (likely (req && ep->desc) && ep->dma < 0)
pio_irq_enable(ep->bEndpointAddress);
}
/* pio or dma irq handler advances the queue. */
if (likely (req != 0))
list_add_tail(&req->queue, &ep->queue);
local_irq_restore(flags);
return 0;
}
/*
* nuke - dequeue ALL requests
*/
static void nuke(struct pxa2xx_ep *ep, int status)
{
struct pxa2xx_request *req;
/* called with irqs blocked */
#ifdef USE_DMA
if (ep->dma >= 0 && !ep->stopped)
cancel_dma(ep);
#endif
while (!list_empty(&ep->queue)) {
req = list_entry(ep->queue.next,
struct pxa2xx_request,
queue);
done(ep, req, status);
}
if (ep->desc)
pio_irq_disable (ep->bEndpointAddress);
}
/* dequeue JUST ONE request */
static int pxa2xx_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
{
struct pxa2xx_ep *ep;
struct pxa2xx_request *req;
unsigned long flags;
ep = container_of(_ep, struct pxa2xx_ep, ep);
if (!_ep || ep->ep.name == ep0name)
return -EINVAL;
local_irq_save(flags);
/* make sure it's actually queued on this endpoint */
list_for_each_entry (req, &ep->queue, queue) {
if (&req->req == _req)
break;
}
if (&req->req != _req) {
local_irq_restore(flags);
return -EINVAL;
}
#ifdef USE_DMA
if (ep->dma >= 0 && ep->queue.next == &req->queue && !ep->stopped) {
cancel_dma(ep);
done(ep, req, -ECONNRESET);
/* restart i/o */
if (!list_empty(&ep->queue)) {
req = list_entry(ep->queue.next,
struct pxa2xx_request, queue);
kick_dma(ep, req);
}
} else
#endif
done(ep, req, -ECONNRESET);
local_irq_restore(flags);
return 0;
}
/*-------------------------------------------------------------------------*/
static int pxa2xx_ep_set_halt(struct usb_ep *_ep, int value)
{
struct pxa2xx_ep *ep;
unsigned long flags;
ep = container_of(_ep, struct pxa2xx_ep, ep);
if (unlikely (!_ep
|| (!ep->desc && ep->ep.name != ep0name))
|| ep->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
DMSG("%s, bad ep\n", __FUNCTION__);
return -EINVAL;
}
if (value == 0) {
/* this path (reset toggle+halt) is needed to implement
* SET_INTERFACE on normal hardware. but it can't be
* done from software on the PXA UDC, and the hardware
* forgets to do it as part of SET_INTERFACE automagic.
*/
DMSG("only host can clear %s halt\n", _ep->name);
return -EROFS;
}
local_irq_save(flags);
if ((ep->bEndpointAddress & USB_DIR_IN) != 0
&& ((*ep->reg_udccs & UDCCS_BI_TFS) == 0
|| !list_empty(&ep->queue))) {
local_irq_restore(flags);
return -EAGAIN;
}
/* FST bit is the same for control, bulk in, bulk out, interrupt in */
*ep->reg_udccs = UDCCS_BI_FST|UDCCS_BI_FTF;
/* ep0 needs special care */
if (!ep->desc) {
start_watchdog(ep->dev);
ep->dev->req_pending = 0;
ep->dev->ep0state = EP0_STALL;
/* and bulk/intr endpoints like dropping stalls too */
} else {
unsigned i;
for (i = 0; i < 1000; i += 20) {
if (*ep->reg_udccs & UDCCS_BI_SST)
break;
udelay(20);
}
}
local_irq_restore(flags);
DBG(DBG_VERBOSE, "%s halt\n", _ep->name);
return 0;
}
static int pxa2xx_ep_fifo_status(struct usb_ep *_ep)
{
struct pxa2xx_ep *ep;
ep = container_of(_ep, struct pxa2xx_ep, ep);
if (!_ep) {
DMSG("%s, bad ep\n", __FUNCTION__);
return -ENODEV;
}
/* pxa can't report unclaimed bytes from IN fifos */
if ((ep->bEndpointAddress & USB_DIR_IN) != 0)
return -EOPNOTSUPP;
if (ep->dev->gadget.speed == USB_SPEED_UNKNOWN
|| (*ep->reg_udccs & UDCCS_BO_RFS) == 0)
return 0;
else
return (*ep->reg_ubcr & 0xfff) + 1;
}
static void pxa2xx_ep_fifo_flush(struct usb_ep *_ep)
{
struct pxa2xx_ep *ep;
ep = container_of(_ep, struct pxa2xx_ep, ep);
if (!_ep || ep->ep.name == ep0name || !list_empty(&ep->queue)) {
DMSG("%s, bad ep\n", __FUNCTION__);
return;
}
/* toggle and halt bits stay unchanged */
/* for OUT, just read and discard the FIFO contents. */
if ((ep->bEndpointAddress & USB_DIR_IN) == 0) {
while (((*ep->reg_udccs) & UDCCS_BO_RNE) != 0)
(void) *ep->reg_uddr;
return;
}
/* most IN status is the same, but ISO can't stall */
*ep->reg_udccs = UDCCS_BI_TPC|UDCCS_BI_FTF|UDCCS_BI_TUR
| (ep->bmAttributes == USB_ENDPOINT_XFER_ISOC)
? 0 : UDCCS_BI_SST;
}
static struct usb_ep_ops pxa2xx_ep_ops = {
.enable = pxa2xx_ep_enable,
.disable = pxa2xx_ep_disable,
.alloc_request = pxa2xx_ep_alloc_request,
.free_request = pxa2xx_ep_free_request,
.alloc_buffer = pxa2xx_ep_alloc_buffer,
.free_buffer = pxa2xx_ep_free_buffer,
.queue = pxa2xx_ep_queue,
.dequeue = pxa2xx_ep_dequeue,
.set_halt = pxa2xx_ep_set_halt,
.fifo_status = pxa2xx_ep_fifo_status,
.fifo_flush = pxa2xx_ep_fifo_flush,
};
/* ---------------------------------------------------------------------------
* device-scoped parts of the api to the usb controller hardware
* ---------------------------------------------------------------------------
*/
static int pxa2xx_udc_get_frame(struct usb_gadget *_gadget)
{
return ((UFNRH & 0x07) << 8) | (UFNRL & 0xff);
}
static int pxa2xx_udc_wakeup(struct usb_gadget *_gadget)
{
/* host may not have enabled remote wakeup */
if ((UDCCS0 & UDCCS0_DRWF) == 0)
return -EHOSTUNREACH;
udc_set_mask_UDCCR(UDCCR_RSM);
return 0;
}
static void stop_activity(struct pxa2xx_udc *, struct usb_gadget_driver *);
static void udc_enable (struct pxa2xx_udc *);
static void udc_disable(struct pxa2xx_udc *);
/* We disable the UDC -- and its 48 MHz clock -- whenever it's not
* in active use.
*/
static int pullup(struct pxa2xx_udc *udc, int is_active)
{
is_active = is_active && udc->vbus && udc->pullup;
DMSG("%s\n", is_active ? "active" : "inactive");
if (is_active)
udc_enable(udc);
else {
if (udc->gadget.speed != USB_SPEED_UNKNOWN) {
DMSG("disconnect %s\n", udc->driver
? udc->driver->driver.name
: "(no driver)");
stop_activity(udc, udc->driver);
}
udc_disable(udc);
}
return 0;
}
/* VBUS reporting logically comes from a transceiver */
static int pxa2xx_udc_vbus_session(struct usb_gadget *_gadget, int is_active)
{
struct pxa2xx_udc *udc;
udc = container_of(_gadget, struct pxa2xx_udc, gadget);
udc->vbus = is_active = (is_active != 0);
DMSG("vbus %s\n", is_active ? "supplied" : "inactive");
pullup(udc, is_active);
return 0;
}
/* drivers may have software control over D+ pullup */
static int pxa2xx_udc_pullup(struct usb_gadget *_gadget, int is_active)
{
struct pxa2xx_udc *udc;
udc = container_of(_gadget, struct pxa2xx_udc, gadget);
/* not all boards support pullup control */
if (!udc->mach->udc_command)
return -EOPNOTSUPP;
is_active = (is_active != 0);
udc->pullup = is_active;
pullup(udc, is_active);
return 0;
}
static const struct usb_gadget_ops pxa2xx_udc_ops = {
.get_frame = pxa2xx_udc_get_frame,
.wakeup = pxa2xx_udc_wakeup,
.vbus_session = pxa2xx_udc_vbus_session,
.pullup = pxa2xx_udc_pullup,
// .vbus_draw ... boards may consume current from VBUS, up to
// 100-500mA based on config. the 500uA suspend ceiling means
// that exclusively vbus-powered PXA designs violate USB specs.
};
/*-------------------------------------------------------------------------*/
#ifdef CONFIG_USB_GADGET_DEBUG_FILES
static const char proc_node_name [] = "driver/udc";
static int
udc_proc_read(char *page, char **start, off_t off, int count,
int *eof, void *_dev)
{
char *buf = page;
struct pxa2xx_udc *dev = _dev;
char *next = buf;
unsigned size = count;
unsigned long flags;
int i, t;
u32 tmp;
if (off != 0)
return 0;
local_irq_save(flags);
/* basic device status */
t = scnprintf(next, size, DRIVER_DESC "\n"
"%s version: %s\nGadget driver: %s\nHost %s\n\n",
driver_name, DRIVER_VERSION SIZE_STR DMASTR,
dev->driver ? dev->driver->driver.name : "(none)",
is_vbus_present() ? "full speed" : "disconnected");
size -= t;
next += t;
/* registers for device and ep0 */
t = scnprintf(next, size,
"uicr %02X.%02X, usir %02X.%02x, ufnr %02X.%02X\n",
UICR1, UICR0, USIR1, USIR0, UFNRH, UFNRL);
size -= t;
next += t;
tmp = UDCCR;
t = scnprintf(next, size,
"udccr %02X =%s%s%s%s%s%s%s%s\n", tmp,
(tmp & UDCCR_REM) ? " rem" : "",
(tmp & UDCCR_RSTIR) ? " rstir" : "",
(tmp & UDCCR_SRM) ? " srm" : "",
(tmp & UDCCR_SUSIR) ? " susir" : "",
(tmp & UDCCR_RESIR) ? " resir" : "",
(tmp & UDCCR_RSM) ? " rsm" : "",
(tmp & UDCCR_UDA) ? " uda" : "",
(tmp & UDCCR_UDE) ? " ude" : "");
size -= t;
next += t;
tmp = UDCCS0;
t = scnprintf(next, size,
"udccs0 %02X =%s%s%s%s%s%s%s%s\n", tmp,
(tmp & UDCCS0_SA) ? " sa" : "",
(tmp & UDCCS0_RNE) ? " rne" : "",
(tmp & UDCCS0_FST) ? " fst" : "",
(tmp & UDCCS0_SST) ? " sst" : "",
(tmp & UDCCS0_DRWF) ? " dwrf" : "",
(tmp & UDCCS0_FTF) ? " ftf" : "",
(tmp & UDCCS0_IPR) ? " ipr" : "",
(tmp & UDCCS0_OPR) ? " opr" : "");
size -= t;
next += t;
if (dev->has_cfr) {
tmp = UDCCFR;
t = scnprintf(next, size,
"udccfr %02X =%s%s\n", tmp,
(tmp & UDCCFR_AREN) ? " aren" : "",
(tmp & UDCCFR_ACM) ? " acm" : "");
size -= t;
next += t;
}
if (!is_vbus_present() || !dev->driver)
goto done;
t = scnprintf(next, size, "ep0 IN %lu/%lu, OUT %lu/%lu\nirqs %lu\n\n",
dev->stats.write.bytes, dev->stats.write.ops,
dev->stats.read.bytes, dev->stats.read.ops,
dev->stats.irqs);
size -= t;
next += t;
/* dump endpoint queues */
for (i = 0; i < PXA_UDC_NUM_ENDPOINTS; i++) {
struct pxa2xx_ep *ep = &dev->ep [i];
struct pxa2xx_request *req;
int t;
if (i != 0) {
const struct usb_endpoint_descriptor *d;
d = ep->desc;
if (!d)
continue;
tmp = *dev->ep [i].reg_udccs;
t = scnprintf(next, size,
"%s max %d %s udccs %02x irqs %lu/%lu\n",
ep->ep.name, le16_to_cpu (d->wMaxPacketSize),
(ep->dma >= 0) ? "dma" : "pio", tmp,
ep->pio_irqs, ep->dma_irqs);
/* TODO translate all five groups of udccs bits! */
} else /* ep0 should only have one transfer queued */
t = scnprintf(next, size, "ep0 max 16 pio irqs %lu\n",
ep->pio_irqs);
if (t <= 0 || t > size)
goto done;
size -= t;
next += t;
if (list_empty(&ep->queue)) {
t = scnprintf(next, size, "\t(nothing queued)\n");
if (t <= 0 || t > size)
goto done;
size -= t;
next += t;
continue;
}
list_for_each_entry(req, &ep->queue, queue) {
#ifdef USE_DMA
if (ep->dma >= 0 && req->queue.prev == &ep->queue)
t = scnprintf(next, size,
"\treq %p len %d/%d "
"buf %p (dma%d dcmd %08x)\n",
&req->req, req->req.actual,
req->req.length, req->req.buf,
ep->dma, DCMD(ep->dma)
// low 13 bits == bytes-to-go
);
else
#endif
t = scnprintf(next, size,
"\treq %p len %d/%d buf %p\n",
&req->req, req->req.actual,
req->req.length, req->req.buf);
if (t <= 0 || t > size)
goto done;
size -= t;
next += t;
}
}
done:
local_irq_restore(flags);
*eof = 1;
return count - size;
}
#define create_proc_files() \
create_proc_read_entry(proc_node_name, 0, NULL, udc_proc_read, dev)
#define remove_proc_files() \
remove_proc_entry(proc_node_name, NULL)
#else /* !CONFIG_USB_GADGET_DEBUG_FILES */
#define create_proc_files() do {} while (0)
#define remove_proc_files() do {} while (0)
#endif /* CONFIG_USB_GADGET_DEBUG_FILES */
/*-------------------------------------------------------------------------*/
/*
* udc_disable - disable USB device controller
*/
static void udc_disable(struct pxa2xx_udc *dev)
{
/* block all irqs */
udc_set_mask_UDCCR(UDCCR_SRM|UDCCR_REM);
UICR0 = UICR1 = 0xff;
UFNRH = UFNRH_SIM;
/* if hardware supports it, disconnect from usb */
pullup_off();
udc_clear_mask_UDCCR(UDCCR_UDE);
#ifdef CONFIG_ARCH_PXA
/* Disable clock for USB device */
pxa_set_cken(CKEN_USB, 0);
#endif
ep0_idle (dev);
dev->gadget.speed = USB_SPEED_UNKNOWN;
LED_CONNECTED_OFF;
}
/*
* udc_reinit - initialize software state
*/
static void udc_reinit(struct pxa2xx_udc *dev)
{
u32 i;
/* device/ep0 records init */
INIT_LIST_HEAD (&dev->gadget.ep_list);
INIT_LIST_HEAD (&dev->gadget.ep0->ep_list);
dev->ep0state = EP0_IDLE;
/* basic endpoint records init */
for (i = 0; i < PXA_UDC_NUM_ENDPOINTS; i++) {
struct pxa2xx_ep *ep = &dev->ep[i];
if (i != 0)
list_add_tail (&ep->ep.ep_list, &dev->gadget.ep_list);
ep->desc = NULL;
ep->stopped = 0;
INIT_LIST_HEAD (&ep->queue);
ep->pio_irqs = ep->dma_irqs = 0;
}
/* the rest was statically initialized, and is read-only */
}
/* until it's enabled, this UDC should be completely invisible
* to any USB host.
*/
static void udc_enable (struct pxa2xx_udc *dev)
{
udc_clear_mask_UDCCR(UDCCR_UDE);
#ifdef CONFIG_ARCH_PXA
/* Enable clock for USB device */
pxa_set_cken(CKEN_USB, 1);
udelay(5);
#endif
/* try to clear these bits before we enable the udc */
udc_ack_int_UDCCR(UDCCR_SUSIR|/*UDCCR_RSTIR|*/UDCCR_RESIR);
ep0_idle(dev);
dev->gadget.speed = USB_SPEED_UNKNOWN;
dev->stats.irqs = 0;
/*
* sequence taken from chapter 12.5.10, PXA250 AppProcDevManual:
* - enable UDC
* - if RESET is already in progress, ack interrupt
* - unmask reset interrupt
*/
udc_set_mask_UDCCR(UDCCR_UDE);
if (!(UDCCR & UDCCR_UDA))
udc_ack_int_UDCCR(UDCCR_RSTIR);
if (dev->has_cfr /* UDC_RES2 is defined */) {
/* pxa255 (a0+) can avoid a set_config race that could
* prevent gadget drivers from configuring correctly
*/
UDCCFR = UDCCFR_ACM | UDCCFR_MB1;
} else {
/* "USB test mode" for pxa250 errata 40-42 (stepping a0, a1)
* which could result in missing packets and interrupts.
* supposedly one bit per endpoint, controlling whether it
* double buffers or not; ACM/AREN bits fit into the holes.
* zero bits (like USIR0_IRx) disable double buffering.
*/
UDC_RES1 = 0x00;
UDC_RES2 = 0x00;
}
#ifdef DISABLE_TEST_MODE
/* "test mode" seems to have become the default in later chip
* revs, preventing double buffering (and invalidating docs).
* this EXPERIMENT enables it for bulk endpoints by tweaking
* undefined/reserved register bits (that other drivers clear).
* Belcarra code comments noted this usage.
*/
if (fifo_mode & 1) { /* IN endpoints */
UDC_RES1 |= USIR0_IR1|USIR0_IR6;
UDC_RES2 |= USIR1_IR11;
}
if (fifo_mode & 2) { /* OUT endpoints */
UDC_RES1 |= USIR0_IR2|USIR0_IR7;
UDC_RES2 |= USIR1_IR12;
}
#endif
/* enable suspend/resume and reset irqs */
udc_clear_mask_UDCCR(UDCCR_SRM | UDCCR_REM);
/* enable ep0 irqs */
UICR0 &= ~UICR0_IM0;
/* if hardware supports it, pullup D+ and wait for reset */
pullup_on();
}
/* when a driver is successfully registered, it will receive
* control requests including set_configuration(), which enables
* non-control requests. then usb traffic follows until a
* disconnect is reported. then a host may connect again, or
* the driver might get unbound.
*/
int usb_gadget_register_driver(struct usb_gadget_driver *driver)
{
struct pxa2xx_udc *dev = the_controller;
int retval;
if (!driver
|| driver->speed < USB_SPEED_FULL
|| !driver->bind
|| !driver->disconnect
|| !driver->setup)
return -EINVAL;
if (!dev)
return -ENODEV;
if (dev->driver)
return -EBUSY;
/* first hook up the driver ... */
dev->driver = driver;
dev->gadget.dev.driver = &driver->driver;
dev->pullup = 1;
retval = device_add (&dev->gadget.dev);
if (retval) {
fail:
dev->driver = NULL;
dev->gadget.dev.driver = NULL;
return retval;
}
retval = driver->bind(&dev->gadget);
if (retval) {
DMSG("bind to driver %s --> error %d\n",
driver->driver.name, retval);
device_del (&dev->gadget.dev);
goto fail;
}
/* ... then enable host detection and ep0; and we're ready
* for set_configuration as well as eventual disconnect.
*/
DMSG("registered gadget driver '%s'\n", driver->driver.name);
pullup(dev, 1);
dump_state(dev);
return 0;
}
EXPORT_SYMBOL(usb_gadget_register_driver);
static void
stop_activity(struct pxa2xx_udc *dev, struct usb_gadget_driver *driver)
{
int i;
/* don't disconnect drivers more than once */
if (dev->gadget.speed == USB_SPEED_UNKNOWN)
driver = NULL;
dev->gadget.speed = USB_SPEED_UNKNOWN;
/* prevent new request submissions, kill any outstanding requests */
for (i = 0; i < PXA_UDC_NUM_ENDPOINTS; i++) {
struct pxa2xx_ep *ep = &dev->ep[i];
ep->stopped = 1;
nuke(ep, -ESHUTDOWN);
}
del_timer_sync(&dev->timer);
/* report disconnect; the driver is already quiesced */
LED_CONNECTED_OFF;
if (driver)
driver->disconnect(&dev->gadget);
/* re-init driver-visible data structures */
udc_reinit(dev);
}
int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
{
struct pxa2xx_udc *dev = the_controller;
if (!dev)
return -ENODEV;
if (!driver || driver != dev->driver || !driver->unbind)
return -EINVAL;
local_irq_disable();
pullup(dev, 0);
stop_activity(dev, driver);
local_irq_enable();
driver->unbind(&dev->gadget);
dev->driver = NULL;
device_del (&dev->gadget.dev);
DMSG("unregistered gadget driver '%s'\n", driver->driver.name);
dump_state(dev);
return 0;
}
EXPORT_SYMBOL(usb_gadget_unregister_driver);
/*-------------------------------------------------------------------------*/
#ifdef CONFIG_ARCH_LUBBOCK
/* Lubbock has separate connect and disconnect irqs. More typical designs
* use one GPIO as the VBUS IRQ, and another to control the D+ pullup.
*/
static irqreturn_t
lubbock_vbus_irq(int irq, void *_dev)
{
struct pxa2xx_udc *dev = _dev;
int vbus;
dev->stats.irqs++;
HEX_DISPLAY(dev->stats.irqs);
switch (irq) {
case LUBBOCK_USB_IRQ:
LED_CONNECTED_ON;
vbus = 1;
disable_irq(LUBBOCK_USB_IRQ);
enable_irq(LUBBOCK_USB_DISC_IRQ);
break;
case LUBBOCK_USB_DISC_IRQ:
LED_CONNECTED_OFF;
vbus = 0;
disable_irq(LUBBOCK_USB_DISC_IRQ);
enable_irq(LUBBOCK_USB_IRQ);
break;
default:
return IRQ_NONE;
}
pxa2xx_udc_vbus_session(&dev->gadget, vbus);
return IRQ_HANDLED;
}
#endif
static irqreturn_t udc_vbus_irq(int irq, void *_dev)
{
struct pxa2xx_udc *dev = _dev;
int vbus = udc_gpio_get(dev->mach->gpio_vbus);
pxa2xx_udc_vbus_session(&dev->gadget, vbus);
return IRQ_HANDLED;
}
/*-------------------------------------------------------------------------*/
static inline void clear_ep_state (struct pxa2xx_udc *dev)
{
unsigned i;
/* hardware SET_{CONFIGURATION,INTERFACE} automagic resets endpoint
* fifos, and pending transactions mustn't be continued in any case.
*/
for (i = 1; i < PXA_UDC_NUM_ENDPOINTS; i++)
nuke(&dev->ep[i], -ECONNABORTED);
}
static void udc_watchdog(unsigned long _dev)
{
struct pxa2xx_udc *dev = (void *)_dev;
local_irq_disable();
if (dev->ep0state == EP0_STALL
&& (UDCCS0 & UDCCS0_FST) == 0
&& (UDCCS0 & UDCCS0_SST) == 0) {
UDCCS0 = UDCCS0_FST|UDCCS0_FTF;
DBG(DBG_VERBOSE, "ep0 re-stall\n");
start_watchdog(dev);
}
local_irq_enable();
}
static void handle_ep0 (struct pxa2xx_udc *dev)
{
u32 udccs0 = UDCCS0;
struct pxa2xx_ep *ep = &dev->ep [0];
struct pxa2xx_request *req;
union {
struct usb_ctrlrequest r;
u8 raw [8];
u32 word [2];
} u;
if (list_empty(&ep->queue))
req = NULL;
else
req = list_entry(ep->queue.next, struct pxa2xx_request, queue);
/* clear stall status */
if (udccs0 & UDCCS0_SST) {
nuke(ep, -EPIPE);
UDCCS0 = UDCCS0_SST;
del_timer(&dev->timer);
ep0_idle(dev);
}
/* previous request unfinished? non-error iff back-to-back ... */
if ((udccs0 & UDCCS0_SA) != 0 && dev->ep0state != EP0_IDLE) {
nuke(ep, 0);
del_timer(&dev->timer);
ep0_idle(dev);
}
switch (dev->ep0state) {
case EP0_IDLE:
/* late-breaking status? */
udccs0 = UDCCS0;
/* start control request? */
if (likely((udccs0 & (UDCCS0_OPR|UDCCS0_SA|UDCCS0_RNE))
== (UDCCS0_OPR|UDCCS0_SA|UDCCS0_RNE))) {
int i;
nuke (ep, -EPROTO);
/* read SETUP packet */
for (i = 0; i < 8; i++) {
if (unlikely(!(UDCCS0 & UDCCS0_RNE))) {
bad_setup:
DMSG("SETUP %d!\n", i);
goto stall;
}
u.raw [i] = (u8) UDDR0;
}
if (unlikely((UDCCS0 & UDCCS0_RNE) != 0))
goto bad_setup;
got_setup:
DBG(DBG_VERBOSE, "SETUP %02x.%02x v%04x i%04x l%04x\n",
u.r.bRequestType, u.r.bRequest,
le16_to_cpu(u.r.wValue),
le16_to_cpu(u.r.wIndex),
le16_to_cpu(u.r.wLength));
/* cope with automagic for some standard requests. */
dev->req_std = (u.r.bRequestType & USB_TYPE_MASK)
== USB_TYPE_STANDARD;
dev->req_config = 0;
dev->req_pending = 1;
switch (u.r.bRequest) {
/* hardware restricts gadget drivers here! */
case USB_REQ_SET_CONFIGURATION:
if (u.r.bRequestType == USB_RECIP_DEVICE) {
/* reflect hardware's automagic
* up to the gadget driver.
*/
config_change:
dev->req_config = 1;
clear_ep_state(dev);
/* if !has_cfr, there's no synch
* else use AREN (later) not SA|OPR
* USIR0_IR0 acts edge sensitive
*/
}
break;
/* ... and here, even more ... */
case USB_REQ_SET_INTERFACE:
if (u.r.bRequestType == USB_RECIP_INTERFACE) {
/* udc hardware is broken by design:
* - altsetting may only be zero;
* - hw resets all interfaces' eps;
* - ep reset doesn't include halt(?).
*/
DMSG("broken set_interface (%d/%d)\n",
le16_to_cpu(u.r.wIndex),
le16_to_cpu(u.r.wValue));
goto config_change;
}
break;
/* hardware was supposed to hide this */
case USB_REQ_SET_ADDRESS:
if (u.r.bRequestType == USB_RECIP_DEVICE) {
ep0start(dev, 0, "address");
return;
}
break;
}
if (u.r.bRequestType & USB_DIR_IN)
dev->ep0state = EP0_IN_DATA_PHASE;
else
dev->ep0state = EP0_OUT_DATA_PHASE;
i = dev->driver->setup(&dev->gadget, &u.r);
if (i < 0) {
/* hardware automagic preventing STALL... */
if (dev->req_config) {
/* hardware sometimes neglects to tell
* tell us about config change events,
* so later ones may fail...
*/
WARN("config change %02x fail %d?\n",
u.r.bRequest, i);
return;
/* TODO experiment: if has_cfr,
* hardware didn't ACK; maybe we
* could actually STALL!
*/
}
DBG(DBG_VERBOSE, "protocol STALL, "
"%02x err %d\n", UDCCS0, i);
stall:
/* the watchdog timer helps deal with cases
* where udc seems to clear FST wrongly, and
* then NAKs instead of STALLing.
*/
ep0start(dev, UDCCS0_FST|UDCCS0_FTF, "stall");
start_watchdog(dev);
dev->ep0state = EP0_STALL;
/* deferred i/o == no response yet */
} else if (dev->req_pending) {
if (likely(dev->ep0state == EP0_IN_DATA_PHASE
|| dev->req_std || u.r.wLength))
ep0start(dev, 0, "defer");
else
ep0start(dev, UDCCS0_IPR, "defer/IPR");
}
/* expect at least one data or status stage irq */
return;
} else if (likely((udccs0 & (UDCCS0_OPR|UDCCS0_SA))
== (UDCCS0_OPR|UDCCS0_SA))) {
unsigned i;
/* pxa210/250 erratum 131 for B0/B1 says RNE lies.
* still observed on a pxa255 a0.
*/
DBG(DBG_VERBOSE, "e131\n");
nuke(ep, -EPROTO);
/* read SETUP data, but don't trust it too much */
for (i = 0; i < 8; i++)
u.raw [i] = (u8) UDDR0;
if ((u.r.bRequestType & USB_RECIP_MASK)
> USB_RECIP_OTHER)
goto stall;
if (u.word [0] == 0 && u.word [1] == 0)
goto stall;
goto got_setup;
} else {
/* some random early IRQ:
* - we acked FST
* - IPR cleared
* - OPR got set, without SA (likely status stage)
*/
UDCCS0 = udccs0 & (UDCCS0_SA|UDCCS0_OPR);
}
break;
case EP0_IN_DATA_PHASE: /* GET_DESCRIPTOR etc */
if (udccs0 & UDCCS0_OPR) {
UDCCS0 = UDCCS0_OPR|UDCCS0_FTF;
DBG(DBG_VERBOSE, "ep0in premature status\n");
if (req)
done(ep, req, 0);
ep0_idle(dev);
} else /* irq was IPR clearing */ {
if (req) {
/* this IN packet might finish the request */
(void) write_ep0_fifo(ep, req);
} /* else IN token before response was written */
}
break;
case EP0_OUT_DATA_PHASE: /* SET_DESCRIPTOR etc */
if (udccs0 & UDCCS0_OPR) {
if (req) {
/* this OUT packet might finish the request */
if (read_ep0_fifo(ep, req))
done(ep, req, 0);
/* else more OUT packets expected */
} /* else OUT token before read was issued */
} else /* irq was IPR clearing */ {
DBG(DBG_VERBOSE, "ep0out premature status\n");
if (req)
done(ep, req, 0);
ep0_idle(dev);
}
break;
case EP0_END_XFER:
if (req)
done(ep, req, 0);
/* ack control-IN status (maybe in-zlp was skipped)
* also appears after some config change events.
*/
if (udccs0 & UDCCS0_OPR)
UDCCS0 = UDCCS0_OPR;
ep0_idle(dev);
break;
case EP0_STALL:
UDCCS0 = UDCCS0_FST;
break;
}
USIR0 = USIR0_IR0;
}
static void handle_ep(struct pxa2xx_ep *ep)
{
struct pxa2xx_request *req;
int is_in = ep->bEndpointAddress & USB_DIR_IN;
int completed;
u32 udccs, tmp;
do {
completed = 0;
if (likely (!list_empty(&ep->queue)))
req = list_entry(ep->queue.next,
struct pxa2xx_request, queue);
else
req = NULL;
// TODO check FST handling
udccs = *ep->reg_udccs;
if (unlikely(is_in)) { /* irq from TPC, SST, or (ISO) TUR */
tmp = UDCCS_BI_TUR;
if (likely(ep->bmAttributes == USB_ENDPOINT_XFER_BULK))
tmp |= UDCCS_BI_SST;
tmp &= udccs;
if (likely (tmp))
*ep->reg_udccs = tmp;
if (req && likely ((udccs & UDCCS_BI_TFS) != 0))
completed = write_fifo(ep, req);
} else { /* irq from RPC (or for ISO, ROF) */
if (likely(ep->bmAttributes == USB_ENDPOINT_XFER_BULK))
tmp = UDCCS_BO_SST | UDCCS_BO_DME;
else
tmp = UDCCS_IO_ROF | UDCCS_IO_DME;
tmp &= udccs;
if (likely(tmp))
*ep->reg_udccs = tmp;
/* fifos can hold packets, ready for reading... */
if (likely(req)) {
#ifdef USE_OUT_DMA
// TODO didn't yet debug out-dma. this approach assumes
// the worst about short packets and RPC; it might be better.
if (likely(ep->dma >= 0)) {
if (!(udccs & UDCCS_BO_RSP)) {
*ep->reg_udccs = UDCCS_BO_RPC;
ep->dma_irqs++;
return;
}
}
#endif
completed = read_fifo(ep, req);
} else
pio_irq_disable (ep->bEndpointAddress);
}
ep->pio_irqs++;
} while (completed);
}
/*
* pxa2xx_udc_irq - interrupt handler
*
* avoid delays in ep0 processing. the control handshaking isn't always
* under software control (pxa250c0 and the pxa255 are better), and delays
* could cause usb protocol errors.
*/
static irqreturn_t
pxa2xx_udc_irq(int irq, void *_dev)
{
struct pxa2xx_udc *dev = _dev;
int handled;
dev->stats.irqs++;
HEX_DISPLAY(dev->stats.irqs);
do {
u32 udccr = UDCCR;
handled = 0;
/* SUSpend Interrupt Request */
if (unlikely(udccr & UDCCR_SUSIR)) {
udc_ack_int_UDCCR(UDCCR_SUSIR);
handled = 1;
DBG(DBG_VERBOSE, "USB suspend%s\n", is_vbus_present()
? "" : "+disconnect");
if (!is_vbus_present())
stop_activity(dev, dev->driver);
else if (dev->gadget.speed != USB_SPEED_UNKNOWN
&& dev->driver
&& dev->driver->suspend)
dev->driver->suspend(&dev->gadget);
ep0_idle (dev);
}
/* RESume Interrupt Request */
if (unlikely(udccr & UDCCR_RESIR)) {
udc_ack_int_UDCCR(UDCCR_RESIR);
handled = 1;
DBG(DBG_VERBOSE, "USB resume\n");
if (dev->gadget.speed != USB_SPEED_UNKNOWN
&& dev->driver
&& dev->driver->resume
&& is_vbus_present())
dev->driver->resume(&dev->gadget);
}
/* ReSeT Interrupt Request - USB reset */
if (unlikely(udccr & UDCCR_RSTIR)) {
udc_ack_int_UDCCR(UDCCR_RSTIR);
handled = 1;
if ((UDCCR & UDCCR_UDA) == 0) {
DBG(DBG_VERBOSE, "USB reset start\n");
/* reset driver and endpoints,
* in case that's not yet done
*/
stop_activity (dev, dev->driver);
} else {
DBG(DBG_VERBOSE, "USB reset end\n");
dev->gadget.speed = USB_SPEED_FULL;
LED_CONNECTED_ON;
memset(&dev->stats, 0, sizeof dev->stats);
/* driver and endpoints are still reset */
}
} else {
u32 usir0 = USIR0 & ~UICR0;
u32 usir1 = USIR1 & ~UICR1;
int i;
if (unlikely (!usir0 && !usir1))
continue;
DBG(DBG_VERY_NOISY, "irq %02x.%02x\n", usir1, usir0);
/* control traffic */
if (usir0 & USIR0_IR0) {
dev->ep[0].pio_irqs++;
handle_ep0(dev);
handled = 1;
}
/* endpoint data transfers */
for (i = 0; i < 8; i++) {
u32 tmp = 1 << i;
if (i && (usir0 & tmp)) {
handle_ep(&dev->ep[i]);
USIR0 |= tmp;
handled = 1;
}
if (usir1 & tmp) {
handle_ep(&dev->ep[i+8]);
USIR1 |= tmp;
handled = 1;
}
}
}
/* we could also ask for 1 msec SOF (SIR) interrupts */
} while (handled);
return IRQ_HANDLED;
}
/*-------------------------------------------------------------------------*/
static void nop_release (struct device *dev)
{
DMSG("%s %s\n", __FUNCTION__, dev->bus_id);
}
/* this uses load-time allocation and initialization (instead of
* doing it at run-time) to save code, eliminate fault paths, and
* be more obviously correct.
*/
static struct pxa2xx_udc memory = {
.gadget = {
.ops = &pxa2xx_udc_ops,
.ep0 = &memory.ep[0].ep,
.name = driver_name,
.dev = {
.bus_id = "gadget",
.release = nop_release,
},
},
/* control endpoint */
.ep[0] = {
.ep = {
.name = ep0name,
.ops = &pxa2xx_ep_ops,
.maxpacket = EP0_FIFO_SIZE,
},
.dev = &memory,
.reg_udccs = &UDCCS0,
.reg_uddr = &UDDR0,
},
/* first group of endpoints */
.ep[1] = {
.ep = {
.name = "ep1in-bulk",
.ops = &pxa2xx_ep_ops,
.maxpacket = BULK_FIFO_SIZE,
},
.dev = &memory,
.fifo_size = BULK_FIFO_SIZE,
.bEndpointAddress = USB_DIR_IN | 1,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.reg_udccs = &UDCCS1,
.reg_uddr = &UDDR1,
drcmr (25)
},
.ep[2] = {
.ep = {
.name = "ep2out-bulk",
.ops = &pxa2xx_ep_ops,
.maxpacket = BULK_FIFO_SIZE,
},
.dev = &memory,
.fifo_size = BULK_FIFO_SIZE,
.bEndpointAddress = 2,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.reg_udccs = &UDCCS2,
.reg_ubcr = &UBCR2,
.reg_uddr = &UDDR2,
drcmr (26)
},
#ifndef CONFIG_USB_PXA2XX_SMALL
.ep[3] = {
.ep = {
.name = "ep3in-iso",
.ops = &pxa2xx_ep_ops,
.maxpacket = ISO_FIFO_SIZE,
},
.dev = &memory,
.fifo_size = ISO_FIFO_SIZE,
.bEndpointAddress = USB_DIR_IN | 3,
.bmAttributes = USB_ENDPOINT_XFER_ISOC,
.reg_udccs = &UDCCS3,
.reg_uddr = &UDDR3,
drcmr (27)
},
.ep[4] = {
.ep = {
.name = "ep4out-iso",
.ops = &pxa2xx_ep_ops,
.maxpacket = ISO_FIFO_SIZE,
},
.dev = &memory,
.fifo_size = ISO_FIFO_SIZE,
.bEndpointAddress = 4,
.bmAttributes = USB_ENDPOINT_XFER_ISOC,
.reg_udccs = &UDCCS4,
.reg_ubcr = &UBCR4,
.reg_uddr = &UDDR4,
drcmr (28)
},
.ep[5] = {
.ep = {
.name = "ep5in-int",
.ops = &pxa2xx_ep_ops,
.maxpacket = INT_FIFO_SIZE,
},
.dev = &memory,
.fifo_size = INT_FIFO_SIZE,
.bEndpointAddress = USB_DIR_IN | 5,
.bmAttributes = USB_ENDPOINT_XFER_INT,
.reg_udccs = &UDCCS5,
.reg_uddr = &UDDR5,
},
/* second group of endpoints */
.ep[6] = {
.ep = {
.name = "ep6in-bulk",
.ops = &pxa2xx_ep_ops,
.maxpacket = BULK_FIFO_SIZE,
},
.dev = &memory,
.fifo_size = BULK_FIFO_SIZE,
.bEndpointAddress = USB_DIR_IN | 6,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.reg_udccs = &UDCCS6,
.reg_uddr = &UDDR6,
drcmr (30)
},
.ep[7] = {
.ep = {
.name = "ep7out-bulk",
.ops = &pxa2xx_ep_ops,
.maxpacket = BULK_FIFO_SIZE,
},
.dev = &memory,
.fifo_size = BULK_FIFO_SIZE,
.bEndpointAddress = 7,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.reg_udccs = &UDCCS7,
.reg_ubcr = &UBCR7,
.reg_uddr = &UDDR7,
drcmr (31)
},
.ep[8] = {
.ep = {
.name = "ep8in-iso",
.ops = &pxa2xx_ep_ops,
.maxpacket = ISO_FIFO_SIZE,
},
.dev = &memory,
.fifo_size = ISO_FIFO_SIZE,
.bEndpointAddress = USB_DIR_IN | 8,
.bmAttributes = USB_ENDPOINT_XFER_ISOC,
.reg_udccs = &UDCCS8,
.reg_uddr = &UDDR8,
drcmr (32)
},
.ep[9] = {
.ep = {
.name = "ep9out-iso",
.ops = &pxa2xx_ep_ops,
.maxpacket = ISO_FIFO_SIZE,
},
.dev = &memory,
.fifo_size = ISO_FIFO_SIZE,
.bEndpointAddress = 9,
.bmAttributes = USB_ENDPOINT_XFER_ISOC,
.reg_udccs = &UDCCS9,
.reg_ubcr = &UBCR9,
.reg_uddr = &UDDR9,
drcmr (33)
},
.ep[10] = {
.ep = {
.name = "ep10in-int",
.ops = &pxa2xx_ep_ops,
.maxpacket = INT_FIFO_SIZE,
},
.dev = &memory,
.fifo_size = INT_FIFO_SIZE,
.bEndpointAddress = USB_DIR_IN | 10,
.bmAttributes = USB_ENDPOINT_XFER_INT,
.reg_udccs = &UDCCS10,
.reg_uddr = &UDDR10,
},
/* third group of endpoints */
.ep[11] = {
.ep = {
.name = "ep11in-bulk",
.ops = &pxa2xx_ep_ops,
.maxpacket = BULK_FIFO_SIZE,
},
.dev = &memory,
.fifo_size = BULK_FIFO_SIZE,
.bEndpointAddress = USB_DIR_IN | 11,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.reg_udccs = &UDCCS11,
.reg_uddr = &UDDR11,
drcmr (35)
},
.ep[12] = {
.ep = {
.name = "ep12out-bulk",
.ops = &pxa2xx_ep_ops,
.maxpacket = BULK_FIFO_SIZE,
},
.dev = &memory,
.fifo_size = BULK_FIFO_SIZE,
.bEndpointAddress = 12,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.reg_udccs = &UDCCS12,
.reg_ubcr = &UBCR12,
.reg_uddr = &UDDR12,
drcmr (36)
},
.ep[13] = {
.ep = {
.name = "ep13in-iso",
.ops = &pxa2xx_ep_ops,
.maxpacket = ISO_FIFO_SIZE,
},
.dev = &memory,
.fifo_size = ISO_FIFO_SIZE,
.bEndpointAddress = USB_DIR_IN | 13,
.bmAttributes = USB_ENDPOINT_XFER_ISOC,
.reg_udccs = &UDCCS13,
.reg_uddr = &UDDR13,
drcmr (37)
},
.ep[14] = {
.ep = {
.name = "ep14out-iso",
.ops = &pxa2xx_ep_ops,
.maxpacket = ISO_FIFO_SIZE,
},
.dev = &memory,
.fifo_size = ISO_FIFO_SIZE,
.bEndpointAddress = 14,
.bmAttributes = USB_ENDPOINT_XFER_ISOC,
.reg_udccs = &UDCCS14,
.reg_ubcr = &UBCR14,
.reg_uddr = &UDDR14,
drcmr (38)
},
.ep[15] = {
.ep = {
.name = "ep15in-int",
.ops = &pxa2xx_ep_ops,
.maxpacket = INT_FIFO_SIZE,
},
.dev = &memory,
.fifo_size = INT_FIFO_SIZE,
.bEndpointAddress = USB_DIR_IN | 15,
.bmAttributes = USB_ENDPOINT_XFER_INT,
.reg_udccs = &UDCCS15,
.reg_uddr = &UDDR15,
},
#endif /* !CONFIG_USB_PXA2XX_SMALL */
};
#define CP15R0_VENDOR_MASK 0xffffe000
#if defined(CONFIG_ARCH_PXA)
#define CP15R0_XSCALE_VALUE 0x69052000 /* intel/arm/xscale */
#elif defined(CONFIG_ARCH_IXP4XX)
#define CP15R0_XSCALE_VALUE 0x69054000 /* intel/arm/ixp4xx */
#endif
#define CP15R0_PROD_MASK 0x000003f0
#define PXA25x 0x00000100 /* and PXA26x */
#define PXA210 0x00000120
#define CP15R0_REV_MASK 0x0000000f
#define CP15R0_PRODREV_MASK (CP15R0_PROD_MASK | CP15R0_REV_MASK)
#define PXA255_A0 0x00000106 /* or PXA260_B1 */
#define PXA250_C0 0x00000105 /* or PXA26x_B0 */
#define PXA250_B2 0x00000104
#define PXA250_B1 0x00000103 /* or PXA260_A0 */
#define PXA250_B0 0x00000102
#define PXA250_A1 0x00000101
#define PXA250_A0 0x00000100
#define PXA210_C0 0x00000125
#define PXA210_B2 0x00000124
#define PXA210_B1 0x00000123
#define PXA210_B0 0x00000122
#define IXP425_A0 0x000001c1
#define IXP425_B0 0x000001f1
#define IXP465_AD 0x00000200
/*
* probe - binds to the platform device
*/
static int __init pxa2xx_udc_probe(struct platform_device *pdev)
{
struct pxa2xx_udc *dev = &memory;
int retval, out_dma = 1, vbus_irq, irq;
u32 chiprev;
/* insist on Intel/ARM/XScale */
asm("mrc%? p15, 0, %0, c0, c0" : "=r" (chiprev));
if ((chiprev & CP15R0_VENDOR_MASK) != CP15R0_XSCALE_VALUE) {
printk(KERN_ERR "%s: not XScale!\n", driver_name);
return -ENODEV;
}
/* trigger chiprev-specific logic */
switch (chiprev & CP15R0_PRODREV_MASK) {
#if defined(CONFIG_ARCH_PXA)
case PXA255_A0:
dev->has_cfr = 1;
break;
case PXA250_A0:
case PXA250_A1:
/* A0/A1 "not released"; ep 13, 15 unusable */
/* fall through */
case PXA250_B2: case PXA210_B2:
case PXA250_B1: case PXA210_B1:
case PXA250_B0: case PXA210_B0:
out_dma = 0;
/* fall through */
case PXA250_C0: case PXA210_C0:
break;
#elif defined(CONFIG_ARCH_IXP4XX)
case IXP425_A0:
case IXP425_B0:
case IXP465_AD:
dev->has_cfr = 1;
out_dma = 0;
break;
#endif
default:
out_dma = 0;
printk(KERN_ERR "%s: unrecognized processor: %08x\n",
driver_name, chiprev);
/* iop3xx, ixp4xx, ... */
return -ENODEV;
}
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return -ENODEV;
pr_debug("%s: IRQ %d%s%s%s\n", driver_name, irq,
dev->has_cfr ? "" : " (!cfr)",
out_dma ? "" : " (broken dma-out)",
SIZE_STR DMASTR
);
#ifdef USE_DMA
#ifndef USE_OUT_DMA
out_dma = 0;
#endif
/* pxa 250 erratum 130 prevents using OUT dma (fixed C0) */
if (!out_dma) {
DMSG("disabled OUT dma\n");
dev->ep[ 2].reg_drcmr = dev->ep[ 4].reg_drcmr = 0;
dev->ep[ 7].reg_drcmr = dev->ep[ 9].reg_drcmr = 0;
dev->ep[12].reg_drcmr = dev->ep[14].reg_drcmr = 0;
}
#endif
/* other non-static parts of init */
dev->dev = &pdev->dev;
dev->mach = pdev->dev.platform_data;
if (dev->mach->gpio_vbus) {
udc_gpio_init_vbus(dev->mach->gpio_vbus);
vbus_irq = udc_gpio_to_irq(dev->mach->gpio_vbus);
set_irq_type(vbus_irq, IRQT_BOTHEDGE);
} else
vbus_irq = 0;
if (dev->mach->gpio_pullup)
udc_gpio_init_pullup(dev->mach->gpio_pullup);
init_timer(&dev->timer);
dev->timer.function = udc_watchdog;
dev->timer.data = (unsigned long) dev;
device_initialize(&dev->gadget.dev);
dev->gadget.dev.parent = &pdev->dev;
dev->gadget.dev.dma_mask = pdev->dev.dma_mask;
the_controller = dev;
platform_set_drvdata(pdev, dev);
udc_disable(dev);
udc_reinit(dev);
dev->vbus = is_vbus_present();
/* irq setup after old hardware state is cleaned up */
retval = request_irq(irq, pxa2xx_udc_irq,
IRQF_DISABLED, driver_name, dev);
if (retval != 0) {
printk(KERN_ERR "%s: can't get irq %d, err %d\n",
driver_name, irq, retval);
return -EBUSY;
}
dev->got_irq = 1;
#ifdef CONFIG_ARCH_LUBBOCK
if (machine_is_lubbock()) {
retval = request_irq(LUBBOCK_USB_DISC_IRQ,
lubbock_vbus_irq,
IRQF_DISABLED | IRQF_SAMPLE_RANDOM,
driver_name, dev);
if (retval != 0) {
printk(KERN_ERR "%s: can't get irq %i, err %d\n",
driver_name, LUBBOCK_USB_DISC_IRQ, retval);
lubbock_fail0:
free_irq(irq, dev);
return -EBUSY;
}
retval = request_irq(LUBBOCK_USB_IRQ,
lubbock_vbus_irq,
IRQF_DISABLED | IRQF_SAMPLE_RANDOM,
driver_name, dev);
if (retval != 0) {
printk(KERN_ERR "%s: can't get irq %i, err %d\n",
driver_name, LUBBOCK_USB_IRQ, retval);
free_irq(LUBBOCK_USB_DISC_IRQ, dev);
goto lubbock_fail0;
}
#ifdef DEBUG
/* with U-Boot (but not BLOB), hex is off by default */
HEX_DISPLAY(dev->stats.irqs);
LUB_DISC_BLNK_LED &= 0xff;
#endif
} else
#endif
if (vbus_irq) {
retval = request_irq(vbus_irq, udc_vbus_irq,
IRQF_DISABLED | IRQF_SAMPLE_RANDOM,
driver_name, dev);
if (retval != 0) {
printk(KERN_ERR "%s: can't get irq %i, err %d\n",
driver_name, vbus_irq, retval);
free_irq(irq, dev);
return -EBUSY;
}
}
create_proc_files();
return 0;
}
static void pxa2xx_udc_shutdown(struct platform_device *_dev)
{
pullup_off();
}
static int __exit pxa2xx_udc_remove(struct platform_device *pdev)
{
struct pxa2xx_udc *dev = platform_get_drvdata(pdev);
if (dev->driver)
return -EBUSY;
udc_disable(dev);
remove_proc_files();
if (dev->got_irq) {
free_irq(platform_get_irq(pdev, 0), dev);
dev->got_irq = 0;
}
#ifdef CONFIG_ARCH_LUBBOCK
if (machine_is_lubbock()) {
free_irq(LUBBOCK_USB_DISC_IRQ, dev);
free_irq(LUBBOCK_USB_IRQ, dev);
}
#endif
if (dev->mach->gpio_vbus)
free_irq(IRQ_GPIO(dev->mach->gpio_vbus), dev);
platform_set_drvdata(pdev, NULL);
the_controller = NULL;
return 0;
}
/*-------------------------------------------------------------------------*/
#ifdef CONFIG_PM
/* USB suspend (controlled by the host) and system suspend (controlled
* by the PXA) don't necessarily work well together. If USB is active,
* the 48 MHz clock is required; so the system can't enter 33 MHz idle
* mode, or any deeper PM saving state.
*
* For now, we punt and forcibly disconnect from the USB host when PXA
* enters any suspend state. While we're disconnected, we always disable
* the 48MHz USB clock ... allowing PXA sleep and/or 33 MHz idle states.
* Boards without software pullup control shouldn't use those states.
* VBUS IRQs should probably be ignored so that the PXA device just acts
* "dead" to USB hosts until system resume.
*/
static int pxa2xx_udc_suspend(struct platform_device *dev, pm_message_t state)
{
struct pxa2xx_udc *udc = platform_get_drvdata(dev);
if (!udc->mach->udc_command)
WARN("USB host won't detect disconnect!\n");
pullup(udc, 0);
return 0;
}
static int pxa2xx_udc_resume(struct platform_device *dev)
{
struct pxa2xx_udc *udc = platform_get_drvdata(dev);
pullup(udc, 1);
return 0;
}
#else
#define pxa2xx_udc_suspend NULL
#define pxa2xx_udc_resume NULL
#endif
/*-------------------------------------------------------------------------*/
static struct platform_driver udc_driver = {
.shutdown = pxa2xx_udc_shutdown,
.remove = __exit_p(pxa2xx_udc_remove),
.suspend = pxa2xx_udc_suspend,
.resume = pxa2xx_udc_resume,
.driver = {
.owner = THIS_MODULE,
.name = "pxa2xx-udc",
},
};
static int __init udc_init(void)
{
printk(KERN_INFO "%s: version %s\n", driver_name, DRIVER_VERSION);
return platform_driver_probe(&udc_driver, pxa2xx_udc_probe);
}
module_init(udc_init);
static void __exit udc_exit(void)
{
platform_driver_unregister(&udc_driver);
}
module_exit(udc_exit);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_AUTHOR("Frank Becker, Robert Schwebel, David Brownell");
MODULE_LICENSE("GPL");