forked from luck/tmp_suning_uos_patched
7193bea53f
* 'core-futexes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: futex: Detect mismatched requeue targets futex: Correct futex_wait_requeue_pi() commentary
2623 lines
67 KiB
C
2623 lines
67 KiB
C
/*
|
|
* Fast Userspace Mutexes (which I call "Futexes!").
|
|
* (C) Rusty Russell, IBM 2002
|
|
*
|
|
* Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
|
|
* (C) Copyright 2003 Red Hat Inc, All Rights Reserved
|
|
*
|
|
* Removed page pinning, fix privately mapped COW pages and other cleanups
|
|
* (C) Copyright 2003, 2004 Jamie Lokier
|
|
*
|
|
* Robust futex support started by Ingo Molnar
|
|
* (C) Copyright 2006 Red Hat Inc, All Rights Reserved
|
|
* Thanks to Thomas Gleixner for suggestions, analysis and fixes.
|
|
*
|
|
* PI-futex support started by Ingo Molnar and Thomas Gleixner
|
|
* Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
|
|
* Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
|
|
*
|
|
* PRIVATE futexes by Eric Dumazet
|
|
* Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
|
|
*
|
|
* Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
|
|
* Copyright (C) IBM Corporation, 2009
|
|
* Thanks to Thomas Gleixner for conceptual design and careful reviews.
|
|
*
|
|
* Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
|
|
* enough at me, Linus for the original (flawed) idea, Matthew
|
|
* Kirkwood for proof-of-concept implementation.
|
|
*
|
|
* "The futexes are also cursed."
|
|
* "But they come in a choice of three flavours!"
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
#include <linux/slab.h>
|
|
#include <linux/poll.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/file.h>
|
|
#include <linux/jhash.h>
|
|
#include <linux/init.h>
|
|
#include <linux/futex.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/module.h>
|
|
#include <linux/magic.h>
|
|
#include <linux/pid.h>
|
|
#include <linux/nsproxy.h>
|
|
|
|
#include <asm/futex.h>
|
|
|
|
#include "rtmutex_common.h"
|
|
|
|
int __read_mostly futex_cmpxchg_enabled;
|
|
|
|
#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
|
|
|
|
/*
|
|
* Priority Inheritance state:
|
|
*/
|
|
struct futex_pi_state {
|
|
/*
|
|
* list of 'owned' pi_state instances - these have to be
|
|
* cleaned up in do_exit() if the task exits prematurely:
|
|
*/
|
|
struct list_head list;
|
|
|
|
/*
|
|
* The PI object:
|
|
*/
|
|
struct rt_mutex pi_mutex;
|
|
|
|
struct task_struct *owner;
|
|
atomic_t refcount;
|
|
|
|
union futex_key key;
|
|
};
|
|
|
|
/*
|
|
* We use this hashed waitqueue instead of a normal wait_queue_t, so
|
|
* we can wake only the relevant ones (hashed queues may be shared).
|
|
*
|
|
* A futex_q has a woken state, just like tasks have TASK_RUNNING.
|
|
* It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
|
|
* The order of wakup is always to make the first condition true, then
|
|
* wake up q->waiter, then make the second condition true.
|
|
*/
|
|
struct futex_q {
|
|
struct plist_node list;
|
|
/* Waiter reference */
|
|
struct task_struct *task;
|
|
|
|
/* Which hash list lock to use: */
|
|
spinlock_t *lock_ptr;
|
|
|
|
/* Key which the futex is hashed on: */
|
|
union futex_key key;
|
|
|
|
/* Optional priority inheritance state: */
|
|
struct futex_pi_state *pi_state;
|
|
|
|
/* rt_waiter storage for requeue_pi: */
|
|
struct rt_mutex_waiter *rt_waiter;
|
|
|
|
/* The expected requeue pi target futex key: */
|
|
union futex_key *requeue_pi_key;
|
|
|
|
/* Bitset for the optional bitmasked wakeup */
|
|
u32 bitset;
|
|
};
|
|
|
|
/*
|
|
* Hash buckets are shared by all the futex_keys that hash to the same
|
|
* location. Each key may have multiple futex_q structures, one for each task
|
|
* waiting on a futex.
|
|
*/
|
|
struct futex_hash_bucket {
|
|
spinlock_t lock;
|
|
struct plist_head chain;
|
|
};
|
|
|
|
static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
|
|
|
|
/*
|
|
* We hash on the keys returned from get_futex_key (see below).
|
|
*/
|
|
static struct futex_hash_bucket *hash_futex(union futex_key *key)
|
|
{
|
|
u32 hash = jhash2((u32*)&key->both.word,
|
|
(sizeof(key->both.word)+sizeof(key->both.ptr))/4,
|
|
key->both.offset);
|
|
return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
|
|
}
|
|
|
|
/*
|
|
* Return 1 if two futex_keys are equal, 0 otherwise.
|
|
*/
|
|
static inline int match_futex(union futex_key *key1, union futex_key *key2)
|
|
{
|
|
return (key1->both.word == key2->both.word
|
|
&& key1->both.ptr == key2->both.ptr
|
|
&& key1->both.offset == key2->both.offset);
|
|
}
|
|
|
|
/*
|
|
* Take a reference to the resource addressed by a key.
|
|
* Can be called while holding spinlocks.
|
|
*
|
|
*/
|
|
static void get_futex_key_refs(union futex_key *key)
|
|
{
|
|
if (!key->both.ptr)
|
|
return;
|
|
|
|
switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
|
|
case FUT_OFF_INODE:
|
|
atomic_inc(&key->shared.inode->i_count);
|
|
break;
|
|
case FUT_OFF_MMSHARED:
|
|
atomic_inc(&key->private.mm->mm_count);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Drop a reference to the resource addressed by a key.
|
|
* The hash bucket spinlock must not be held.
|
|
*/
|
|
static void drop_futex_key_refs(union futex_key *key)
|
|
{
|
|
if (!key->both.ptr) {
|
|
/* If we're here then we tried to put a key we failed to get */
|
|
WARN_ON_ONCE(1);
|
|
return;
|
|
}
|
|
|
|
switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
|
|
case FUT_OFF_INODE:
|
|
iput(key->shared.inode);
|
|
break;
|
|
case FUT_OFF_MMSHARED:
|
|
mmdrop(key->private.mm);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* get_futex_key - Get parameters which are the keys for a futex.
|
|
* @uaddr: virtual address of the futex
|
|
* @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
|
|
* @key: address where result is stored.
|
|
* @rw: mapping needs to be read/write (values: VERIFY_READ, VERIFY_WRITE)
|
|
*
|
|
* Returns a negative error code or 0
|
|
* The key words are stored in *key on success.
|
|
*
|
|
* For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
|
|
* offset_within_page). For private mappings, it's (uaddr, current->mm).
|
|
* We can usually work out the index without swapping in the page.
|
|
*
|
|
* lock_page() might sleep, the caller should not hold a spinlock.
|
|
*/
|
|
static int
|
|
get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
|
|
{
|
|
unsigned long address = (unsigned long)uaddr;
|
|
struct mm_struct *mm = current->mm;
|
|
struct page *page;
|
|
int err;
|
|
|
|
/*
|
|
* The futex address must be "naturally" aligned.
|
|
*/
|
|
key->both.offset = address % PAGE_SIZE;
|
|
if (unlikely((address % sizeof(u32)) != 0))
|
|
return -EINVAL;
|
|
address -= key->both.offset;
|
|
|
|
/*
|
|
* PROCESS_PRIVATE futexes are fast.
|
|
* As the mm cannot disappear under us and the 'key' only needs
|
|
* virtual address, we dont even have to find the underlying vma.
|
|
* Note : We do have to check 'uaddr' is a valid user address,
|
|
* but access_ok() should be faster than find_vma()
|
|
*/
|
|
if (!fshared) {
|
|
if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
|
|
return -EFAULT;
|
|
key->private.mm = mm;
|
|
key->private.address = address;
|
|
get_futex_key_refs(key);
|
|
return 0;
|
|
}
|
|
|
|
again:
|
|
err = get_user_pages_fast(address, 1, rw == VERIFY_WRITE, &page);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
page = compound_head(page);
|
|
lock_page(page);
|
|
if (!page->mapping) {
|
|
unlock_page(page);
|
|
put_page(page);
|
|
goto again;
|
|
}
|
|
|
|
/*
|
|
* Private mappings are handled in a simple way.
|
|
*
|
|
* NOTE: When userspace waits on a MAP_SHARED mapping, even if
|
|
* it's a read-only handle, it's expected that futexes attach to
|
|
* the object not the particular process.
|
|
*/
|
|
if (PageAnon(page)) {
|
|
key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
|
|
key->private.mm = mm;
|
|
key->private.address = address;
|
|
} else {
|
|
key->both.offset |= FUT_OFF_INODE; /* inode-based key */
|
|
key->shared.inode = page->mapping->host;
|
|
key->shared.pgoff = page->index;
|
|
}
|
|
|
|
get_futex_key_refs(key);
|
|
|
|
unlock_page(page);
|
|
put_page(page);
|
|
return 0;
|
|
}
|
|
|
|
static inline
|
|
void put_futex_key(int fshared, union futex_key *key)
|
|
{
|
|
drop_futex_key_refs(key);
|
|
}
|
|
|
|
/*
|
|
* fault_in_user_writeable - fault in user address and verify RW access
|
|
* @uaddr: pointer to faulting user space address
|
|
*
|
|
* Slow path to fixup the fault we just took in the atomic write
|
|
* access to @uaddr.
|
|
*
|
|
* We have no generic implementation of a non destructive write to the
|
|
* user address. We know that we faulted in the atomic pagefault
|
|
* disabled section so we can as well avoid the #PF overhead by
|
|
* calling get_user_pages() right away.
|
|
*/
|
|
static int fault_in_user_writeable(u32 __user *uaddr)
|
|
{
|
|
int ret = get_user_pages(current, current->mm, (unsigned long)uaddr,
|
|
1, 1, 0, NULL, NULL);
|
|
return ret < 0 ? ret : 0;
|
|
}
|
|
|
|
/**
|
|
* futex_top_waiter() - Return the highest priority waiter on a futex
|
|
* @hb: the hash bucket the futex_q's reside in
|
|
* @key: the futex key (to distinguish it from other futex futex_q's)
|
|
*
|
|
* Must be called with the hb lock held.
|
|
*/
|
|
static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
|
|
union futex_key *key)
|
|
{
|
|
struct futex_q *this;
|
|
|
|
plist_for_each_entry(this, &hb->chain, list) {
|
|
if (match_futex(&this->key, key))
|
|
return this;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
|
|
{
|
|
u32 curval;
|
|
|
|
pagefault_disable();
|
|
curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
|
|
pagefault_enable();
|
|
|
|
return curval;
|
|
}
|
|
|
|
static int get_futex_value_locked(u32 *dest, u32 __user *from)
|
|
{
|
|
int ret;
|
|
|
|
pagefault_disable();
|
|
ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
|
|
pagefault_enable();
|
|
|
|
return ret ? -EFAULT : 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* PI code:
|
|
*/
|
|
static int refill_pi_state_cache(void)
|
|
{
|
|
struct futex_pi_state *pi_state;
|
|
|
|
if (likely(current->pi_state_cache))
|
|
return 0;
|
|
|
|
pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
|
|
|
|
if (!pi_state)
|
|
return -ENOMEM;
|
|
|
|
INIT_LIST_HEAD(&pi_state->list);
|
|
/* pi_mutex gets initialized later */
|
|
pi_state->owner = NULL;
|
|
atomic_set(&pi_state->refcount, 1);
|
|
pi_state->key = FUTEX_KEY_INIT;
|
|
|
|
current->pi_state_cache = pi_state;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct futex_pi_state * alloc_pi_state(void)
|
|
{
|
|
struct futex_pi_state *pi_state = current->pi_state_cache;
|
|
|
|
WARN_ON(!pi_state);
|
|
current->pi_state_cache = NULL;
|
|
|
|
return pi_state;
|
|
}
|
|
|
|
static void free_pi_state(struct futex_pi_state *pi_state)
|
|
{
|
|
if (!atomic_dec_and_test(&pi_state->refcount))
|
|
return;
|
|
|
|
/*
|
|
* If pi_state->owner is NULL, the owner is most probably dying
|
|
* and has cleaned up the pi_state already
|
|
*/
|
|
if (pi_state->owner) {
|
|
spin_lock_irq(&pi_state->owner->pi_lock);
|
|
list_del_init(&pi_state->list);
|
|
spin_unlock_irq(&pi_state->owner->pi_lock);
|
|
|
|
rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
|
|
}
|
|
|
|
if (current->pi_state_cache)
|
|
kfree(pi_state);
|
|
else {
|
|
/*
|
|
* pi_state->list is already empty.
|
|
* clear pi_state->owner.
|
|
* refcount is at 0 - put it back to 1.
|
|
*/
|
|
pi_state->owner = NULL;
|
|
atomic_set(&pi_state->refcount, 1);
|
|
current->pi_state_cache = pi_state;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Look up the task based on what TID userspace gave us.
|
|
* We dont trust it.
|
|
*/
|
|
static struct task_struct * futex_find_get_task(pid_t pid)
|
|
{
|
|
struct task_struct *p;
|
|
const struct cred *cred = current_cred(), *pcred;
|
|
|
|
rcu_read_lock();
|
|
p = find_task_by_vpid(pid);
|
|
if (!p) {
|
|
p = ERR_PTR(-ESRCH);
|
|
} else {
|
|
pcred = __task_cred(p);
|
|
if (cred->euid != pcred->euid &&
|
|
cred->euid != pcred->uid)
|
|
p = ERR_PTR(-ESRCH);
|
|
else
|
|
get_task_struct(p);
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
* This task is holding PI mutexes at exit time => bad.
|
|
* Kernel cleans up PI-state, but userspace is likely hosed.
|
|
* (Robust-futex cleanup is separate and might save the day for userspace.)
|
|
*/
|
|
void exit_pi_state_list(struct task_struct *curr)
|
|
{
|
|
struct list_head *next, *head = &curr->pi_state_list;
|
|
struct futex_pi_state *pi_state;
|
|
struct futex_hash_bucket *hb;
|
|
union futex_key key = FUTEX_KEY_INIT;
|
|
|
|
if (!futex_cmpxchg_enabled)
|
|
return;
|
|
/*
|
|
* We are a ZOMBIE and nobody can enqueue itself on
|
|
* pi_state_list anymore, but we have to be careful
|
|
* versus waiters unqueueing themselves:
|
|
*/
|
|
spin_lock_irq(&curr->pi_lock);
|
|
while (!list_empty(head)) {
|
|
|
|
next = head->next;
|
|
pi_state = list_entry(next, struct futex_pi_state, list);
|
|
key = pi_state->key;
|
|
hb = hash_futex(&key);
|
|
spin_unlock_irq(&curr->pi_lock);
|
|
|
|
spin_lock(&hb->lock);
|
|
|
|
spin_lock_irq(&curr->pi_lock);
|
|
/*
|
|
* We dropped the pi-lock, so re-check whether this
|
|
* task still owns the PI-state:
|
|
*/
|
|
if (head->next != next) {
|
|
spin_unlock(&hb->lock);
|
|
continue;
|
|
}
|
|
|
|
WARN_ON(pi_state->owner != curr);
|
|
WARN_ON(list_empty(&pi_state->list));
|
|
list_del_init(&pi_state->list);
|
|
pi_state->owner = NULL;
|
|
spin_unlock_irq(&curr->pi_lock);
|
|
|
|
rt_mutex_unlock(&pi_state->pi_mutex);
|
|
|
|
spin_unlock(&hb->lock);
|
|
|
|
spin_lock_irq(&curr->pi_lock);
|
|
}
|
|
spin_unlock_irq(&curr->pi_lock);
|
|
}
|
|
|
|
static int
|
|
lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
|
|
union futex_key *key, struct futex_pi_state **ps)
|
|
{
|
|
struct futex_pi_state *pi_state = NULL;
|
|
struct futex_q *this, *next;
|
|
struct plist_head *head;
|
|
struct task_struct *p;
|
|
pid_t pid = uval & FUTEX_TID_MASK;
|
|
|
|
head = &hb->chain;
|
|
|
|
plist_for_each_entry_safe(this, next, head, list) {
|
|
if (match_futex(&this->key, key)) {
|
|
/*
|
|
* Another waiter already exists - bump up
|
|
* the refcount and return its pi_state:
|
|
*/
|
|
pi_state = this->pi_state;
|
|
/*
|
|
* Userspace might have messed up non PI and PI futexes
|
|
*/
|
|
if (unlikely(!pi_state))
|
|
return -EINVAL;
|
|
|
|
WARN_ON(!atomic_read(&pi_state->refcount));
|
|
WARN_ON(pid && pi_state->owner &&
|
|
pi_state->owner->pid != pid);
|
|
|
|
atomic_inc(&pi_state->refcount);
|
|
*ps = pi_state;
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We are the first waiter - try to look up the real owner and attach
|
|
* the new pi_state to it, but bail out when TID = 0
|
|
*/
|
|
if (!pid)
|
|
return -ESRCH;
|
|
p = futex_find_get_task(pid);
|
|
if (IS_ERR(p))
|
|
return PTR_ERR(p);
|
|
|
|
/*
|
|
* We need to look at the task state flags to figure out,
|
|
* whether the task is exiting. To protect against the do_exit
|
|
* change of the task flags, we do this protected by
|
|
* p->pi_lock:
|
|
*/
|
|
spin_lock_irq(&p->pi_lock);
|
|
if (unlikely(p->flags & PF_EXITING)) {
|
|
/*
|
|
* The task is on the way out. When PF_EXITPIDONE is
|
|
* set, we know that the task has finished the
|
|
* cleanup:
|
|
*/
|
|
int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
|
|
|
|
spin_unlock_irq(&p->pi_lock);
|
|
put_task_struct(p);
|
|
return ret;
|
|
}
|
|
|
|
pi_state = alloc_pi_state();
|
|
|
|
/*
|
|
* Initialize the pi_mutex in locked state and make 'p'
|
|
* the owner of it:
|
|
*/
|
|
rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
|
|
|
|
/* Store the key for possible exit cleanups: */
|
|
pi_state->key = *key;
|
|
|
|
WARN_ON(!list_empty(&pi_state->list));
|
|
list_add(&pi_state->list, &p->pi_state_list);
|
|
pi_state->owner = p;
|
|
spin_unlock_irq(&p->pi_lock);
|
|
|
|
put_task_struct(p);
|
|
|
|
*ps = pi_state;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* futex_lock_pi_atomic() - atomic work required to acquire a pi aware futex
|
|
* @uaddr: the pi futex user address
|
|
* @hb: the pi futex hash bucket
|
|
* @key: the futex key associated with uaddr and hb
|
|
* @ps: the pi_state pointer where we store the result of the
|
|
* lookup
|
|
* @task: the task to perform the atomic lock work for. This will
|
|
* be "current" except in the case of requeue pi.
|
|
* @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
|
|
*
|
|
* Returns:
|
|
* 0 - ready to wait
|
|
* 1 - acquired the lock
|
|
* <0 - error
|
|
*
|
|
* The hb->lock and futex_key refs shall be held by the caller.
|
|
*/
|
|
static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
|
|
union futex_key *key,
|
|
struct futex_pi_state **ps,
|
|
struct task_struct *task, int set_waiters)
|
|
{
|
|
int lock_taken, ret, ownerdied = 0;
|
|
u32 uval, newval, curval;
|
|
|
|
retry:
|
|
ret = lock_taken = 0;
|
|
|
|
/*
|
|
* To avoid races, we attempt to take the lock here again
|
|
* (by doing a 0 -> TID atomic cmpxchg), while holding all
|
|
* the locks. It will most likely not succeed.
|
|
*/
|
|
newval = task_pid_vnr(task);
|
|
if (set_waiters)
|
|
newval |= FUTEX_WAITERS;
|
|
|
|
curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
|
|
|
|
if (unlikely(curval == -EFAULT))
|
|
return -EFAULT;
|
|
|
|
/*
|
|
* Detect deadlocks.
|
|
*/
|
|
if ((unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(task))))
|
|
return -EDEADLK;
|
|
|
|
/*
|
|
* Surprise - we got the lock. Just return to userspace:
|
|
*/
|
|
if (unlikely(!curval))
|
|
return 1;
|
|
|
|
uval = curval;
|
|
|
|
/*
|
|
* Set the FUTEX_WAITERS flag, so the owner will know it has someone
|
|
* to wake at the next unlock.
|
|
*/
|
|
newval = curval | FUTEX_WAITERS;
|
|
|
|
/*
|
|
* There are two cases, where a futex might have no owner (the
|
|
* owner TID is 0): OWNER_DIED. We take over the futex in this
|
|
* case. We also do an unconditional take over, when the owner
|
|
* of the futex died.
|
|
*
|
|
* This is safe as we are protected by the hash bucket lock !
|
|
*/
|
|
if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
|
|
/* Keep the OWNER_DIED bit */
|
|
newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(task);
|
|
ownerdied = 0;
|
|
lock_taken = 1;
|
|
}
|
|
|
|
curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
|
|
|
|
if (unlikely(curval == -EFAULT))
|
|
return -EFAULT;
|
|
if (unlikely(curval != uval))
|
|
goto retry;
|
|
|
|
/*
|
|
* We took the lock due to owner died take over.
|
|
*/
|
|
if (unlikely(lock_taken))
|
|
return 1;
|
|
|
|
/*
|
|
* We dont have the lock. Look up the PI state (or create it if
|
|
* we are the first waiter):
|
|
*/
|
|
ret = lookup_pi_state(uval, hb, key, ps);
|
|
|
|
if (unlikely(ret)) {
|
|
switch (ret) {
|
|
case -ESRCH:
|
|
/*
|
|
* No owner found for this futex. Check if the
|
|
* OWNER_DIED bit is set to figure out whether
|
|
* this is a robust futex or not.
|
|
*/
|
|
if (get_futex_value_locked(&curval, uaddr))
|
|
return -EFAULT;
|
|
|
|
/*
|
|
* We simply start over in case of a robust
|
|
* futex. The code above will take the futex
|
|
* and return happy.
|
|
*/
|
|
if (curval & FUTEX_OWNER_DIED) {
|
|
ownerdied = 1;
|
|
goto retry;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* The hash bucket lock must be held when this is called.
|
|
* Afterwards, the futex_q must not be accessed.
|
|
*/
|
|
static void wake_futex(struct futex_q *q)
|
|
{
|
|
struct task_struct *p = q->task;
|
|
|
|
/*
|
|
* We set q->lock_ptr = NULL _before_ we wake up the task. If
|
|
* a non futex wake up happens on another CPU then the task
|
|
* might exit and p would dereference a non existing task
|
|
* struct. Prevent this by holding a reference on p across the
|
|
* wake up.
|
|
*/
|
|
get_task_struct(p);
|
|
|
|
plist_del(&q->list, &q->list.plist);
|
|
/*
|
|
* The waiting task can free the futex_q as soon as
|
|
* q->lock_ptr = NULL is written, without taking any locks. A
|
|
* memory barrier is required here to prevent the following
|
|
* store to lock_ptr from getting ahead of the plist_del.
|
|
*/
|
|
smp_wmb();
|
|
q->lock_ptr = NULL;
|
|
|
|
wake_up_state(p, TASK_NORMAL);
|
|
put_task_struct(p);
|
|
}
|
|
|
|
static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
|
|
{
|
|
struct task_struct *new_owner;
|
|
struct futex_pi_state *pi_state = this->pi_state;
|
|
u32 curval, newval;
|
|
|
|
if (!pi_state)
|
|
return -EINVAL;
|
|
|
|
spin_lock(&pi_state->pi_mutex.wait_lock);
|
|
new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
|
|
|
|
/*
|
|
* This happens when we have stolen the lock and the original
|
|
* pending owner did not enqueue itself back on the rt_mutex.
|
|
* Thats not a tragedy. We know that way, that a lock waiter
|
|
* is on the fly. We make the futex_q waiter the pending owner.
|
|
*/
|
|
if (!new_owner)
|
|
new_owner = this->task;
|
|
|
|
/*
|
|
* We pass it to the next owner. (The WAITERS bit is always
|
|
* kept enabled while there is PI state around. We must also
|
|
* preserve the owner died bit.)
|
|
*/
|
|
if (!(uval & FUTEX_OWNER_DIED)) {
|
|
int ret = 0;
|
|
|
|
newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
|
|
|
|
curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
|
|
|
|
if (curval == -EFAULT)
|
|
ret = -EFAULT;
|
|
else if (curval != uval)
|
|
ret = -EINVAL;
|
|
if (ret) {
|
|
spin_unlock(&pi_state->pi_mutex.wait_lock);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
spin_lock_irq(&pi_state->owner->pi_lock);
|
|
WARN_ON(list_empty(&pi_state->list));
|
|
list_del_init(&pi_state->list);
|
|
spin_unlock_irq(&pi_state->owner->pi_lock);
|
|
|
|
spin_lock_irq(&new_owner->pi_lock);
|
|
WARN_ON(!list_empty(&pi_state->list));
|
|
list_add(&pi_state->list, &new_owner->pi_state_list);
|
|
pi_state->owner = new_owner;
|
|
spin_unlock_irq(&new_owner->pi_lock);
|
|
|
|
spin_unlock(&pi_state->pi_mutex.wait_lock);
|
|
rt_mutex_unlock(&pi_state->pi_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
|
|
{
|
|
u32 oldval;
|
|
|
|
/*
|
|
* There is no waiter, so we unlock the futex. The owner died
|
|
* bit has not to be preserved here. We are the owner:
|
|
*/
|
|
oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
|
|
|
|
if (oldval == -EFAULT)
|
|
return oldval;
|
|
if (oldval != uval)
|
|
return -EAGAIN;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Express the locking dependencies for lockdep:
|
|
*/
|
|
static inline void
|
|
double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
|
|
{
|
|
if (hb1 <= hb2) {
|
|
spin_lock(&hb1->lock);
|
|
if (hb1 < hb2)
|
|
spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
|
|
} else { /* hb1 > hb2 */
|
|
spin_lock(&hb2->lock);
|
|
spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
|
|
{
|
|
spin_unlock(&hb1->lock);
|
|
if (hb1 != hb2)
|
|
spin_unlock(&hb2->lock);
|
|
}
|
|
|
|
/*
|
|
* Wake up waiters matching bitset queued on this futex (uaddr).
|
|
*/
|
|
static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
|
|
{
|
|
struct futex_hash_bucket *hb;
|
|
struct futex_q *this, *next;
|
|
struct plist_head *head;
|
|
union futex_key key = FUTEX_KEY_INIT;
|
|
int ret;
|
|
|
|
if (!bitset)
|
|
return -EINVAL;
|
|
|
|
ret = get_futex_key(uaddr, fshared, &key, VERIFY_READ);
|
|
if (unlikely(ret != 0))
|
|
goto out;
|
|
|
|
hb = hash_futex(&key);
|
|
spin_lock(&hb->lock);
|
|
head = &hb->chain;
|
|
|
|
plist_for_each_entry_safe(this, next, head, list) {
|
|
if (match_futex (&this->key, &key)) {
|
|
if (this->pi_state || this->rt_waiter) {
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
/* Check if one of the bits is set in both bitsets */
|
|
if (!(this->bitset & bitset))
|
|
continue;
|
|
|
|
wake_futex(this);
|
|
if (++ret >= nr_wake)
|
|
break;
|
|
}
|
|
}
|
|
|
|
spin_unlock(&hb->lock);
|
|
put_futex_key(fshared, &key);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Wake up all waiters hashed on the physical page that is mapped
|
|
* to this virtual address:
|
|
*/
|
|
static int
|
|
futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
|
|
int nr_wake, int nr_wake2, int op)
|
|
{
|
|
union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
|
|
struct futex_hash_bucket *hb1, *hb2;
|
|
struct plist_head *head;
|
|
struct futex_q *this, *next;
|
|
int ret, op_ret;
|
|
|
|
retry:
|
|
ret = get_futex_key(uaddr1, fshared, &key1, VERIFY_READ);
|
|
if (unlikely(ret != 0))
|
|
goto out;
|
|
ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE);
|
|
if (unlikely(ret != 0))
|
|
goto out_put_key1;
|
|
|
|
hb1 = hash_futex(&key1);
|
|
hb2 = hash_futex(&key2);
|
|
|
|
double_lock_hb(hb1, hb2);
|
|
retry_private:
|
|
op_ret = futex_atomic_op_inuser(op, uaddr2);
|
|
if (unlikely(op_ret < 0)) {
|
|
|
|
double_unlock_hb(hb1, hb2);
|
|
|
|
#ifndef CONFIG_MMU
|
|
/*
|
|
* we don't get EFAULT from MMU faults if we don't have an MMU,
|
|
* but we might get them from range checking
|
|
*/
|
|
ret = op_ret;
|
|
goto out_put_keys;
|
|
#endif
|
|
|
|
if (unlikely(op_ret != -EFAULT)) {
|
|
ret = op_ret;
|
|
goto out_put_keys;
|
|
}
|
|
|
|
ret = fault_in_user_writeable(uaddr2);
|
|
if (ret)
|
|
goto out_put_keys;
|
|
|
|
if (!fshared)
|
|
goto retry_private;
|
|
|
|
put_futex_key(fshared, &key2);
|
|
put_futex_key(fshared, &key1);
|
|
goto retry;
|
|
}
|
|
|
|
head = &hb1->chain;
|
|
|
|
plist_for_each_entry_safe(this, next, head, list) {
|
|
if (match_futex (&this->key, &key1)) {
|
|
wake_futex(this);
|
|
if (++ret >= nr_wake)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (op_ret > 0) {
|
|
head = &hb2->chain;
|
|
|
|
op_ret = 0;
|
|
plist_for_each_entry_safe(this, next, head, list) {
|
|
if (match_futex (&this->key, &key2)) {
|
|
wake_futex(this);
|
|
if (++op_ret >= nr_wake2)
|
|
break;
|
|
}
|
|
}
|
|
ret += op_ret;
|
|
}
|
|
|
|
double_unlock_hb(hb1, hb2);
|
|
out_put_keys:
|
|
put_futex_key(fshared, &key2);
|
|
out_put_key1:
|
|
put_futex_key(fshared, &key1);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* requeue_futex() - Requeue a futex_q from one hb to another
|
|
* @q: the futex_q to requeue
|
|
* @hb1: the source hash_bucket
|
|
* @hb2: the target hash_bucket
|
|
* @key2: the new key for the requeued futex_q
|
|
*/
|
|
static inline
|
|
void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
|
|
struct futex_hash_bucket *hb2, union futex_key *key2)
|
|
{
|
|
|
|
/*
|
|
* If key1 and key2 hash to the same bucket, no need to
|
|
* requeue.
|
|
*/
|
|
if (likely(&hb1->chain != &hb2->chain)) {
|
|
plist_del(&q->list, &hb1->chain);
|
|
plist_add(&q->list, &hb2->chain);
|
|
q->lock_ptr = &hb2->lock;
|
|
#ifdef CONFIG_DEBUG_PI_LIST
|
|
q->list.plist.lock = &hb2->lock;
|
|
#endif
|
|
}
|
|
get_futex_key_refs(key2);
|
|
q->key = *key2;
|
|
}
|
|
|
|
/**
|
|
* requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
|
|
* q: the futex_q
|
|
* key: the key of the requeue target futex
|
|
* hb: the hash_bucket of the requeue target futex
|
|
*
|
|
* During futex_requeue, with requeue_pi=1, it is possible to acquire the
|
|
* target futex if it is uncontended or via a lock steal. Set the futex_q key
|
|
* to the requeue target futex so the waiter can detect the wakeup on the right
|
|
* futex, but remove it from the hb and NULL the rt_waiter so it can detect
|
|
* atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
|
|
* to protect access to the pi_state to fixup the owner later. Must be called
|
|
* with both q->lock_ptr and hb->lock held.
|
|
*/
|
|
static inline
|
|
void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
|
|
struct futex_hash_bucket *hb)
|
|
{
|
|
drop_futex_key_refs(&q->key);
|
|
get_futex_key_refs(key);
|
|
q->key = *key;
|
|
|
|
WARN_ON(plist_node_empty(&q->list));
|
|
plist_del(&q->list, &q->list.plist);
|
|
|
|
WARN_ON(!q->rt_waiter);
|
|
q->rt_waiter = NULL;
|
|
|
|
q->lock_ptr = &hb->lock;
|
|
#ifdef CONFIG_DEBUG_PI_LIST
|
|
q->list.plist.lock = &hb->lock;
|
|
#endif
|
|
|
|
wake_up_state(q->task, TASK_NORMAL);
|
|
}
|
|
|
|
/**
|
|
* futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
|
|
* @pifutex: the user address of the to futex
|
|
* @hb1: the from futex hash bucket, must be locked by the caller
|
|
* @hb2: the to futex hash bucket, must be locked by the caller
|
|
* @key1: the from futex key
|
|
* @key2: the to futex key
|
|
* @ps: address to store the pi_state pointer
|
|
* @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
|
|
*
|
|
* Try and get the lock on behalf of the top waiter if we can do it atomically.
|
|
* Wake the top waiter if we succeed. If the caller specified set_waiters,
|
|
* then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
|
|
* hb1 and hb2 must be held by the caller.
|
|
*
|
|
* Returns:
|
|
* 0 - failed to acquire the lock atomicly
|
|
* 1 - acquired the lock
|
|
* <0 - error
|
|
*/
|
|
static int futex_proxy_trylock_atomic(u32 __user *pifutex,
|
|
struct futex_hash_bucket *hb1,
|
|
struct futex_hash_bucket *hb2,
|
|
union futex_key *key1, union futex_key *key2,
|
|
struct futex_pi_state **ps, int set_waiters)
|
|
{
|
|
struct futex_q *top_waiter = NULL;
|
|
u32 curval;
|
|
int ret;
|
|
|
|
if (get_futex_value_locked(&curval, pifutex))
|
|
return -EFAULT;
|
|
|
|
/*
|
|
* Find the top_waiter and determine if there are additional waiters.
|
|
* If the caller intends to requeue more than 1 waiter to pifutex,
|
|
* force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
|
|
* as we have means to handle the possible fault. If not, don't set
|
|
* the bit unecessarily as it will force the subsequent unlock to enter
|
|
* the kernel.
|
|
*/
|
|
top_waiter = futex_top_waiter(hb1, key1);
|
|
|
|
/* There are no waiters, nothing for us to do. */
|
|
if (!top_waiter)
|
|
return 0;
|
|
|
|
/* Ensure we requeue to the expected futex. */
|
|
if (!match_futex(top_waiter->requeue_pi_key, key2))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
|
|
* the contended case or if set_waiters is 1. The pi_state is returned
|
|
* in ps in contended cases.
|
|
*/
|
|
ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
|
|
set_waiters);
|
|
if (ret == 1)
|
|
requeue_pi_wake_futex(top_waiter, key2, hb2);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* futex_requeue() - Requeue waiters from uaddr1 to uaddr2
|
|
* uaddr1: source futex user address
|
|
* uaddr2: target futex user address
|
|
* nr_wake: number of waiters to wake (must be 1 for requeue_pi)
|
|
* nr_requeue: number of waiters to requeue (0-INT_MAX)
|
|
* requeue_pi: if we are attempting to requeue from a non-pi futex to a
|
|
* pi futex (pi to pi requeue is not supported)
|
|
*
|
|
* Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
|
|
* uaddr2 atomically on behalf of the top waiter.
|
|
*
|
|
* Returns:
|
|
* >=0 - on success, the number of tasks requeued or woken
|
|
* <0 - on error
|
|
*/
|
|
static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
|
|
int nr_wake, int nr_requeue, u32 *cmpval,
|
|
int requeue_pi)
|
|
{
|
|
union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
|
|
int drop_count = 0, task_count = 0, ret;
|
|
struct futex_pi_state *pi_state = NULL;
|
|
struct futex_hash_bucket *hb1, *hb2;
|
|
struct plist_head *head1;
|
|
struct futex_q *this, *next;
|
|
u32 curval2;
|
|
|
|
if (requeue_pi) {
|
|
/*
|
|
* requeue_pi requires a pi_state, try to allocate it now
|
|
* without any locks in case it fails.
|
|
*/
|
|
if (refill_pi_state_cache())
|
|
return -ENOMEM;
|
|
/*
|
|
* requeue_pi must wake as many tasks as it can, up to nr_wake
|
|
* + nr_requeue, since it acquires the rt_mutex prior to
|
|
* returning to userspace, so as to not leave the rt_mutex with
|
|
* waiters and no owner. However, second and third wake-ups
|
|
* cannot be predicted as they involve race conditions with the
|
|
* first wake and a fault while looking up the pi_state. Both
|
|
* pthread_cond_signal() and pthread_cond_broadcast() should
|
|
* use nr_wake=1.
|
|
*/
|
|
if (nr_wake != 1)
|
|
return -EINVAL;
|
|
}
|
|
|
|
retry:
|
|
if (pi_state != NULL) {
|
|
/*
|
|
* We will have to lookup the pi_state again, so free this one
|
|
* to keep the accounting correct.
|
|
*/
|
|
free_pi_state(pi_state);
|
|
pi_state = NULL;
|
|
}
|
|
|
|
ret = get_futex_key(uaddr1, fshared, &key1, VERIFY_READ);
|
|
if (unlikely(ret != 0))
|
|
goto out;
|
|
ret = get_futex_key(uaddr2, fshared, &key2,
|
|
requeue_pi ? VERIFY_WRITE : VERIFY_READ);
|
|
if (unlikely(ret != 0))
|
|
goto out_put_key1;
|
|
|
|
hb1 = hash_futex(&key1);
|
|
hb2 = hash_futex(&key2);
|
|
|
|
retry_private:
|
|
double_lock_hb(hb1, hb2);
|
|
|
|
if (likely(cmpval != NULL)) {
|
|
u32 curval;
|
|
|
|
ret = get_futex_value_locked(&curval, uaddr1);
|
|
|
|
if (unlikely(ret)) {
|
|
double_unlock_hb(hb1, hb2);
|
|
|
|
ret = get_user(curval, uaddr1);
|
|
if (ret)
|
|
goto out_put_keys;
|
|
|
|
if (!fshared)
|
|
goto retry_private;
|
|
|
|
put_futex_key(fshared, &key2);
|
|
put_futex_key(fshared, &key1);
|
|
goto retry;
|
|
}
|
|
if (curval != *cmpval) {
|
|
ret = -EAGAIN;
|
|
goto out_unlock;
|
|
}
|
|
}
|
|
|
|
if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
|
|
/*
|
|
* Attempt to acquire uaddr2 and wake the top waiter. If we
|
|
* intend to requeue waiters, force setting the FUTEX_WAITERS
|
|
* bit. We force this here where we are able to easily handle
|
|
* faults rather in the requeue loop below.
|
|
*/
|
|
ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
|
|
&key2, &pi_state, nr_requeue);
|
|
|
|
/*
|
|
* At this point the top_waiter has either taken uaddr2 or is
|
|
* waiting on it. If the former, then the pi_state will not
|
|
* exist yet, look it up one more time to ensure we have a
|
|
* reference to it.
|
|
*/
|
|
if (ret == 1) {
|
|
WARN_ON(pi_state);
|
|
task_count++;
|
|
ret = get_futex_value_locked(&curval2, uaddr2);
|
|
if (!ret)
|
|
ret = lookup_pi_state(curval2, hb2, &key2,
|
|
&pi_state);
|
|
}
|
|
|
|
switch (ret) {
|
|
case 0:
|
|
break;
|
|
case -EFAULT:
|
|
double_unlock_hb(hb1, hb2);
|
|
put_futex_key(fshared, &key2);
|
|
put_futex_key(fshared, &key1);
|
|
ret = fault_in_user_writeable(uaddr2);
|
|
if (!ret)
|
|
goto retry;
|
|
goto out;
|
|
case -EAGAIN:
|
|
/* The owner was exiting, try again. */
|
|
double_unlock_hb(hb1, hb2);
|
|
put_futex_key(fshared, &key2);
|
|
put_futex_key(fshared, &key1);
|
|
cond_resched();
|
|
goto retry;
|
|
default:
|
|
goto out_unlock;
|
|
}
|
|
}
|
|
|
|
head1 = &hb1->chain;
|
|
plist_for_each_entry_safe(this, next, head1, list) {
|
|
if (task_count - nr_wake >= nr_requeue)
|
|
break;
|
|
|
|
if (!match_futex(&this->key, &key1))
|
|
continue;
|
|
|
|
/*
|
|
* FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
|
|
* be paired with each other and no other futex ops.
|
|
*/
|
|
if ((requeue_pi && !this->rt_waiter) ||
|
|
(!requeue_pi && this->rt_waiter)) {
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Wake nr_wake waiters. For requeue_pi, if we acquired the
|
|
* lock, we already woke the top_waiter. If not, it will be
|
|
* woken by futex_unlock_pi().
|
|
*/
|
|
if (++task_count <= nr_wake && !requeue_pi) {
|
|
wake_futex(this);
|
|
continue;
|
|
}
|
|
|
|
/* Ensure we requeue to the expected futex for requeue_pi. */
|
|
if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Requeue nr_requeue waiters and possibly one more in the case
|
|
* of requeue_pi if we couldn't acquire the lock atomically.
|
|
*/
|
|
if (requeue_pi) {
|
|
/* Prepare the waiter to take the rt_mutex. */
|
|
atomic_inc(&pi_state->refcount);
|
|
this->pi_state = pi_state;
|
|
ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
|
|
this->rt_waiter,
|
|
this->task, 1);
|
|
if (ret == 1) {
|
|
/* We got the lock. */
|
|
requeue_pi_wake_futex(this, &key2, hb2);
|
|
continue;
|
|
} else if (ret) {
|
|
/* -EDEADLK */
|
|
this->pi_state = NULL;
|
|
free_pi_state(pi_state);
|
|
goto out_unlock;
|
|
}
|
|
}
|
|
requeue_futex(this, hb1, hb2, &key2);
|
|
drop_count++;
|
|
}
|
|
|
|
out_unlock:
|
|
double_unlock_hb(hb1, hb2);
|
|
|
|
/*
|
|
* drop_futex_key_refs() must be called outside the spinlocks. During
|
|
* the requeue we moved futex_q's from the hash bucket at key1 to the
|
|
* one at key2 and updated their key pointer. We no longer need to
|
|
* hold the references to key1.
|
|
*/
|
|
while (--drop_count >= 0)
|
|
drop_futex_key_refs(&key1);
|
|
|
|
out_put_keys:
|
|
put_futex_key(fshared, &key2);
|
|
out_put_key1:
|
|
put_futex_key(fshared, &key1);
|
|
out:
|
|
if (pi_state != NULL)
|
|
free_pi_state(pi_state);
|
|
return ret ? ret : task_count;
|
|
}
|
|
|
|
/* The key must be already stored in q->key. */
|
|
static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
|
|
{
|
|
struct futex_hash_bucket *hb;
|
|
|
|
get_futex_key_refs(&q->key);
|
|
hb = hash_futex(&q->key);
|
|
q->lock_ptr = &hb->lock;
|
|
|
|
spin_lock(&hb->lock);
|
|
return hb;
|
|
}
|
|
|
|
static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
|
|
{
|
|
int prio;
|
|
|
|
/*
|
|
* The priority used to register this element is
|
|
* - either the real thread-priority for the real-time threads
|
|
* (i.e. threads with a priority lower than MAX_RT_PRIO)
|
|
* - or MAX_RT_PRIO for non-RT threads.
|
|
* Thus, all RT-threads are woken first in priority order, and
|
|
* the others are woken last, in FIFO order.
|
|
*/
|
|
prio = min(current->normal_prio, MAX_RT_PRIO);
|
|
|
|
plist_node_init(&q->list, prio);
|
|
#ifdef CONFIG_DEBUG_PI_LIST
|
|
q->list.plist.lock = &hb->lock;
|
|
#endif
|
|
plist_add(&q->list, &hb->chain);
|
|
q->task = current;
|
|
spin_unlock(&hb->lock);
|
|
}
|
|
|
|
static inline void
|
|
queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
|
|
{
|
|
spin_unlock(&hb->lock);
|
|
drop_futex_key_refs(&q->key);
|
|
}
|
|
|
|
/*
|
|
* queue_me and unqueue_me must be called as a pair, each
|
|
* exactly once. They are called with the hashed spinlock held.
|
|
*/
|
|
|
|
/* Return 1 if we were still queued (ie. 0 means we were woken) */
|
|
static int unqueue_me(struct futex_q *q)
|
|
{
|
|
spinlock_t *lock_ptr;
|
|
int ret = 0;
|
|
|
|
/* In the common case we don't take the spinlock, which is nice. */
|
|
retry:
|
|
lock_ptr = q->lock_ptr;
|
|
barrier();
|
|
if (lock_ptr != NULL) {
|
|
spin_lock(lock_ptr);
|
|
/*
|
|
* q->lock_ptr can change between reading it and
|
|
* spin_lock(), causing us to take the wrong lock. This
|
|
* corrects the race condition.
|
|
*
|
|
* Reasoning goes like this: if we have the wrong lock,
|
|
* q->lock_ptr must have changed (maybe several times)
|
|
* between reading it and the spin_lock(). It can
|
|
* change again after the spin_lock() but only if it was
|
|
* already changed before the spin_lock(). It cannot,
|
|
* however, change back to the original value. Therefore
|
|
* we can detect whether we acquired the correct lock.
|
|
*/
|
|
if (unlikely(lock_ptr != q->lock_ptr)) {
|
|
spin_unlock(lock_ptr);
|
|
goto retry;
|
|
}
|
|
WARN_ON(plist_node_empty(&q->list));
|
|
plist_del(&q->list, &q->list.plist);
|
|
|
|
BUG_ON(q->pi_state);
|
|
|
|
spin_unlock(lock_ptr);
|
|
ret = 1;
|
|
}
|
|
|
|
drop_futex_key_refs(&q->key);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* PI futexes can not be requeued and must remove themself from the
|
|
* hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
|
|
* and dropped here.
|
|
*/
|
|
static void unqueue_me_pi(struct futex_q *q)
|
|
{
|
|
WARN_ON(plist_node_empty(&q->list));
|
|
plist_del(&q->list, &q->list.plist);
|
|
|
|
BUG_ON(!q->pi_state);
|
|
free_pi_state(q->pi_state);
|
|
q->pi_state = NULL;
|
|
|
|
spin_unlock(q->lock_ptr);
|
|
|
|
drop_futex_key_refs(&q->key);
|
|
}
|
|
|
|
/*
|
|
* Fixup the pi_state owner with the new owner.
|
|
*
|
|
* Must be called with hash bucket lock held and mm->sem held for non
|
|
* private futexes.
|
|
*/
|
|
static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
|
|
struct task_struct *newowner, int fshared)
|
|
{
|
|
u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
|
|
struct futex_pi_state *pi_state = q->pi_state;
|
|
struct task_struct *oldowner = pi_state->owner;
|
|
u32 uval, curval, newval;
|
|
int ret;
|
|
|
|
/* Owner died? */
|
|
if (!pi_state->owner)
|
|
newtid |= FUTEX_OWNER_DIED;
|
|
|
|
/*
|
|
* We are here either because we stole the rtmutex from the
|
|
* pending owner or we are the pending owner which failed to
|
|
* get the rtmutex. We have to replace the pending owner TID
|
|
* in the user space variable. This must be atomic as we have
|
|
* to preserve the owner died bit here.
|
|
*
|
|
* Note: We write the user space value _before_ changing the pi_state
|
|
* because we can fault here. Imagine swapped out pages or a fork
|
|
* that marked all the anonymous memory readonly for cow.
|
|
*
|
|
* Modifying pi_state _before_ the user space value would
|
|
* leave the pi_state in an inconsistent state when we fault
|
|
* here, because we need to drop the hash bucket lock to
|
|
* handle the fault. This might be observed in the PID check
|
|
* in lookup_pi_state.
|
|
*/
|
|
retry:
|
|
if (get_futex_value_locked(&uval, uaddr))
|
|
goto handle_fault;
|
|
|
|
while (1) {
|
|
newval = (uval & FUTEX_OWNER_DIED) | newtid;
|
|
|
|
curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
|
|
|
|
if (curval == -EFAULT)
|
|
goto handle_fault;
|
|
if (curval == uval)
|
|
break;
|
|
uval = curval;
|
|
}
|
|
|
|
/*
|
|
* We fixed up user space. Now we need to fix the pi_state
|
|
* itself.
|
|
*/
|
|
if (pi_state->owner != NULL) {
|
|
spin_lock_irq(&pi_state->owner->pi_lock);
|
|
WARN_ON(list_empty(&pi_state->list));
|
|
list_del_init(&pi_state->list);
|
|
spin_unlock_irq(&pi_state->owner->pi_lock);
|
|
}
|
|
|
|
pi_state->owner = newowner;
|
|
|
|
spin_lock_irq(&newowner->pi_lock);
|
|
WARN_ON(!list_empty(&pi_state->list));
|
|
list_add(&pi_state->list, &newowner->pi_state_list);
|
|
spin_unlock_irq(&newowner->pi_lock);
|
|
return 0;
|
|
|
|
/*
|
|
* To handle the page fault we need to drop the hash bucket
|
|
* lock here. That gives the other task (either the pending
|
|
* owner itself or the task which stole the rtmutex) the
|
|
* chance to try the fixup of the pi_state. So once we are
|
|
* back from handling the fault we need to check the pi_state
|
|
* after reacquiring the hash bucket lock and before trying to
|
|
* do another fixup. When the fixup has been done already we
|
|
* simply return.
|
|
*/
|
|
handle_fault:
|
|
spin_unlock(q->lock_ptr);
|
|
|
|
ret = fault_in_user_writeable(uaddr);
|
|
|
|
spin_lock(q->lock_ptr);
|
|
|
|
/*
|
|
* Check if someone else fixed it for us:
|
|
*/
|
|
if (pi_state->owner != oldowner)
|
|
return 0;
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
goto retry;
|
|
}
|
|
|
|
/*
|
|
* In case we must use restart_block to restart a futex_wait,
|
|
* we encode in the 'flags' shared capability
|
|
*/
|
|
#define FLAGS_SHARED 0x01
|
|
#define FLAGS_CLOCKRT 0x02
|
|
#define FLAGS_HAS_TIMEOUT 0x04
|
|
|
|
static long futex_wait_restart(struct restart_block *restart);
|
|
|
|
/**
|
|
* fixup_owner() - Post lock pi_state and corner case management
|
|
* @uaddr: user address of the futex
|
|
* @fshared: whether the futex is shared (1) or not (0)
|
|
* @q: futex_q (contains pi_state and access to the rt_mutex)
|
|
* @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
|
|
*
|
|
* After attempting to lock an rt_mutex, this function is called to cleanup
|
|
* the pi_state owner as well as handle race conditions that may allow us to
|
|
* acquire the lock. Must be called with the hb lock held.
|
|
*
|
|
* Returns:
|
|
* 1 - success, lock taken
|
|
* 0 - success, lock not taken
|
|
* <0 - on error (-EFAULT)
|
|
*/
|
|
static int fixup_owner(u32 __user *uaddr, int fshared, struct futex_q *q,
|
|
int locked)
|
|
{
|
|
struct task_struct *owner;
|
|
int ret = 0;
|
|
|
|
if (locked) {
|
|
/*
|
|
* Got the lock. We might not be the anticipated owner if we
|
|
* did a lock-steal - fix up the PI-state in that case:
|
|
*/
|
|
if (q->pi_state->owner != current)
|
|
ret = fixup_pi_state_owner(uaddr, q, current, fshared);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Catch the rare case, where the lock was released when we were on the
|
|
* way back before we locked the hash bucket.
|
|
*/
|
|
if (q->pi_state->owner == current) {
|
|
/*
|
|
* Try to get the rt_mutex now. This might fail as some other
|
|
* task acquired the rt_mutex after we removed ourself from the
|
|
* rt_mutex waiters list.
|
|
*/
|
|
if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
|
|
locked = 1;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* pi_state is incorrect, some other task did a lock steal and
|
|
* we returned due to timeout or signal without taking the
|
|
* rt_mutex. Too late. We can access the rt_mutex_owner without
|
|
* locking, as the other task is now blocked on the hash bucket
|
|
* lock. Fix the state up.
|
|
*/
|
|
owner = rt_mutex_owner(&q->pi_state->pi_mutex);
|
|
ret = fixup_pi_state_owner(uaddr, q, owner, fshared);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Paranoia check. If we did not take the lock, then we should not be
|
|
* the owner, nor the pending owner, of the rt_mutex.
|
|
*/
|
|
if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
|
|
printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
|
|
"pi-state %p\n", ret,
|
|
q->pi_state->pi_mutex.owner,
|
|
q->pi_state->owner);
|
|
|
|
out:
|
|
return ret ? ret : locked;
|
|
}
|
|
|
|
/**
|
|
* futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
|
|
* @hb: the futex hash bucket, must be locked by the caller
|
|
* @q: the futex_q to queue up on
|
|
* @timeout: the prepared hrtimer_sleeper, or null for no timeout
|
|
*/
|
|
static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
|
|
struct hrtimer_sleeper *timeout)
|
|
{
|
|
queue_me(q, hb);
|
|
|
|
/*
|
|
* There might have been scheduling since the queue_me(), as we
|
|
* cannot hold a spinlock across the get_user() in case it
|
|
* faults, and we cannot just set TASK_INTERRUPTIBLE state when
|
|
* queueing ourselves into the futex hash. This code thus has to
|
|
* rely on the futex_wake() code removing us from hash when it
|
|
* wakes us up.
|
|
*/
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
|
|
/* Arm the timer */
|
|
if (timeout) {
|
|
hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
|
|
if (!hrtimer_active(&timeout->timer))
|
|
timeout->task = NULL;
|
|
}
|
|
|
|
/*
|
|
* !plist_node_empty() is safe here without any lock.
|
|
* q.lock_ptr != 0 is not safe, because of ordering against wakeup.
|
|
*/
|
|
if (likely(!plist_node_empty(&q->list))) {
|
|
/*
|
|
* If the timer has already expired, current will already be
|
|
* flagged for rescheduling. Only call schedule if there
|
|
* is no timeout, or if it has yet to expire.
|
|
*/
|
|
if (!timeout || timeout->task)
|
|
schedule();
|
|
}
|
|
__set_current_state(TASK_RUNNING);
|
|
}
|
|
|
|
/**
|
|
* futex_wait_setup() - Prepare to wait on a futex
|
|
* @uaddr: the futex userspace address
|
|
* @val: the expected value
|
|
* @fshared: whether the futex is shared (1) or not (0)
|
|
* @q: the associated futex_q
|
|
* @hb: storage for hash_bucket pointer to be returned to caller
|
|
*
|
|
* Setup the futex_q and locate the hash_bucket. Get the futex value and
|
|
* compare it with the expected value. Handle atomic faults internally.
|
|
* Return with the hb lock held and a q.key reference on success, and unlocked
|
|
* with no q.key reference on failure.
|
|
*
|
|
* Returns:
|
|
* 0 - uaddr contains val and hb has been locked
|
|
* <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
|
|
*/
|
|
static int futex_wait_setup(u32 __user *uaddr, u32 val, int fshared,
|
|
struct futex_q *q, struct futex_hash_bucket **hb)
|
|
{
|
|
u32 uval;
|
|
int ret;
|
|
|
|
/*
|
|
* Access the page AFTER the hash-bucket is locked.
|
|
* Order is important:
|
|
*
|
|
* Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
|
|
* Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
|
|
*
|
|
* The basic logical guarantee of a futex is that it blocks ONLY
|
|
* if cond(var) is known to be true at the time of blocking, for
|
|
* any cond. If we queued after testing *uaddr, that would open
|
|
* a race condition where we could block indefinitely with
|
|
* cond(var) false, which would violate the guarantee.
|
|
*
|
|
* A consequence is that futex_wait() can return zero and absorb
|
|
* a wakeup when *uaddr != val on entry to the syscall. This is
|
|
* rare, but normal.
|
|
*/
|
|
retry:
|
|
q->key = FUTEX_KEY_INIT;
|
|
ret = get_futex_key(uaddr, fshared, &q->key, VERIFY_READ);
|
|
if (unlikely(ret != 0))
|
|
return ret;
|
|
|
|
retry_private:
|
|
*hb = queue_lock(q);
|
|
|
|
ret = get_futex_value_locked(&uval, uaddr);
|
|
|
|
if (ret) {
|
|
queue_unlock(q, *hb);
|
|
|
|
ret = get_user(uval, uaddr);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (!fshared)
|
|
goto retry_private;
|
|
|
|
put_futex_key(fshared, &q->key);
|
|
goto retry;
|
|
}
|
|
|
|
if (uval != val) {
|
|
queue_unlock(q, *hb);
|
|
ret = -EWOULDBLOCK;
|
|
}
|
|
|
|
out:
|
|
if (ret)
|
|
put_futex_key(fshared, &q->key);
|
|
return ret;
|
|
}
|
|
|
|
static int futex_wait(u32 __user *uaddr, int fshared,
|
|
u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
|
|
{
|
|
struct hrtimer_sleeper timeout, *to = NULL;
|
|
struct restart_block *restart;
|
|
struct futex_hash_bucket *hb;
|
|
struct futex_q q;
|
|
int ret;
|
|
|
|
if (!bitset)
|
|
return -EINVAL;
|
|
|
|
q.pi_state = NULL;
|
|
q.bitset = bitset;
|
|
q.rt_waiter = NULL;
|
|
q.requeue_pi_key = NULL;
|
|
|
|
if (abs_time) {
|
|
to = &timeout;
|
|
|
|
hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
|
|
CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
|
|
hrtimer_init_sleeper(to, current);
|
|
hrtimer_set_expires_range_ns(&to->timer, *abs_time,
|
|
current->timer_slack_ns);
|
|
}
|
|
|
|
/* Prepare to wait on uaddr. */
|
|
ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/* queue_me and wait for wakeup, timeout, or a signal. */
|
|
futex_wait_queue_me(hb, &q, to);
|
|
|
|
/* If we were woken (and unqueued), we succeeded, whatever. */
|
|
ret = 0;
|
|
if (!unqueue_me(&q))
|
|
goto out_put_key;
|
|
ret = -ETIMEDOUT;
|
|
if (to && !to->task)
|
|
goto out_put_key;
|
|
|
|
/*
|
|
* We expect signal_pending(current), but another thread may
|
|
* have handled it for us already.
|
|
*/
|
|
ret = -ERESTARTSYS;
|
|
if (!abs_time)
|
|
goto out_put_key;
|
|
|
|
restart = ¤t_thread_info()->restart_block;
|
|
restart->fn = futex_wait_restart;
|
|
restart->futex.uaddr = (u32 *)uaddr;
|
|
restart->futex.val = val;
|
|
restart->futex.time = abs_time->tv64;
|
|
restart->futex.bitset = bitset;
|
|
restart->futex.flags = FLAGS_HAS_TIMEOUT;
|
|
|
|
if (fshared)
|
|
restart->futex.flags |= FLAGS_SHARED;
|
|
if (clockrt)
|
|
restart->futex.flags |= FLAGS_CLOCKRT;
|
|
|
|
ret = -ERESTART_RESTARTBLOCK;
|
|
|
|
out_put_key:
|
|
put_futex_key(fshared, &q.key);
|
|
out:
|
|
if (to) {
|
|
hrtimer_cancel(&to->timer);
|
|
destroy_hrtimer_on_stack(&to->timer);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
|
|
static long futex_wait_restart(struct restart_block *restart)
|
|
{
|
|
u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
|
|
int fshared = 0;
|
|
ktime_t t, *tp = NULL;
|
|
|
|
if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
|
|
t.tv64 = restart->futex.time;
|
|
tp = &t;
|
|
}
|
|
restart->fn = do_no_restart_syscall;
|
|
if (restart->futex.flags & FLAGS_SHARED)
|
|
fshared = 1;
|
|
return (long)futex_wait(uaddr, fshared, restart->futex.val, tp,
|
|
restart->futex.bitset,
|
|
restart->futex.flags & FLAGS_CLOCKRT);
|
|
}
|
|
|
|
|
|
/*
|
|
* Userspace tried a 0 -> TID atomic transition of the futex value
|
|
* and failed. The kernel side here does the whole locking operation:
|
|
* if there are waiters then it will block, it does PI, etc. (Due to
|
|
* races the kernel might see a 0 value of the futex too.)
|
|
*/
|
|
static int futex_lock_pi(u32 __user *uaddr, int fshared,
|
|
int detect, ktime_t *time, int trylock)
|
|
{
|
|
struct hrtimer_sleeper timeout, *to = NULL;
|
|
struct futex_hash_bucket *hb;
|
|
struct futex_q q;
|
|
int res, ret;
|
|
|
|
if (refill_pi_state_cache())
|
|
return -ENOMEM;
|
|
|
|
if (time) {
|
|
to = &timeout;
|
|
hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
|
|
HRTIMER_MODE_ABS);
|
|
hrtimer_init_sleeper(to, current);
|
|
hrtimer_set_expires(&to->timer, *time);
|
|
}
|
|
|
|
q.pi_state = NULL;
|
|
q.rt_waiter = NULL;
|
|
q.requeue_pi_key = NULL;
|
|
retry:
|
|
q.key = FUTEX_KEY_INIT;
|
|
ret = get_futex_key(uaddr, fshared, &q.key, VERIFY_WRITE);
|
|
if (unlikely(ret != 0))
|
|
goto out;
|
|
|
|
retry_private:
|
|
hb = queue_lock(&q);
|
|
|
|
ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
|
|
if (unlikely(ret)) {
|
|
switch (ret) {
|
|
case 1:
|
|
/* We got the lock. */
|
|
ret = 0;
|
|
goto out_unlock_put_key;
|
|
case -EFAULT:
|
|
goto uaddr_faulted;
|
|
case -EAGAIN:
|
|
/*
|
|
* Task is exiting and we just wait for the
|
|
* exit to complete.
|
|
*/
|
|
queue_unlock(&q, hb);
|
|
put_futex_key(fshared, &q.key);
|
|
cond_resched();
|
|
goto retry;
|
|
default:
|
|
goto out_unlock_put_key;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Only actually queue now that the atomic ops are done:
|
|
*/
|
|
queue_me(&q, hb);
|
|
|
|
WARN_ON(!q.pi_state);
|
|
/*
|
|
* Block on the PI mutex:
|
|
*/
|
|
if (!trylock)
|
|
ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
|
|
else {
|
|
ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
|
|
/* Fixup the trylock return value: */
|
|
ret = ret ? 0 : -EWOULDBLOCK;
|
|
}
|
|
|
|
spin_lock(q.lock_ptr);
|
|
/*
|
|
* Fixup the pi_state owner and possibly acquire the lock if we
|
|
* haven't already.
|
|
*/
|
|
res = fixup_owner(uaddr, fshared, &q, !ret);
|
|
/*
|
|
* If fixup_owner() returned an error, proprogate that. If it acquired
|
|
* the lock, clear our -ETIMEDOUT or -EINTR.
|
|
*/
|
|
if (res)
|
|
ret = (res < 0) ? res : 0;
|
|
|
|
/*
|
|
* If fixup_owner() faulted and was unable to handle the fault, unlock
|
|
* it and return the fault to userspace.
|
|
*/
|
|
if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
|
|
rt_mutex_unlock(&q.pi_state->pi_mutex);
|
|
|
|
/* Unqueue and drop the lock */
|
|
unqueue_me_pi(&q);
|
|
|
|
goto out;
|
|
|
|
out_unlock_put_key:
|
|
queue_unlock(&q, hb);
|
|
|
|
out_put_key:
|
|
put_futex_key(fshared, &q.key);
|
|
out:
|
|
if (to)
|
|
destroy_hrtimer_on_stack(&to->timer);
|
|
return ret != -EINTR ? ret : -ERESTARTNOINTR;
|
|
|
|
uaddr_faulted:
|
|
queue_unlock(&q, hb);
|
|
|
|
ret = fault_in_user_writeable(uaddr);
|
|
if (ret)
|
|
goto out_put_key;
|
|
|
|
if (!fshared)
|
|
goto retry_private;
|
|
|
|
put_futex_key(fshared, &q.key);
|
|
goto retry;
|
|
}
|
|
|
|
/*
|
|
* Userspace attempted a TID -> 0 atomic transition, and failed.
|
|
* This is the in-kernel slowpath: we look up the PI state (if any),
|
|
* and do the rt-mutex unlock.
|
|
*/
|
|
static int futex_unlock_pi(u32 __user *uaddr, int fshared)
|
|
{
|
|
struct futex_hash_bucket *hb;
|
|
struct futex_q *this, *next;
|
|
u32 uval;
|
|
struct plist_head *head;
|
|
union futex_key key = FUTEX_KEY_INIT;
|
|
int ret;
|
|
|
|
retry:
|
|
if (get_user(uval, uaddr))
|
|
return -EFAULT;
|
|
/*
|
|
* We release only a lock we actually own:
|
|
*/
|
|
if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
|
|
return -EPERM;
|
|
|
|
ret = get_futex_key(uaddr, fshared, &key, VERIFY_WRITE);
|
|
if (unlikely(ret != 0))
|
|
goto out;
|
|
|
|
hb = hash_futex(&key);
|
|
spin_lock(&hb->lock);
|
|
|
|
/*
|
|
* To avoid races, try to do the TID -> 0 atomic transition
|
|
* again. If it succeeds then we can return without waking
|
|
* anyone else up:
|
|
*/
|
|
if (!(uval & FUTEX_OWNER_DIED))
|
|
uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
|
|
|
|
|
|
if (unlikely(uval == -EFAULT))
|
|
goto pi_faulted;
|
|
/*
|
|
* Rare case: we managed to release the lock atomically,
|
|
* no need to wake anyone else up:
|
|
*/
|
|
if (unlikely(uval == task_pid_vnr(current)))
|
|
goto out_unlock;
|
|
|
|
/*
|
|
* Ok, other tasks may need to be woken up - check waiters
|
|
* and do the wakeup if necessary:
|
|
*/
|
|
head = &hb->chain;
|
|
|
|
plist_for_each_entry_safe(this, next, head, list) {
|
|
if (!match_futex (&this->key, &key))
|
|
continue;
|
|
ret = wake_futex_pi(uaddr, uval, this);
|
|
/*
|
|
* The atomic access to the futex value
|
|
* generated a pagefault, so retry the
|
|
* user-access and the wakeup:
|
|
*/
|
|
if (ret == -EFAULT)
|
|
goto pi_faulted;
|
|
goto out_unlock;
|
|
}
|
|
/*
|
|
* No waiters - kernel unlocks the futex:
|
|
*/
|
|
if (!(uval & FUTEX_OWNER_DIED)) {
|
|
ret = unlock_futex_pi(uaddr, uval);
|
|
if (ret == -EFAULT)
|
|
goto pi_faulted;
|
|
}
|
|
|
|
out_unlock:
|
|
spin_unlock(&hb->lock);
|
|
put_futex_key(fshared, &key);
|
|
|
|
out:
|
|
return ret;
|
|
|
|
pi_faulted:
|
|
spin_unlock(&hb->lock);
|
|
put_futex_key(fshared, &key);
|
|
|
|
ret = fault_in_user_writeable(uaddr);
|
|
if (!ret)
|
|
goto retry;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
|
|
* @hb: the hash_bucket futex_q was original enqueued on
|
|
* @q: the futex_q woken while waiting to be requeued
|
|
* @key2: the futex_key of the requeue target futex
|
|
* @timeout: the timeout associated with the wait (NULL if none)
|
|
*
|
|
* Detect if the task was woken on the initial futex as opposed to the requeue
|
|
* target futex. If so, determine if it was a timeout or a signal that caused
|
|
* the wakeup and return the appropriate error code to the caller. Must be
|
|
* called with the hb lock held.
|
|
*
|
|
* Returns
|
|
* 0 - no early wakeup detected
|
|
* <0 - -ETIMEDOUT or -ERESTARTNOINTR
|
|
*/
|
|
static inline
|
|
int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
|
|
struct futex_q *q, union futex_key *key2,
|
|
struct hrtimer_sleeper *timeout)
|
|
{
|
|
int ret = 0;
|
|
|
|
/*
|
|
* With the hb lock held, we avoid races while we process the wakeup.
|
|
* We only need to hold hb (and not hb2) to ensure atomicity as the
|
|
* wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
|
|
* It can't be requeued from uaddr2 to something else since we don't
|
|
* support a PI aware source futex for requeue.
|
|
*/
|
|
if (!match_futex(&q->key, key2)) {
|
|
WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
|
|
/*
|
|
* We were woken prior to requeue by a timeout or a signal.
|
|
* Unqueue the futex_q and determine which it was.
|
|
*/
|
|
plist_del(&q->list, &q->list.plist);
|
|
drop_futex_key_refs(&q->key);
|
|
|
|
if (timeout && !timeout->task)
|
|
ret = -ETIMEDOUT;
|
|
else
|
|
ret = -ERESTARTNOINTR;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
|
|
* @uaddr: the futex we initialyl wait on (non-pi)
|
|
* @fshared: whether the futexes are shared (1) or not (0). They must be
|
|
* the same type, no requeueing from private to shared, etc.
|
|
* @val: the expected value of uaddr
|
|
* @abs_time: absolute timeout
|
|
* @bitset: 32 bit wakeup bitset set by userspace, defaults to all.
|
|
* @clockrt: whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
|
|
* @uaddr2: the pi futex we will take prior to returning to user-space
|
|
*
|
|
* The caller will wait on uaddr and will be requeued by futex_requeue() to
|
|
* uaddr2 which must be PI aware. Normal wakeup will wake on uaddr2 and
|
|
* complete the acquisition of the rt_mutex prior to returning to userspace.
|
|
* This ensures the rt_mutex maintains an owner when it has waiters; without
|
|
* one, the pi logic wouldn't know which task to boost/deboost, if there was a
|
|
* need to.
|
|
*
|
|
* We call schedule in futex_wait_queue_me() when we enqueue and return there
|
|
* via the following:
|
|
* 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
|
|
* 2) wakeup on uaddr2 after a requeue
|
|
* 3) signal
|
|
* 4) timeout
|
|
*
|
|
* If 3, cleanup and return -ERESTARTNOINTR.
|
|
*
|
|
* If 2, we may then block on trying to take the rt_mutex and return via:
|
|
* 5) successful lock
|
|
* 6) signal
|
|
* 7) timeout
|
|
* 8) other lock acquisition failure
|
|
*
|
|
* If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
|
|
*
|
|
* If 4 or 7, we cleanup and return with -ETIMEDOUT.
|
|
*
|
|
* Returns:
|
|
* 0 - On success
|
|
* <0 - On error
|
|
*/
|
|
static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared,
|
|
u32 val, ktime_t *abs_time, u32 bitset,
|
|
int clockrt, u32 __user *uaddr2)
|
|
{
|
|
struct hrtimer_sleeper timeout, *to = NULL;
|
|
struct rt_mutex_waiter rt_waiter;
|
|
struct rt_mutex *pi_mutex = NULL;
|
|
struct futex_hash_bucket *hb;
|
|
union futex_key key2;
|
|
struct futex_q q;
|
|
int res, ret;
|
|
|
|
if (!bitset)
|
|
return -EINVAL;
|
|
|
|
if (abs_time) {
|
|
to = &timeout;
|
|
hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
|
|
CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
|
|
hrtimer_init_sleeper(to, current);
|
|
hrtimer_set_expires_range_ns(&to->timer, *abs_time,
|
|
current->timer_slack_ns);
|
|
}
|
|
|
|
/*
|
|
* The waiter is allocated on our stack, manipulated by the requeue
|
|
* code while we sleep on uaddr.
|
|
*/
|
|
debug_rt_mutex_init_waiter(&rt_waiter);
|
|
rt_waiter.task = NULL;
|
|
|
|
key2 = FUTEX_KEY_INIT;
|
|
ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE);
|
|
if (unlikely(ret != 0))
|
|
goto out;
|
|
|
|
q.pi_state = NULL;
|
|
q.bitset = bitset;
|
|
q.rt_waiter = &rt_waiter;
|
|
q.requeue_pi_key = &key2;
|
|
|
|
/* Prepare to wait on uaddr. */
|
|
ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
|
|
if (ret)
|
|
goto out_key2;
|
|
|
|
/* Queue the futex_q, drop the hb lock, wait for wakeup. */
|
|
futex_wait_queue_me(hb, &q, to);
|
|
|
|
spin_lock(&hb->lock);
|
|
ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
|
|
spin_unlock(&hb->lock);
|
|
if (ret)
|
|
goto out_put_keys;
|
|
|
|
/*
|
|
* In order for us to be here, we know our q.key == key2, and since
|
|
* we took the hb->lock above, we also know that futex_requeue() has
|
|
* completed and we no longer have to concern ourselves with a wakeup
|
|
* race with the atomic proxy lock acquition by the requeue code.
|
|
*/
|
|
|
|
/* Check if the requeue code acquired the second futex for us. */
|
|
if (!q.rt_waiter) {
|
|
/*
|
|
* Got the lock. We might not be the anticipated owner if we
|
|
* did a lock-steal - fix up the PI-state in that case.
|
|
*/
|
|
if (q.pi_state && (q.pi_state->owner != current)) {
|
|
spin_lock(q.lock_ptr);
|
|
ret = fixup_pi_state_owner(uaddr2, &q, current,
|
|
fshared);
|
|
spin_unlock(q.lock_ptr);
|
|
}
|
|
} else {
|
|
/*
|
|
* We have been woken up by futex_unlock_pi(), a timeout, or a
|
|
* signal. futex_unlock_pi() will not destroy the lock_ptr nor
|
|
* the pi_state.
|
|
*/
|
|
WARN_ON(!&q.pi_state);
|
|
pi_mutex = &q.pi_state->pi_mutex;
|
|
ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
|
|
debug_rt_mutex_free_waiter(&rt_waiter);
|
|
|
|
spin_lock(q.lock_ptr);
|
|
/*
|
|
* Fixup the pi_state owner and possibly acquire the lock if we
|
|
* haven't already.
|
|
*/
|
|
res = fixup_owner(uaddr2, fshared, &q, !ret);
|
|
/*
|
|
* If fixup_owner() returned an error, proprogate that. If it
|
|
* acquired the lock, clear our -ETIMEDOUT or -EINTR.
|
|
*/
|
|
if (res)
|
|
ret = (res < 0) ? res : 0;
|
|
|
|
/* Unqueue and drop the lock. */
|
|
unqueue_me_pi(&q);
|
|
}
|
|
|
|
/*
|
|
* If fixup_pi_state_owner() faulted and was unable to handle the
|
|
* fault, unlock the rt_mutex and return the fault to userspace.
|
|
*/
|
|
if (ret == -EFAULT) {
|
|
if (rt_mutex_owner(pi_mutex) == current)
|
|
rt_mutex_unlock(pi_mutex);
|
|
} else if (ret == -EINTR) {
|
|
/*
|
|
* We've already been requeued, but cannot restart by calling
|
|
* futex_lock_pi() directly. We could restart this syscall, but
|
|
* it would detect that the user space "val" changed and return
|
|
* -EWOULDBLOCK. Save the overhead of the restart and return
|
|
* -EWOULDBLOCK directly.
|
|
*/
|
|
ret = -EWOULDBLOCK;
|
|
}
|
|
|
|
out_put_keys:
|
|
put_futex_key(fshared, &q.key);
|
|
out_key2:
|
|
put_futex_key(fshared, &key2);
|
|
|
|
out:
|
|
if (to) {
|
|
hrtimer_cancel(&to->timer);
|
|
destroy_hrtimer_on_stack(&to->timer);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Support for robust futexes: the kernel cleans up held futexes at
|
|
* thread exit time.
|
|
*
|
|
* Implementation: user-space maintains a per-thread list of locks it
|
|
* is holding. Upon do_exit(), the kernel carefully walks this list,
|
|
* and marks all locks that are owned by this thread with the
|
|
* FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
|
|
* always manipulated with the lock held, so the list is private and
|
|
* per-thread. Userspace also maintains a per-thread 'list_op_pending'
|
|
* field, to allow the kernel to clean up if the thread dies after
|
|
* acquiring the lock, but just before it could have added itself to
|
|
* the list. There can only be one such pending lock.
|
|
*/
|
|
|
|
/**
|
|
* sys_set_robust_list - set the robust-futex list head of a task
|
|
* @head: pointer to the list-head
|
|
* @len: length of the list-head, as userspace expects
|
|
*/
|
|
SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
|
|
size_t, len)
|
|
{
|
|
if (!futex_cmpxchg_enabled)
|
|
return -ENOSYS;
|
|
/*
|
|
* The kernel knows only one size for now:
|
|
*/
|
|
if (unlikely(len != sizeof(*head)))
|
|
return -EINVAL;
|
|
|
|
current->robust_list = head;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* sys_get_robust_list - get the robust-futex list head of a task
|
|
* @pid: pid of the process [zero for current task]
|
|
* @head_ptr: pointer to a list-head pointer, the kernel fills it in
|
|
* @len_ptr: pointer to a length field, the kernel fills in the header size
|
|
*/
|
|
SYSCALL_DEFINE3(get_robust_list, int, pid,
|
|
struct robust_list_head __user * __user *, head_ptr,
|
|
size_t __user *, len_ptr)
|
|
{
|
|
struct robust_list_head __user *head;
|
|
unsigned long ret;
|
|
const struct cred *cred = current_cred(), *pcred;
|
|
|
|
if (!futex_cmpxchg_enabled)
|
|
return -ENOSYS;
|
|
|
|
if (!pid)
|
|
head = current->robust_list;
|
|
else {
|
|
struct task_struct *p;
|
|
|
|
ret = -ESRCH;
|
|
rcu_read_lock();
|
|
p = find_task_by_vpid(pid);
|
|
if (!p)
|
|
goto err_unlock;
|
|
ret = -EPERM;
|
|
pcred = __task_cred(p);
|
|
if (cred->euid != pcred->euid &&
|
|
cred->euid != pcred->uid &&
|
|
!capable(CAP_SYS_PTRACE))
|
|
goto err_unlock;
|
|
head = p->robust_list;
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
if (put_user(sizeof(*head), len_ptr))
|
|
return -EFAULT;
|
|
return put_user(head, head_ptr);
|
|
|
|
err_unlock:
|
|
rcu_read_unlock();
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Process a futex-list entry, check whether it's owned by the
|
|
* dying task, and do notification if so:
|
|
*/
|
|
int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
|
|
{
|
|
u32 uval, nval, mval;
|
|
|
|
retry:
|
|
if (get_user(uval, uaddr))
|
|
return -1;
|
|
|
|
if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
|
|
/*
|
|
* Ok, this dying thread is truly holding a futex
|
|
* of interest. Set the OWNER_DIED bit atomically
|
|
* via cmpxchg, and if the value had FUTEX_WAITERS
|
|
* set, wake up a waiter (if any). (We have to do a
|
|
* futex_wake() even if OWNER_DIED is already set -
|
|
* to handle the rare but possible case of recursive
|
|
* thread-death.) The rest of the cleanup is done in
|
|
* userspace.
|
|
*/
|
|
mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
|
|
nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
|
|
|
|
if (nval == -EFAULT)
|
|
return -1;
|
|
|
|
if (nval != uval)
|
|
goto retry;
|
|
|
|
/*
|
|
* Wake robust non-PI futexes here. The wakeup of
|
|
* PI futexes happens in exit_pi_state():
|
|
*/
|
|
if (!pi && (uval & FUTEX_WAITERS))
|
|
futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Fetch a robust-list pointer. Bit 0 signals PI futexes:
|
|
*/
|
|
static inline int fetch_robust_entry(struct robust_list __user **entry,
|
|
struct robust_list __user * __user *head,
|
|
int *pi)
|
|
{
|
|
unsigned long uentry;
|
|
|
|
if (get_user(uentry, (unsigned long __user *)head))
|
|
return -EFAULT;
|
|
|
|
*entry = (void __user *)(uentry & ~1UL);
|
|
*pi = uentry & 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Walk curr->robust_list (very carefully, it's a userspace list!)
|
|
* and mark any locks found there dead, and notify any waiters.
|
|
*
|
|
* We silently return on any sign of list-walking problem.
|
|
*/
|
|
void exit_robust_list(struct task_struct *curr)
|
|
{
|
|
struct robust_list_head __user *head = curr->robust_list;
|
|
struct robust_list __user *entry, *next_entry, *pending;
|
|
unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
|
|
unsigned long futex_offset;
|
|
int rc;
|
|
|
|
if (!futex_cmpxchg_enabled)
|
|
return;
|
|
|
|
/*
|
|
* Fetch the list head (which was registered earlier, via
|
|
* sys_set_robust_list()):
|
|
*/
|
|
if (fetch_robust_entry(&entry, &head->list.next, &pi))
|
|
return;
|
|
/*
|
|
* Fetch the relative futex offset:
|
|
*/
|
|
if (get_user(futex_offset, &head->futex_offset))
|
|
return;
|
|
/*
|
|
* Fetch any possibly pending lock-add first, and handle it
|
|
* if it exists:
|
|
*/
|
|
if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
|
|
return;
|
|
|
|
next_entry = NULL; /* avoid warning with gcc */
|
|
while (entry != &head->list) {
|
|
/*
|
|
* Fetch the next entry in the list before calling
|
|
* handle_futex_death:
|
|
*/
|
|
rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
|
|
/*
|
|
* A pending lock might already be on the list, so
|
|
* don't process it twice:
|
|
*/
|
|
if (entry != pending)
|
|
if (handle_futex_death((void __user *)entry + futex_offset,
|
|
curr, pi))
|
|
return;
|
|
if (rc)
|
|
return;
|
|
entry = next_entry;
|
|
pi = next_pi;
|
|
/*
|
|
* Avoid excessively long or circular lists:
|
|
*/
|
|
if (!--limit)
|
|
break;
|
|
|
|
cond_resched();
|
|
}
|
|
|
|
if (pending)
|
|
handle_futex_death((void __user *)pending + futex_offset,
|
|
curr, pip);
|
|
}
|
|
|
|
long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
|
|
u32 __user *uaddr2, u32 val2, u32 val3)
|
|
{
|
|
int clockrt, ret = -ENOSYS;
|
|
int cmd = op & FUTEX_CMD_MASK;
|
|
int fshared = 0;
|
|
|
|
if (!(op & FUTEX_PRIVATE_FLAG))
|
|
fshared = 1;
|
|
|
|
clockrt = op & FUTEX_CLOCK_REALTIME;
|
|
if (clockrt && cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
|
|
return -ENOSYS;
|
|
|
|
switch (cmd) {
|
|
case FUTEX_WAIT:
|
|
val3 = FUTEX_BITSET_MATCH_ANY;
|
|
case FUTEX_WAIT_BITSET:
|
|
ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
|
|
break;
|
|
case FUTEX_WAKE:
|
|
val3 = FUTEX_BITSET_MATCH_ANY;
|
|
case FUTEX_WAKE_BITSET:
|
|
ret = futex_wake(uaddr, fshared, val, val3);
|
|
break;
|
|
case FUTEX_REQUEUE:
|
|
ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL, 0);
|
|
break;
|
|
case FUTEX_CMP_REQUEUE:
|
|
ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
|
|
0);
|
|
break;
|
|
case FUTEX_WAKE_OP:
|
|
ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
|
|
break;
|
|
case FUTEX_LOCK_PI:
|
|
if (futex_cmpxchg_enabled)
|
|
ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
|
|
break;
|
|
case FUTEX_UNLOCK_PI:
|
|
if (futex_cmpxchg_enabled)
|
|
ret = futex_unlock_pi(uaddr, fshared);
|
|
break;
|
|
case FUTEX_TRYLOCK_PI:
|
|
if (futex_cmpxchg_enabled)
|
|
ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
|
|
break;
|
|
case FUTEX_WAIT_REQUEUE_PI:
|
|
val3 = FUTEX_BITSET_MATCH_ANY;
|
|
ret = futex_wait_requeue_pi(uaddr, fshared, val, timeout, val3,
|
|
clockrt, uaddr2);
|
|
break;
|
|
case FUTEX_CMP_REQUEUE_PI:
|
|
ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
|
|
1);
|
|
break;
|
|
default:
|
|
ret = -ENOSYS;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
|
|
SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
|
|
struct timespec __user *, utime, u32 __user *, uaddr2,
|
|
u32, val3)
|
|
{
|
|
struct timespec ts;
|
|
ktime_t t, *tp = NULL;
|
|
u32 val2 = 0;
|
|
int cmd = op & FUTEX_CMD_MASK;
|
|
|
|
if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
|
|
cmd == FUTEX_WAIT_BITSET ||
|
|
cmd == FUTEX_WAIT_REQUEUE_PI)) {
|
|
if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
|
|
return -EFAULT;
|
|
if (!timespec_valid(&ts))
|
|
return -EINVAL;
|
|
|
|
t = timespec_to_ktime(ts);
|
|
if (cmd == FUTEX_WAIT)
|
|
t = ktime_add_safe(ktime_get(), t);
|
|
tp = &t;
|
|
}
|
|
/*
|
|
* requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
|
|
* number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
|
|
*/
|
|
if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
|
|
cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
|
|
val2 = (u32) (unsigned long) utime;
|
|
|
|
return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
|
|
}
|
|
|
|
static int __init futex_init(void)
|
|
{
|
|
u32 curval;
|
|
int i;
|
|
|
|
/*
|
|
* This will fail and we want it. Some arch implementations do
|
|
* runtime detection of the futex_atomic_cmpxchg_inatomic()
|
|
* functionality. We want to know that before we call in any
|
|
* of the complex code paths. Also we want to prevent
|
|
* registration of robust lists in that case. NULL is
|
|
* guaranteed to fault and we get -EFAULT on functional
|
|
* implementation, the non functional ones will return
|
|
* -ENOSYS.
|
|
*/
|
|
curval = cmpxchg_futex_value_locked(NULL, 0, 0);
|
|
if (curval == -EFAULT)
|
|
futex_cmpxchg_enabled = 1;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
|
|
plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
|
|
spin_lock_init(&futex_queues[i].lock);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
__initcall(futex_init);
|