kernel_optimize_test/drivers/crypto/picoxcell_crypto.c
Jamie Iles 40bfc14f32 crypto: picoxcell - fix possible status FIFO overflow
The SPAcc's have 2 equally sized FIFO's - a command FIFO and a status
FIFO.  The command FIFO takes the requests that are to be performed and
the status FIFO reports the results.  It is possible to get into the
situation where there are more free spaces in the command FIFO than the
status FIFO if we don't empty the status FIFO quickly enough resulting
in a possible overflow of the status FIFO.  This can result in incorrect
status being reported in the status FIFO.

Make sure that when we are submitting requests the number of requests
that have been dispatched but not yet popped from the status FIFO does
not exceed the size of a single FIFO.

Signed-off-by: Jamie Iles <jamie@jamieiles.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-03-27 10:48:29 +08:00

1874 lines
53 KiB
C

/*
* Copyright (c) 2010-2011 Picochip Ltd., Jamie Iles
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <crypto/aead.h>
#include <crypto/aes.h>
#include <crypto/algapi.h>
#include <crypto/authenc.h>
#include <crypto/des.h>
#include <crypto/md5.h>
#include <crypto/sha.h>
#include <crypto/internal/skcipher.h>
#include <linux/clk.h>
#include <linux/crypto.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pm.h>
#include <linux/rtnetlink.h>
#include <linux/scatterlist.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/timer.h>
#include "picoxcell_crypto_regs.h"
/*
* The threshold for the number of entries in the CMD FIFO available before
* the CMD0_CNT interrupt is raised. Increasing this value will reduce the
* number of interrupts raised to the CPU.
*/
#define CMD0_IRQ_THRESHOLD 1
/*
* The timeout period (in jiffies) for a PDU. When the the number of PDUs in
* flight is greater than the STAT_IRQ_THRESHOLD or 0 the timer is disabled.
* When there are packets in flight but lower than the threshold, we enable
* the timer and at expiry, attempt to remove any processed packets from the
* queue and if there are still packets left, schedule the timer again.
*/
#define PACKET_TIMEOUT 1
/* The priority to register each algorithm with. */
#define SPACC_CRYPTO_ALG_PRIORITY 10000
#define SPACC_CRYPTO_KASUMI_F8_KEY_LEN 16
#define SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ 64
#define SPACC_CRYPTO_IPSEC_HASH_PG_SZ 64
#define SPACC_CRYPTO_IPSEC_MAX_CTXS 32
#define SPACC_CRYPTO_IPSEC_FIFO_SZ 32
#define SPACC_CRYPTO_L2_CIPHER_PG_SZ 64
#define SPACC_CRYPTO_L2_HASH_PG_SZ 64
#define SPACC_CRYPTO_L2_MAX_CTXS 128
#define SPACC_CRYPTO_L2_FIFO_SZ 128
#define MAX_DDT_LEN 16
/* DDT format. This must match the hardware DDT format exactly. */
struct spacc_ddt {
dma_addr_t p;
u32 len;
};
/*
* Asynchronous crypto request structure.
*
* This structure defines a request that is either queued for processing or
* being processed.
*/
struct spacc_req {
struct list_head list;
struct spacc_engine *engine;
struct crypto_async_request *req;
int result;
bool is_encrypt;
unsigned ctx_id;
dma_addr_t src_addr, dst_addr;
struct spacc_ddt *src_ddt, *dst_ddt;
void (*complete)(struct spacc_req *req);
/* AEAD specific bits. */
u8 *giv;
size_t giv_len;
dma_addr_t giv_pa;
};
struct spacc_engine {
void __iomem *regs;
struct list_head pending;
int next_ctx;
spinlock_t hw_lock;
int in_flight;
struct list_head completed;
struct list_head in_progress;
struct tasklet_struct complete;
unsigned long fifo_sz;
void __iomem *cipher_ctx_base;
void __iomem *hash_key_base;
struct spacc_alg *algs;
unsigned num_algs;
struct list_head registered_algs;
size_t cipher_pg_sz;
size_t hash_pg_sz;
const char *name;
struct clk *clk;
struct device *dev;
unsigned max_ctxs;
struct timer_list packet_timeout;
unsigned stat_irq_thresh;
struct dma_pool *req_pool;
};
/* Algorithm type mask. */
#define SPACC_CRYPTO_ALG_MASK 0x7
/* SPACC definition of a crypto algorithm. */
struct spacc_alg {
unsigned long ctrl_default;
unsigned long type;
struct crypto_alg alg;
struct spacc_engine *engine;
struct list_head entry;
int key_offs;
int iv_offs;
};
/* Generic context structure for any algorithm type. */
struct spacc_generic_ctx {
struct spacc_engine *engine;
int flags;
int key_offs;
int iv_offs;
};
/* Block cipher context. */
struct spacc_ablk_ctx {
struct spacc_generic_ctx generic;
u8 key[AES_MAX_KEY_SIZE];
u8 key_len;
/*
* The fallback cipher. If the operation can't be done in hardware,
* fallback to a software version.
*/
struct crypto_ablkcipher *sw_cipher;
};
/* AEAD cipher context. */
struct spacc_aead_ctx {
struct spacc_generic_ctx generic;
u8 cipher_key[AES_MAX_KEY_SIZE];
u8 hash_ctx[SPACC_CRYPTO_IPSEC_HASH_PG_SZ];
u8 cipher_key_len;
u8 hash_key_len;
struct crypto_aead *sw_cipher;
size_t auth_size;
u8 salt[AES_BLOCK_SIZE];
};
static int spacc_ablk_submit(struct spacc_req *req);
static inline struct spacc_alg *to_spacc_alg(struct crypto_alg *alg)
{
return alg ? container_of(alg, struct spacc_alg, alg) : NULL;
}
static inline int spacc_fifo_cmd_full(struct spacc_engine *engine)
{
u32 fifo_stat = readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET);
return fifo_stat & SPA_FIFO_CMD_FULL;
}
/*
* Given a cipher context, and a context number, get the base address of the
* context page.
*
* Returns the address of the context page where the key/context may
* be written.
*/
static inline void __iomem *spacc_ctx_page_addr(struct spacc_generic_ctx *ctx,
unsigned indx,
bool is_cipher_ctx)
{
return is_cipher_ctx ? ctx->engine->cipher_ctx_base +
(indx * ctx->engine->cipher_pg_sz) :
ctx->engine->hash_key_base + (indx * ctx->engine->hash_pg_sz);
}
/* The context pages can only be written with 32-bit accesses. */
static inline void memcpy_toio32(u32 __iomem *dst, const void *src,
unsigned count)
{
const u32 *src32 = (const u32 *) src;
while (count--)
writel(*src32++, dst++);
}
static void spacc_cipher_write_ctx(struct spacc_generic_ctx *ctx,
void __iomem *page_addr, const u8 *key,
size_t key_len, const u8 *iv, size_t iv_len)
{
void __iomem *key_ptr = page_addr + ctx->key_offs;
void __iomem *iv_ptr = page_addr + ctx->iv_offs;
memcpy_toio32(key_ptr, key, key_len / 4);
memcpy_toio32(iv_ptr, iv, iv_len / 4);
}
/*
* Load a context into the engines context memory.
*
* Returns the index of the context page where the context was loaded.
*/
static unsigned spacc_load_ctx(struct spacc_generic_ctx *ctx,
const u8 *ciph_key, size_t ciph_len,
const u8 *iv, size_t ivlen, const u8 *hash_key,
size_t hash_len)
{
unsigned indx = ctx->engine->next_ctx++;
void __iomem *ciph_page_addr, *hash_page_addr;
ciph_page_addr = spacc_ctx_page_addr(ctx, indx, 1);
hash_page_addr = spacc_ctx_page_addr(ctx, indx, 0);
ctx->engine->next_ctx &= ctx->engine->fifo_sz - 1;
spacc_cipher_write_ctx(ctx, ciph_page_addr, ciph_key, ciph_len, iv,
ivlen);
writel(ciph_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET) |
(1 << SPA_KEY_SZ_CIPHER_OFFSET),
ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET);
if (hash_key) {
memcpy_toio32(hash_page_addr, hash_key, hash_len / 4);
writel(hash_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET),
ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET);
}
return indx;
}
/* Count the number of scatterlist entries in a scatterlist. */
static int sg_count(struct scatterlist *sg_list, int nbytes)
{
struct scatterlist *sg = sg_list;
int sg_nents = 0;
while (nbytes > 0) {
++sg_nents;
nbytes -= sg->length;
sg = sg_next(sg);
}
return sg_nents;
}
static inline void ddt_set(struct spacc_ddt *ddt, dma_addr_t phys, size_t len)
{
ddt->p = phys;
ddt->len = len;
}
/*
* Take a crypto request and scatterlists for the data and turn them into DDTs
* for passing to the crypto engines. This also DMA maps the data so that the
* crypto engines can DMA to/from them.
*/
static struct spacc_ddt *spacc_sg_to_ddt(struct spacc_engine *engine,
struct scatterlist *payload,
unsigned nbytes,
enum dma_data_direction dir,
dma_addr_t *ddt_phys)
{
unsigned nents, mapped_ents;
struct scatterlist *cur;
struct spacc_ddt *ddt;
int i;
nents = sg_count(payload, nbytes);
mapped_ents = dma_map_sg(engine->dev, payload, nents, dir);
if (mapped_ents + 1 > MAX_DDT_LEN)
goto out;
ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, ddt_phys);
if (!ddt)
goto out;
for_each_sg(payload, cur, mapped_ents, i)
ddt_set(&ddt[i], sg_dma_address(cur), sg_dma_len(cur));
ddt_set(&ddt[mapped_ents], 0, 0);
return ddt;
out:
dma_unmap_sg(engine->dev, payload, nents, dir);
return NULL;
}
static int spacc_aead_make_ddts(struct spacc_req *req, u8 *giv)
{
struct aead_request *areq = container_of(req->req, struct aead_request,
base);
struct spacc_engine *engine = req->engine;
struct spacc_ddt *src_ddt, *dst_ddt;
unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(areq));
unsigned nents = sg_count(areq->src, areq->cryptlen);
dma_addr_t iv_addr;
struct scatterlist *cur;
int i, dst_ents, src_ents, assoc_ents;
u8 *iv = giv ? giv : areq->iv;
src_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->src_addr);
if (!src_ddt)
return -ENOMEM;
dst_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->dst_addr);
if (!dst_ddt) {
dma_pool_free(engine->req_pool, src_ddt, req->src_addr);
return -ENOMEM;
}
req->src_ddt = src_ddt;
req->dst_ddt = dst_ddt;
assoc_ents = dma_map_sg(engine->dev, areq->assoc,
sg_count(areq->assoc, areq->assoclen), DMA_TO_DEVICE);
if (areq->src != areq->dst) {
src_ents = dma_map_sg(engine->dev, areq->src, nents,
DMA_TO_DEVICE);
dst_ents = dma_map_sg(engine->dev, areq->dst, nents,
DMA_FROM_DEVICE);
} else {
src_ents = dma_map_sg(engine->dev, areq->src, nents,
DMA_BIDIRECTIONAL);
dst_ents = 0;
}
/*
* Map the IV/GIV. For the GIV it needs to be bidirectional as it is
* formed by the crypto block and sent as the ESP IV for IPSEC.
*/
iv_addr = dma_map_single(engine->dev, iv, ivsize,
giv ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
req->giv_pa = iv_addr;
/*
* Map the associated data. For decryption we don't copy the
* associated data.
*/
for_each_sg(areq->assoc, cur, assoc_ents, i) {
ddt_set(src_ddt++, sg_dma_address(cur), sg_dma_len(cur));
if (req->is_encrypt)
ddt_set(dst_ddt++, sg_dma_address(cur),
sg_dma_len(cur));
}
ddt_set(src_ddt++, iv_addr, ivsize);
if (giv || req->is_encrypt)
ddt_set(dst_ddt++, iv_addr, ivsize);
/*
* Now map in the payload for the source and destination and terminate
* with the NULL pointers.
*/
for_each_sg(areq->src, cur, src_ents, i) {
ddt_set(src_ddt++, sg_dma_address(cur), sg_dma_len(cur));
if (areq->src == areq->dst)
ddt_set(dst_ddt++, sg_dma_address(cur),
sg_dma_len(cur));
}
for_each_sg(areq->dst, cur, dst_ents, i)
ddt_set(dst_ddt++, sg_dma_address(cur),
sg_dma_len(cur));
ddt_set(src_ddt, 0, 0);
ddt_set(dst_ddt, 0, 0);
return 0;
}
static void spacc_aead_free_ddts(struct spacc_req *req)
{
struct aead_request *areq = container_of(req->req, struct aead_request,
base);
struct spacc_alg *alg = to_spacc_alg(req->req->tfm->__crt_alg);
struct spacc_ablk_ctx *aead_ctx = crypto_tfm_ctx(req->req->tfm);
struct spacc_engine *engine = aead_ctx->generic.engine;
unsigned ivsize = alg->alg.cra_aead.ivsize;
unsigned nents = sg_count(areq->src, areq->cryptlen);
if (areq->src != areq->dst) {
dma_unmap_sg(engine->dev, areq->src, nents, DMA_TO_DEVICE);
dma_unmap_sg(engine->dev, areq->dst,
sg_count(areq->dst, areq->cryptlen),
DMA_FROM_DEVICE);
} else
dma_unmap_sg(engine->dev, areq->src, nents, DMA_BIDIRECTIONAL);
dma_unmap_sg(engine->dev, areq->assoc,
sg_count(areq->assoc, areq->assoclen), DMA_TO_DEVICE);
dma_unmap_single(engine->dev, req->giv_pa, ivsize, DMA_BIDIRECTIONAL);
dma_pool_free(engine->req_pool, req->src_ddt, req->src_addr);
dma_pool_free(engine->req_pool, req->dst_ddt, req->dst_addr);
}
static void spacc_free_ddt(struct spacc_req *req, struct spacc_ddt *ddt,
dma_addr_t ddt_addr, struct scatterlist *payload,
unsigned nbytes, enum dma_data_direction dir)
{
unsigned nents = sg_count(payload, nbytes);
dma_unmap_sg(req->engine->dev, payload, nents, dir);
dma_pool_free(req->engine->req_pool, ddt, ddt_addr);
}
/*
* Set key for a DES operation in an AEAD cipher. This also performs weak key
* checking if required.
*/
static int spacc_aead_des_setkey(struct crypto_aead *aead, const u8 *key,
unsigned int len)
{
struct crypto_tfm *tfm = crypto_aead_tfm(aead);
struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
u32 tmp[DES_EXPKEY_WORDS];
if (unlikely(!des_ekey(tmp, key)) &&
(crypto_aead_get_flags(aead)) & CRYPTO_TFM_REQ_WEAK_KEY) {
tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
return -EINVAL;
}
memcpy(ctx->cipher_key, key, len);
ctx->cipher_key_len = len;
return 0;
}
/* Set the key for the AES block cipher component of the AEAD transform. */
static int spacc_aead_aes_setkey(struct crypto_aead *aead, const u8 *key,
unsigned int len)
{
struct crypto_tfm *tfm = crypto_aead_tfm(aead);
struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
/*
* IPSec engine only supports 128 and 256 bit AES keys. If we get a
* request for any other size (192 bits) then we need to do a software
* fallback.
*/
if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256) {
/*
* Set the fallback transform to use the same request flags as
* the hardware transform.
*/
ctx->sw_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
ctx->sw_cipher->base.crt_flags |=
tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
return crypto_aead_setkey(ctx->sw_cipher, key, len);
}
memcpy(ctx->cipher_key, key, len);
ctx->cipher_key_len = len;
return 0;
}
static int spacc_aead_setkey(struct crypto_aead *tfm, const u8 *key,
unsigned int keylen)
{
struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
struct spacc_alg *alg = to_spacc_alg(tfm->base.__crt_alg);
struct rtattr *rta = (void *)key;
struct crypto_authenc_key_param *param;
unsigned int authkeylen, enckeylen;
int err = -EINVAL;
if (!RTA_OK(rta, keylen))
goto badkey;
if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
goto badkey;
if (RTA_PAYLOAD(rta) < sizeof(*param))
goto badkey;
param = RTA_DATA(rta);
enckeylen = be32_to_cpu(param->enckeylen);
key += RTA_ALIGN(rta->rta_len);
keylen -= RTA_ALIGN(rta->rta_len);
if (keylen < enckeylen)
goto badkey;
authkeylen = keylen - enckeylen;
if (enckeylen > AES_MAX_KEY_SIZE)
goto badkey;
if ((alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
SPA_CTRL_CIPH_ALG_AES)
err = spacc_aead_aes_setkey(tfm, key + authkeylen, enckeylen);
else
err = spacc_aead_des_setkey(tfm, key + authkeylen, enckeylen);
if (err)
goto badkey;
memcpy(ctx->hash_ctx, key, authkeylen);
ctx->hash_key_len = authkeylen;
return 0;
badkey:
crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
static int spacc_aead_setauthsize(struct crypto_aead *tfm,
unsigned int authsize)
{
struct spacc_aead_ctx *ctx = crypto_tfm_ctx(crypto_aead_tfm(tfm));
ctx->auth_size = authsize;
return 0;
}
/*
* Check if an AEAD request requires a fallback operation. Some requests can't
* be completed in hardware because the hardware may not support certain key
* sizes. In these cases we need to complete the request in software.
*/
static int spacc_aead_need_fallback(struct spacc_req *req)
{
struct aead_request *aead_req;
struct crypto_tfm *tfm = req->req->tfm;
struct crypto_alg *alg = req->req->tfm->__crt_alg;
struct spacc_alg *spacc_alg = to_spacc_alg(alg);
struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
aead_req = container_of(req->req, struct aead_request, base);
/*
* If we have a non-supported key-length, then we need to do a
* software fallback.
*/
if ((spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
SPA_CTRL_CIPH_ALG_AES &&
ctx->cipher_key_len != AES_KEYSIZE_128 &&
ctx->cipher_key_len != AES_KEYSIZE_256)
return 1;
return 0;
}
static int spacc_aead_do_fallback(struct aead_request *req, unsigned alg_type,
bool is_encrypt)
{
struct crypto_tfm *old_tfm = crypto_aead_tfm(crypto_aead_reqtfm(req));
struct spacc_aead_ctx *ctx = crypto_tfm_ctx(old_tfm);
int err;
if (ctx->sw_cipher) {
/*
* Change the request to use the software fallback transform,
* and once the ciphering has completed, put the old transform
* back into the request.
*/
aead_request_set_tfm(req, ctx->sw_cipher);
err = is_encrypt ? crypto_aead_encrypt(req) :
crypto_aead_decrypt(req);
aead_request_set_tfm(req, __crypto_aead_cast(old_tfm));
} else
err = -EINVAL;
return err;
}
static void spacc_aead_complete(struct spacc_req *req)
{
spacc_aead_free_ddts(req);
req->req->complete(req->req, req->result);
}
static int spacc_aead_submit(struct spacc_req *req)
{
struct crypto_tfm *tfm = req->req->tfm;
struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
struct crypto_alg *alg = req->req->tfm->__crt_alg;
struct spacc_alg *spacc_alg = to_spacc_alg(alg);
struct spacc_engine *engine = ctx->generic.engine;
u32 ctrl, proc_len, assoc_len;
struct aead_request *aead_req =
container_of(req->req, struct aead_request, base);
req->result = -EINPROGRESS;
req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->cipher_key,
ctx->cipher_key_len, aead_req->iv, alg->cra_aead.ivsize,
ctx->hash_ctx, ctx->hash_key_len);
/* Set the source and destination DDT pointers. */
writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET);
writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET);
writel(0, engine->regs + SPA_OFFSET_REG_OFFSET);
assoc_len = aead_req->assoclen;
proc_len = aead_req->cryptlen + assoc_len;
/*
* If we aren't generating an IV, then we need to include the IV in the
* associated data so that it is included in the hash.
*/
if (!req->giv) {
assoc_len += crypto_aead_ivsize(crypto_aead_reqtfm(aead_req));
proc_len += crypto_aead_ivsize(crypto_aead_reqtfm(aead_req));
} else
proc_len += req->giv_len;
/*
* If we are decrypting, we need to take the length of the ICV out of
* the processing length.
*/
if (!req->is_encrypt)
proc_len -= ctx->auth_size;
writel(proc_len, engine->regs + SPA_PROC_LEN_REG_OFFSET);
writel(assoc_len, engine->regs + SPA_AAD_LEN_REG_OFFSET);
writel(ctx->auth_size, engine->regs + SPA_ICV_LEN_REG_OFFSET);
writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET);
writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET);
ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) |
(1 << SPA_CTRL_ICV_APPEND);
if (req->is_encrypt)
ctrl |= (1 << SPA_CTRL_ENCRYPT_IDX) | (1 << SPA_CTRL_AAD_COPY);
else
ctrl |= (1 << SPA_CTRL_KEY_EXP);
mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET);
return -EINPROGRESS;
}
static int spacc_req_submit(struct spacc_req *req);
static void spacc_push(struct spacc_engine *engine)
{
struct spacc_req *req;
while (!list_empty(&engine->pending) &&
engine->in_flight + 1 <= engine->fifo_sz) {
++engine->in_flight;
req = list_first_entry(&engine->pending, struct spacc_req,
list);
list_move_tail(&req->list, &engine->in_progress);
req->result = spacc_req_submit(req);
}
}
/*
* Setup an AEAD request for processing. This will configure the engine, load
* the context and then start the packet processing.
*
* @giv Pointer to destination address for a generated IV. If the
* request does not need to generate an IV then this should be set to NULL.
*/
static int spacc_aead_setup(struct aead_request *req, u8 *giv,
unsigned alg_type, bool is_encrypt)
{
struct crypto_alg *alg = req->base.tfm->__crt_alg;
struct spacc_engine *engine = to_spacc_alg(alg)->engine;
struct spacc_req *dev_req = aead_request_ctx(req);
int err = -EINPROGRESS;
unsigned long flags;
unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
dev_req->giv = giv;
dev_req->giv_len = ivsize;
dev_req->req = &req->base;
dev_req->is_encrypt = is_encrypt;
dev_req->result = -EBUSY;
dev_req->engine = engine;
dev_req->complete = spacc_aead_complete;
if (unlikely(spacc_aead_need_fallback(dev_req)))
return spacc_aead_do_fallback(req, alg_type, is_encrypt);
spacc_aead_make_ddts(dev_req, dev_req->giv);
err = -EINPROGRESS;
spin_lock_irqsave(&engine->hw_lock, flags);
if (unlikely(spacc_fifo_cmd_full(engine)) ||
engine->in_flight + 1 > engine->fifo_sz) {
if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
err = -EBUSY;
spin_unlock_irqrestore(&engine->hw_lock, flags);
goto out_free_ddts;
}
list_add_tail(&dev_req->list, &engine->pending);
} else {
list_add_tail(&dev_req->list, &engine->pending);
spacc_push(engine);
}
spin_unlock_irqrestore(&engine->hw_lock, flags);
goto out;
out_free_ddts:
spacc_aead_free_ddts(dev_req);
out:
return err;
}
static int spacc_aead_encrypt(struct aead_request *req)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct crypto_tfm *tfm = crypto_aead_tfm(aead);
struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
return spacc_aead_setup(req, NULL, alg->type, 1);
}
static int spacc_aead_givencrypt(struct aead_givcrypt_request *req)
{
struct crypto_aead *tfm = aead_givcrypt_reqtfm(req);
struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
size_t ivsize = crypto_aead_ivsize(tfm);
struct spacc_alg *alg = to_spacc_alg(tfm->base.__crt_alg);
unsigned len;
__be64 seq;
memcpy(req->areq.iv, ctx->salt, ivsize);
len = ivsize;
if (ivsize > sizeof(u64)) {
memset(req->giv, 0, ivsize - sizeof(u64));
len = sizeof(u64);
}
seq = cpu_to_be64(req->seq);
memcpy(req->giv + ivsize - len, &seq, len);
return spacc_aead_setup(&req->areq, req->giv, alg->type, 1);
}
static int spacc_aead_decrypt(struct aead_request *req)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct crypto_tfm *tfm = crypto_aead_tfm(aead);
struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
return spacc_aead_setup(req, NULL, alg->type, 0);
}
/*
* Initialise a new AEAD context. This is responsible for allocating the
* fallback cipher and initialising the context.
*/
static int spacc_aead_cra_init(struct crypto_tfm *tfm)
{
struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
struct crypto_alg *alg = tfm->__crt_alg;
struct spacc_alg *spacc_alg = to_spacc_alg(alg);
struct spacc_engine *engine = spacc_alg->engine;
ctx->generic.flags = spacc_alg->type;
ctx->generic.engine = engine;
ctx->sw_cipher = crypto_alloc_aead(alg->cra_name, 0,
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(ctx->sw_cipher)) {
dev_warn(engine->dev, "failed to allocate fallback for %s\n",
alg->cra_name);
ctx->sw_cipher = NULL;
}
ctx->generic.key_offs = spacc_alg->key_offs;
ctx->generic.iv_offs = spacc_alg->iv_offs;
get_random_bytes(ctx->salt, sizeof(ctx->salt));
tfm->crt_aead.reqsize = sizeof(struct spacc_req);
return 0;
}
/*
* Destructor for an AEAD context. This is called when the transform is freed
* and must free the fallback cipher.
*/
static void spacc_aead_cra_exit(struct crypto_tfm *tfm)
{
struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm);
if (ctx->sw_cipher)
crypto_free_aead(ctx->sw_cipher);
ctx->sw_cipher = NULL;
}
/*
* Set the DES key for a block cipher transform. This also performs weak key
* checking if the transform has requested it.
*/
static int spacc_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
unsigned int len)
{
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
u32 tmp[DES_EXPKEY_WORDS];
if (len > DES3_EDE_KEY_SIZE) {
crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
if (unlikely(!des_ekey(tmp, key)) &&
(crypto_ablkcipher_get_flags(cipher) & CRYPTO_TFM_REQ_WEAK_KEY)) {
tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
return -EINVAL;
}
memcpy(ctx->key, key, len);
ctx->key_len = len;
return 0;
}
/*
* Set the key for an AES block cipher. Some key lengths are not supported in
* hardware so this must also check whether a fallback is needed.
*/
static int spacc_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
unsigned int len)
{
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
int err = 0;
if (len > AES_MAX_KEY_SIZE) {
crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
/*
* IPSec engine only supports 128 and 256 bit AES keys. If we get a
* request for any other size (192 bits) then we need to do a software
* fallback.
*/
if ((len != AES_KEYSIZE_128 || len != AES_KEYSIZE_256) &&
ctx->sw_cipher) {
/*
* Set the fallback transform to use the same request flags as
* the hardware transform.
*/
ctx->sw_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
ctx->sw_cipher->base.crt_flags |=
cipher->base.crt_flags & CRYPTO_TFM_REQ_MASK;
err = crypto_ablkcipher_setkey(ctx->sw_cipher, key, len);
if (err)
goto sw_setkey_failed;
} else if ((len != AES_KEYSIZE_128 || len != AES_KEYSIZE_256) &&
!ctx->sw_cipher)
err = -EINVAL;
memcpy(ctx->key, key, len);
ctx->key_len = len;
sw_setkey_failed:
if (err && ctx->sw_cipher) {
tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
tfm->crt_flags |=
ctx->sw_cipher->base.crt_flags & CRYPTO_TFM_RES_MASK;
}
return err;
}
static int spacc_kasumi_f8_setkey(struct crypto_ablkcipher *cipher,
const u8 *key, unsigned int len)
{
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
int err = 0;
if (len > AES_MAX_KEY_SIZE) {
crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
err = -EINVAL;
goto out;
}
memcpy(ctx->key, key, len);
ctx->key_len = len;
out:
return err;
}
static int spacc_ablk_need_fallback(struct spacc_req *req)
{
struct spacc_ablk_ctx *ctx;
struct crypto_tfm *tfm = req->req->tfm;
struct crypto_alg *alg = req->req->tfm->__crt_alg;
struct spacc_alg *spacc_alg = to_spacc_alg(alg);
ctx = crypto_tfm_ctx(tfm);
return (spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
SPA_CTRL_CIPH_ALG_AES &&
ctx->key_len != AES_KEYSIZE_128 &&
ctx->key_len != AES_KEYSIZE_256;
}
static void spacc_ablk_complete(struct spacc_req *req)
{
struct ablkcipher_request *ablk_req =
container_of(req->req, struct ablkcipher_request, base);
if (ablk_req->src != ablk_req->dst) {
spacc_free_ddt(req, req->src_ddt, req->src_addr, ablk_req->src,
ablk_req->nbytes, DMA_TO_DEVICE);
spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst,
ablk_req->nbytes, DMA_FROM_DEVICE);
} else
spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst,
ablk_req->nbytes, DMA_BIDIRECTIONAL);
req->req->complete(req->req, req->result);
}
static int spacc_ablk_submit(struct spacc_req *req)
{
struct crypto_tfm *tfm = req->req->tfm;
struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
struct ablkcipher_request *ablk_req = ablkcipher_request_cast(req->req);
struct crypto_alg *alg = req->req->tfm->__crt_alg;
struct spacc_alg *spacc_alg = to_spacc_alg(alg);
struct spacc_engine *engine = ctx->generic.engine;
u32 ctrl;
req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->key,
ctx->key_len, ablk_req->info, alg->cra_ablkcipher.ivsize,
NULL, 0);
writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET);
writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET);
writel(0, engine->regs + SPA_OFFSET_REG_OFFSET);
writel(ablk_req->nbytes, engine->regs + SPA_PROC_LEN_REG_OFFSET);
writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET);
writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET);
writel(0, engine->regs + SPA_AAD_LEN_REG_OFFSET);
ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) |
(req->is_encrypt ? (1 << SPA_CTRL_ENCRYPT_IDX) :
(1 << SPA_CTRL_KEY_EXP));
mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET);
return -EINPROGRESS;
}
static int spacc_ablk_do_fallback(struct ablkcipher_request *req,
unsigned alg_type, bool is_encrypt)
{
struct crypto_tfm *old_tfm =
crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req));
struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(old_tfm);
int err;
if (!ctx->sw_cipher)
return -EINVAL;
/*
* Change the request to use the software fallback transform, and once
* the ciphering has completed, put the old transform back into the
* request.
*/
ablkcipher_request_set_tfm(req, ctx->sw_cipher);
err = is_encrypt ? crypto_ablkcipher_encrypt(req) :
crypto_ablkcipher_decrypt(req);
ablkcipher_request_set_tfm(req, __crypto_ablkcipher_cast(old_tfm));
return err;
}
static int spacc_ablk_setup(struct ablkcipher_request *req, unsigned alg_type,
bool is_encrypt)
{
struct crypto_alg *alg = req->base.tfm->__crt_alg;
struct spacc_engine *engine = to_spacc_alg(alg)->engine;
struct spacc_req *dev_req = ablkcipher_request_ctx(req);
unsigned long flags;
int err = -ENOMEM;
dev_req->req = &req->base;
dev_req->is_encrypt = is_encrypt;
dev_req->engine = engine;
dev_req->complete = spacc_ablk_complete;
dev_req->result = -EINPROGRESS;
if (unlikely(spacc_ablk_need_fallback(dev_req)))
return spacc_ablk_do_fallback(req, alg_type, is_encrypt);
/*
* Create the DDT's for the engine. If we share the same source and
* destination then we can optimize by reusing the DDT's.
*/
if (req->src != req->dst) {
dev_req->src_ddt = spacc_sg_to_ddt(engine, req->src,
req->nbytes, DMA_TO_DEVICE, &dev_req->src_addr);
if (!dev_req->src_ddt)
goto out;
dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst,
req->nbytes, DMA_FROM_DEVICE, &dev_req->dst_addr);
if (!dev_req->dst_ddt)
goto out_free_src;
} else {
dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst,
req->nbytes, DMA_BIDIRECTIONAL, &dev_req->dst_addr);
if (!dev_req->dst_ddt)
goto out;
dev_req->src_ddt = NULL;
dev_req->src_addr = dev_req->dst_addr;
}
err = -EINPROGRESS;
spin_lock_irqsave(&engine->hw_lock, flags);
/*
* Check if the engine will accept the operation now. If it won't then
* we either stick it on the end of a pending list if we can backlog,
* or bailout with an error if not.
*/
if (unlikely(spacc_fifo_cmd_full(engine)) ||
engine->in_flight + 1 > engine->fifo_sz) {
if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
err = -EBUSY;
spin_unlock_irqrestore(&engine->hw_lock, flags);
goto out_free_ddts;
}
list_add_tail(&dev_req->list, &engine->pending);
} else {
list_add_tail(&dev_req->list, &engine->pending);
spacc_push(engine);
}
spin_unlock_irqrestore(&engine->hw_lock, flags);
goto out;
out_free_ddts:
spacc_free_ddt(dev_req, dev_req->dst_ddt, dev_req->dst_addr, req->dst,
req->nbytes, req->src == req->dst ?
DMA_BIDIRECTIONAL : DMA_FROM_DEVICE);
out_free_src:
if (req->src != req->dst)
spacc_free_ddt(dev_req, dev_req->src_ddt, dev_req->src_addr,
req->src, req->nbytes, DMA_TO_DEVICE);
out:
return err;
}
static int spacc_ablk_cra_init(struct crypto_tfm *tfm)
{
struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
struct crypto_alg *alg = tfm->__crt_alg;
struct spacc_alg *spacc_alg = to_spacc_alg(alg);
struct spacc_engine *engine = spacc_alg->engine;
ctx->generic.flags = spacc_alg->type;
ctx->generic.engine = engine;
if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
ctx->sw_cipher = crypto_alloc_ablkcipher(alg->cra_name, 0,
CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(ctx->sw_cipher)) {
dev_warn(engine->dev, "failed to allocate fallback for %s\n",
alg->cra_name);
ctx->sw_cipher = NULL;
}
}
ctx->generic.key_offs = spacc_alg->key_offs;
ctx->generic.iv_offs = spacc_alg->iv_offs;
tfm->crt_ablkcipher.reqsize = sizeof(struct spacc_req);
return 0;
}
static void spacc_ablk_cra_exit(struct crypto_tfm *tfm)
{
struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
if (ctx->sw_cipher)
crypto_free_ablkcipher(ctx->sw_cipher);
ctx->sw_cipher = NULL;
}
static int spacc_ablk_encrypt(struct ablkcipher_request *req)
{
struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(req);
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
return spacc_ablk_setup(req, alg->type, 1);
}
static int spacc_ablk_decrypt(struct ablkcipher_request *req)
{
struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(req);
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
return spacc_ablk_setup(req, alg->type, 0);
}
static inline int spacc_fifo_stat_empty(struct spacc_engine *engine)
{
return readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET) &
SPA_FIFO_STAT_EMPTY;
}
static void spacc_process_done(struct spacc_engine *engine)
{
struct spacc_req *req;
unsigned long flags;
spin_lock_irqsave(&engine->hw_lock, flags);
while (!spacc_fifo_stat_empty(engine)) {
req = list_first_entry(&engine->in_progress, struct spacc_req,
list);
list_move_tail(&req->list, &engine->completed);
--engine->in_flight;
/* POP the status register. */
writel(~0, engine->regs + SPA_STAT_POP_REG_OFFSET);
req->result = (readl(engine->regs + SPA_STATUS_REG_OFFSET) &
SPA_STATUS_RES_CODE_MASK) >> SPA_STATUS_RES_CODE_OFFSET;
/*
* Convert the SPAcc error status into the standard POSIX error
* codes.
*/
if (unlikely(req->result)) {
switch (req->result) {
case SPA_STATUS_ICV_FAIL:
req->result = -EBADMSG;
break;
case SPA_STATUS_MEMORY_ERROR:
dev_warn(engine->dev,
"memory error triggered\n");
req->result = -EFAULT;
break;
case SPA_STATUS_BLOCK_ERROR:
dev_warn(engine->dev,
"block error triggered\n");
req->result = -EIO;
break;
}
}
}
tasklet_schedule(&engine->complete);
spin_unlock_irqrestore(&engine->hw_lock, flags);
}
static irqreturn_t spacc_spacc_irq(int irq, void *dev)
{
struct spacc_engine *engine = (struct spacc_engine *)dev;
u32 spacc_irq_stat = readl(engine->regs + SPA_IRQ_STAT_REG_OFFSET);
writel(spacc_irq_stat, engine->regs + SPA_IRQ_STAT_REG_OFFSET);
spacc_process_done(engine);
return IRQ_HANDLED;
}
static void spacc_packet_timeout(unsigned long data)
{
struct spacc_engine *engine = (struct spacc_engine *)data;
spacc_process_done(engine);
}
static int spacc_req_submit(struct spacc_req *req)
{
struct crypto_alg *alg = req->req->tfm->__crt_alg;
if (CRYPTO_ALG_TYPE_AEAD == (CRYPTO_ALG_TYPE_MASK & alg->cra_flags))
return spacc_aead_submit(req);
else
return spacc_ablk_submit(req);
}
static void spacc_spacc_complete(unsigned long data)
{
struct spacc_engine *engine = (struct spacc_engine *)data;
struct spacc_req *req, *tmp;
unsigned long flags;
LIST_HEAD(completed);
spin_lock_irqsave(&engine->hw_lock, flags);
list_splice_init(&engine->completed, &completed);
spacc_push(engine);
if (engine->in_flight)
mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
spin_unlock_irqrestore(&engine->hw_lock, flags);
list_for_each_entry_safe(req, tmp, &completed, list) {
req->complete(req);
list_del(&req->list);
}
}
#ifdef CONFIG_PM
static int spacc_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct spacc_engine *engine = platform_get_drvdata(pdev);
/*
* We only support standby mode. All we have to do is gate the clock to
* the spacc. The hardware will preserve state until we turn it back
* on again.
*/
clk_disable(engine->clk);
return 0;
}
static int spacc_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct spacc_engine *engine = platform_get_drvdata(pdev);
return clk_enable(engine->clk);
}
static const struct dev_pm_ops spacc_pm_ops = {
.suspend = spacc_suspend,
.resume = spacc_resume,
};
#endif /* CONFIG_PM */
static inline struct spacc_engine *spacc_dev_to_engine(struct device *dev)
{
return dev ? platform_get_drvdata(to_platform_device(dev)) : NULL;
}
static ssize_t spacc_stat_irq_thresh_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct spacc_engine *engine = spacc_dev_to_engine(dev);
return snprintf(buf, PAGE_SIZE, "%u\n", engine->stat_irq_thresh);
}
static ssize_t spacc_stat_irq_thresh_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
struct spacc_engine *engine = spacc_dev_to_engine(dev);
unsigned long thresh;
if (strict_strtoul(buf, 0, &thresh))
return -EINVAL;
thresh = clamp(thresh, 1UL, engine->fifo_sz - 1);
engine->stat_irq_thresh = thresh;
writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET,
engine->regs + SPA_IRQ_CTRL_REG_OFFSET);
return len;
}
static DEVICE_ATTR(stat_irq_thresh, 0644, spacc_stat_irq_thresh_show,
spacc_stat_irq_thresh_store);
static struct spacc_alg ipsec_engine_algs[] = {
{
.ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC,
.key_offs = 0,
.iv_offs = AES_MAX_KEY_SIZE,
.alg = {
.cra_name = "cbc(aes)",
.cra_driver_name = "cbc-aes-picoxcell",
.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_ablkcipher = {
.setkey = spacc_aes_setkey,
.encrypt = spacc_ablk_encrypt,
.decrypt = spacc_ablk_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
},
.cra_init = spacc_ablk_cra_init,
.cra_exit = spacc_ablk_cra_exit,
},
},
{
.key_offs = 0,
.iv_offs = AES_MAX_KEY_SIZE,
.ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_ECB,
.alg = {
.cra_name = "ecb(aes)",
.cra_driver_name = "ecb-aes-picoxcell",
.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_ablkcipher = {
.setkey = spacc_aes_setkey,
.encrypt = spacc_ablk_encrypt,
.decrypt = spacc_ablk_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
},
.cra_init = spacc_ablk_cra_init,
.cra_exit = spacc_ablk_cra_exit,
},
},
{
.key_offs = DES_BLOCK_SIZE,
.iv_offs = 0,
.ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC,
.alg = {
.cra_name = "cbc(des)",
.cra_driver_name = "cbc-des-picoxcell",
.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = DES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_ablkcipher = {
.setkey = spacc_des_setkey,
.encrypt = spacc_ablk_encrypt,
.decrypt = spacc_ablk_decrypt,
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.ivsize = DES_BLOCK_SIZE,
},
.cra_init = spacc_ablk_cra_init,
.cra_exit = spacc_ablk_cra_exit,
},
},
{
.key_offs = DES_BLOCK_SIZE,
.iv_offs = 0,
.ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB,
.alg = {
.cra_name = "ecb(des)",
.cra_driver_name = "ecb-des-picoxcell",
.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = DES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_ablkcipher = {
.setkey = spacc_des_setkey,
.encrypt = spacc_ablk_encrypt,
.decrypt = spacc_ablk_decrypt,
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
},
.cra_init = spacc_ablk_cra_init,
.cra_exit = spacc_ablk_cra_exit,
},
},
{
.key_offs = DES_BLOCK_SIZE,
.iv_offs = 0,
.ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC,
.alg = {
.cra_name = "cbc(des3_ede)",
.cra_driver_name = "cbc-des3-ede-picoxcell",
.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_ablkcipher = {
.setkey = spacc_des_setkey,
.encrypt = spacc_ablk_encrypt,
.decrypt = spacc_ablk_decrypt,
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.ivsize = DES3_EDE_BLOCK_SIZE,
},
.cra_init = spacc_ablk_cra_init,
.cra_exit = spacc_ablk_cra_exit,
},
},
{
.key_offs = DES_BLOCK_SIZE,
.iv_offs = 0,
.ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB,
.alg = {
.cra_name = "ecb(des3_ede)",
.cra_driver_name = "ecb-des3-ede-picoxcell",
.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_ablkcipher = {
.setkey = spacc_des_setkey,
.encrypt = spacc_ablk_encrypt,
.decrypt = spacc_ablk_decrypt,
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
},
.cra_init = spacc_ablk_cra_init,
.cra_exit = spacc_ablk_cra_exit,
},
},
{
.ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
SPA_CTRL_HASH_ALG_SHA | SPA_CTRL_HASH_MODE_HMAC,
.key_offs = 0,
.iv_offs = AES_MAX_KEY_SIZE,
.alg = {
.cra_name = "authenc(hmac(sha1),cbc(aes))",
.cra_driver_name = "authenc-hmac-sha1-cbc-aes-picoxcell",
.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct spacc_aead_ctx),
.cra_type = &crypto_aead_type,
.cra_module = THIS_MODULE,
.cra_aead = {
.setkey = spacc_aead_setkey,
.setauthsize = spacc_aead_setauthsize,
.encrypt = spacc_aead_encrypt,
.decrypt = spacc_aead_decrypt,
.givencrypt = spacc_aead_givencrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.cra_init = spacc_aead_cra_init,
.cra_exit = spacc_aead_cra_exit,
},
},
{
.ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
SPA_CTRL_HASH_ALG_SHA256 |
SPA_CTRL_HASH_MODE_HMAC,
.key_offs = 0,
.iv_offs = AES_MAX_KEY_SIZE,
.alg = {
.cra_name = "authenc(hmac(sha256),cbc(aes))",
.cra_driver_name = "authenc-hmac-sha256-cbc-aes-picoxcell",
.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct spacc_aead_ctx),
.cra_type = &crypto_aead_type,
.cra_module = THIS_MODULE,
.cra_aead = {
.setkey = spacc_aead_setkey,
.setauthsize = spacc_aead_setauthsize,
.encrypt = spacc_aead_encrypt,
.decrypt = spacc_aead_decrypt,
.givencrypt = spacc_aead_givencrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.cra_init = spacc_aead_cra_init,
.cra_exit = spacc_aead_cra_exit,
},
},
{
.key_offs = 0,
.iv_offs = AES_MAX_KEY_SIZE,
.ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
SPA_CTRL_HASH_ALG_MD5 | SPA_CTRL_HASH_MODE_HMAC,
.alg = {
.cra_name = "authenc(hmac(md5),cbc(aes))",
.cra_driver_name = "authenc-hmac-md5-cbc-aes-picoxcell",
.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct spacc_aead_ctx),
.cra_type = &crypto_aead_type,
.cra_module = THIS_MODULE,
.cra_aead = {
.setkey = spacc_aead_setkey,
.setauthsize = spacc_aead_setauthsize,
.encrypt = spacc_aead_encrypt,
.decrypt = spacc_aead_decrypt,
.givencrypt = spacc_aead_givencrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.cra_init = spacc_aead_cra_init,
.cra_exit = spacc_aead_cra_exit,
},
},
{
.key_offs = DES_BLOCK_SIZE,
.iv_offs = 0,
.ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC |
SPA_CTRL_HASH_ALG_SHA | SPA_CTRL_HASH_MODE_HMAC,
.alg = {
.cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-sha1-cbc-3des-picoxcell",
.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct spacc_aead_ctx),
.cra_type = &crypto_aead_type,
.cra_module = THIS_MODULE,
.cra_aead = {
.setkey = spacc_aead_setkey,
.setauthsize = spacc_aead_setauthsize,
.encrypt = spacc_aead_encrypt,
.decrypt = spacc_aead_decrypt,
.givencrypt = spacc_aead_givencrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.cra_init = spacc_aead_cra_init,
.cra_exit = spacc_aead_cra_exit,
},
},
{
.key_offs = DES_BLOCK_SIZE,
.iv_offs = 0,
.ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC |
SPA_CTRL_HASH_ALG_SHA256 |
SPA_CTRL_HASH_MODE_HMAC,
.alg = {
.cra_name = "authenc(hmac(sha256),cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-sha256-cbc-3des-picoxcell",
.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct spacc_aead_ctx),
.cra_type = &crypto_aead_type,
.cra_module = THIS_MODULE,
.cra_aead = {
.setkey = spacc_aead_setkey,
.setauthsize = spacc_aead_setauthsize,
.encrypt = spacc_aead_encrypt,
.decrypt = spacc_aead_decrypt,
.givencrypt = spacc_aead_givencrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.cra_init = spacc_aead_cra_init,
.cra_exit = spacc_aead_cra_exit,
},
},
{
.key_offs = DES_BLOCK_SIZE,
.iv_offs = 0,
.ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC |
SPA_CTRL_HASH_ALG_MD5 | SPA_CTRL_HASH_MODE_HMAC,
.alg = {
.cra_name = "authenc(hmac(md5),cbc(des3_ede))",
.cra_driver_name = "authenc-hmac-md5-cbc-3des-picoxcell",
.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct spacc_aead_ctx),
.cra_type = &crypto_aead_type,
.cra_module = THIS_MODULE,
.cra_aead = {
.setkey = spacc_aead_setkey,
.setauthsize = spacc_aead_setauthsize,
.encrypt = spacc_aead_encrypt,
.decrypt = spacc_aead_decrypt,
.givencrypt = spacc_aead_givencrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = MD5_DIGEST_SIZE,
},
.cra_init = spacc_aead_cra_init,
.cra_exit = spacc_aead_cra_exit,
},
},
};
static struct spacc_alg l2_engine_algs[] = {
{
.key_offs = 0,
.iv_offs = SPACC_CRYPTO_KASUMI_F8_KEY_LEN,
.ctrl_default = SPA_CTRL_CIPH_ALG_KASUMI |
SPA_CTRL_CIPH_MODE_F8,
.alg = {
.cra_name = "f8(kasumi)",
.cra_driver_name = "f8-kasumi-picoxcell",
.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_GIVCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = 8,
.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_ablkcipher = {
.setkey = spacc_kasumi_f8_setkey,
.encrypt = spacc_ablk_encrypt,
.decrypt = spacc_ablk_decrypt,
.min_keysize = 16,
.max_keysize = 16,
.ivsize = 8,
},
.cra_init = spacc_ablk_cra_init,
.cra_exit = spacc_ablk_cra_exit,
},
},
};
static int __devinit spacc_probe(struct platform_device *pdev,
unsigned max_ctxs, size_t cipher_pg_sz,
size_t hash_pg_sz, size_t fifo_sz,
struct spacc_alg *algs, size_t num_algs)
{
int i, err, ret = -EINVAL;
struct resource *mem, *irq;
struct spacc_engine *engine = devm_kzalloc(&pdev->dev, sizeof(*engine),
GFP_KERNEL);
if (!engine)
return -ENOMEM;
engine->max_ctxs = max_ctxs;
engine->cipher_pg_sz = cipher_pg_sz;
engine->hash_pg_sz = hash_pg_sz;
engine->fifo_sz = fifo_sz;
engine->algs = algs;
engine->num_algs = num_algs;
engine->name = dev_name(&pdev->dev);
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (!mem || !irq) {
dev_err(&pdev->dev, "no memory/irq resource for engine\n");
return -ENXIO;
}
if (!devm_request_mem_region(&pdev->dev, mem->start, resource_size(mem),
engine->name))
return -ENOMEM;
engine->regs = devm_ioremap(&pdev->dev, mem->start, resource_size(mem));
if (!engine->regs) {
dev_err(&pdev->dev, "memory map failed\n");
return -ENOMEM;
}
if (devm_request_irq(&pdev->dev, irq->start, spacc_spacc_irq, 0,
engine->name, engine)) {
dev_err(engine->dev, "failed to request IRQ\n");
return -EBUSY;
}
engine->dev = &pdev->dev;
engine->cipher_ctx_base = engine->regs + SPA_CIPH_KEY_BASE_REG_OFFSET;
engine->hash_key_base = engine->regs + SPA_HASH_KEY_BASE_REG_OFFSET;
engine->req_pool = dmam_pool_create(engine->name, engine->dev,
MAX_DDT_LEN * sizeof(struct spacc_ddt), 8, SZ_64K);
if (!engine->req_pool)
return -ENOMEM;
spin_lock_init(&engine->hw_lock);
engine->clk = clk_get(&pdev->dev, NULL);
if (IS_ERR(engine->clk)) {
dev_info(&pdev->dev, "clk unavailable\n");
device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh);
return PTR_ERR(engine->clk);
}
if (clk_enable(engine->clk)) {
dev_info(&pdev->dev, "unable to enable clk\n");
clk_put(engine->clk);
return -EIO;
}
err = device_create_file(&pdev->dev, &dev_attr_stat_irq_thresh);
if (err) {
clk_disable(engine->clk);
clk_put(engine->clk);
return err;
}
/*
* Use an IRQ threshold of 50% as a default. This seems to be a
* reasonable trade off of latency against throughput but can be
* changed at runtime.
*/
engine->stat_irq_thresh = (engine->fifo_sz / 2);
/*
* Configure the interrupts. We only use the STAT_CNT interrupt as we
* only submit a new packet for processing when we complete another in
* the queue. This minimizes time spent in the interrupt handler.
*/
writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET,
engine->regs + SPA_IRQ_CTRL_REG_OFFSET);
writel(SPA_IRQ_EN_STAT_EN | SPA_IRQ_EN_GLBL_EN,
engine->regs + SPA_IRQ_EN_REG_OFFSET);
setup_timer(&engine->packet_timeout, spacc_packet_timeout,
(unsigned long)engine);
INIT_LIST_HEAD(&engine->pending);
INIT_LIST_HEAD(&engine->completed);
INIT_LIST_HEAD(&engine->in_progress);
engine->in_flight = 0;
tasklet_init(&engine->complete, spacc_spacc_complete,
(unsigned long)engine);
platform_set_drvdata(pdev, engine);
INIT_LIST_HEAD(&engine->registered_algs);
for (i = 0; i < engine->num_algs; ++i) {
engine->algs[i].engine = engine;
err = crypto_register_alg(&engine->algs[i].alg);
if (!err) {
list_add_tail(&engine->algs[i].entry,
&engine->registered_algs);
ret = 0;
}
if (err)
dev_err(engine->dev, "failed to register alg \"%s\"\n",
engine->algs[i].alg.cra_name);
else
dev_dbg(engine->dev, "registered alg \"%s\"\n",
engine->algs[i].alg.cra_name);
}
return ret;
}
static int __devexit spacc_remove(struct platform_device *pdev)
{
struct spacc_alg *alg, *next;
struct spacc_engine *engine = platform_get_drvdata(pdev);
del_timer_sync(&engine->packet_timeout);
device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh);
list_for_each_entry_safe(alg, next, &engine->registered_algs, entry) {
list_del(&alg->entry);
crypto_unregister_alg(&alg->alg);
}
clk_disable(engine->clk);
clk_put(engine->clk);
return 0;
}
static int __devinit ipsec_probe(struct platform_device *pdev)
{
return spacc_probe(pdev, SPACC_CRYPTO_IPSEC_MAX_CTXS,
SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ,
SPACC_CRYPTO_IPSEC_HASH_PG_SZ,
SPACC_CRYPTO_IPSEC_FIFO_SZ, ipsec_engine_algs,
ARRAY_SIZE(ipsec_engine_algs));
}
static struct platform_driver ipsec_driver = {
.probe = ipsec_probe,
.remove = __devexit_p(spacc_remove),
.driver = {
.name = "picoxcell-ipsec",
#ifdef CONFIG_PM
.pm = &spacc_pm_ops,
#endif /* CONFIG_PM */
},
};
static int __devinit l2_probe(struct platform_device *pdev)
{
return spacc_probe(pdev, SPACC_CRYPTO_L2_MAX_CTXS,
SPACC_CRYPTO_L2_CIPHER_PG_SZ,
SPACC_CRYPTO_L2_HASH_PG_SZ, SPACC_CRYPTO_L2_FIFO_SZ,
l2_engine_algs, ARRAY_SIZE(l2_engine_algs));
}
static struct platform_driver l2_driver = {
.probe = l2_probe,
.remove = __devexit_p(spacc_remove),
.driver = {
.name = "picoxcell-l2",
#ifdef CONFIG_PM
.pm = &spacc_pm_ops,
#endif /* CONFIG_PM */
},
};
static int __init spacc_init(void)
{
int ret = platform_driver_register(&ipsec_driver);
if (ret) {
pr_err("failed to register ipsec spacc driver");
goto out;
}
ret = platform_driver_register(&l2_driver);
if (ret) {
pr_err("failed to register l2 spacc driver");
goto l2_failed;
}
return 0;
l2_failed:
platform_driver_unregister(&ipsec_driver);
out:
return ret;
}
module_init(spacc_init);
static void __exit spacc_exit(void)
{
platform_driver_unregister(&ipsec_driver);
platform_driver_unregister(&l2_driver);
}
module_exit(spacc_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Jamie Iles");