kernel_optimize_test/arch/sparc64/kernel/pci.c
Randy Dunlap e63340ae6b header cleaning: don't include smp_lock.h when not used
Remove includes of <linux/smp_lock.h> where it is not used/needed.
Suggested by Al Viro.

Builds cleanly on x86_64, i386, alpha, ia64, powerpc, sparc,
sparc64, and arm (all 59 defconfigs).

Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-08 11:15:07 -07:00

1130 lines
29 KiB
C

/* pci.c: UltraSparc PCI controller support.
*
* Copyright (C) 1997, 1998, 1999 David S. Miller (davem@redhat.com)
* Copyright (C) 1998, 1999 Eddie C. Dost (ecd@skynet.be)
* Copyright (C) 1999 Jakub Jelinek (jj@ultra.linux.cz)
*
* OF tree based PCI bus probing taken from the PowerPC port
* with minor modifications, see there for credits.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/sched.h>
#include <linux/capability.h>
#include <linux/errno.h>
#include <linux/msi.h>
#include <linux/irq.h>
#include <linux/init.h>
#include <asm/uaccess.h>
#include <asm/pbm.h>
#include <asm/pgtable.h>
#include <asm/irq.h>
#include <asm/ebus.h>
#include <asm/isa.h>
#include <asm/prom.h>
#include <asm/apb.h>
#include "pci_impl.h"
unsigned long pci_memspace_mask = 0xffffffffUL;
#ifndef CONFIG_PCI
/* A "nop" PCI implementation. */
asmlinkage int sys_pciconfig_read(unsigned long bus, unsigned long dfn,
unsigned long off, unsigned long len,
unsigned char *buf)
{
return 0;
}
asmlinkage int sys_pciconfig_write(unsigned long bus, unsigned long dfn,
unsigned long off, unsigned long len,
unsigned char *buf)
{
return 0;
}
#else
/* List of all PCI controllers found in the system. */
struct pci_controller_info *pci_controller_root = NULL;
/* Each PCI controller found gets a unique index. */
int pci_num_controllers = 0;
volatile int pci_poke_in_progress;
volatile int pci_poke_cpu = -1;
volatile int pci_poke_faulted;
static DEFINE_SPINLOCK(pci_poke_lock);
void pci_config_read8(u8 *addr, u8 *ret)
{
unsigned long flags;
u8 byte;
spin_lock_irqsave(&pci_poke_lock, flags);
pci_poke_cpu = smp_processor_id();
pci_poke_in_progress = 1;
pci_poke_faulted = 0;
__asm__ __volatile__("membar #Sync\n\t"
"lduba [%1] %2, %0\n\t"
"membar #Sync"
: "=r" (byte)
: "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
: "memory");
pci_poke_in_progress = 0;
pci_poke_cpu = -1;
if (!pci_poke_faulted)
*ret = byte;
spin_unlock_irqrestore(&pci_poke_lock, flags);
}
void pci_config_read16(u16 *addr, u16 *ret)
{
unsigned long flags;
u16 word;
spin_lock_irqsave(&pci_poke_lock, flags);
pci_poke_cpu = smp_processor_id();
pci_poke_in_progress = 1;
pci_poke_faulted = 0;
__asm__ __volatile__("membar #Sync\n\t"
"lduha [%1] %2, %0\n\t"
"membar #Sync"
: "=r" (word)
: "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
: "memory");
pci_poke_in_progress = 0;
pci_poke_cpu = -1;
if (!pci_poke_faulted)
*ret = word;
spin_unlock_irqrestore(&pci_poke_lock, flags);
}
void pci_config_read32(u32 *addr, u32 *ret)
{
unsigned long flags;
u32 dword;
spin_lock_irqsave(&pci_poke_lock, flags);
pci_poke_cpu = smp_processor_id();
pci_poke_in_progress = 1;
pci_poke_faulted = 0;
__asm__ __volatile__("membar #Sync\n\t"
"lduwa [%1] %2, %0\n\t"
"membar #Sync"
: "=r" (dword)
: "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
: "memory");
pci_poke_in_progress = 0;
pci_poke_cpu = -1;
if (!pci_poke_faulted)
*ret = dword;
spin_unlock_irqrestore(&pci_poke_lock, flags);
}
void pci_config_write8(u8 *addr, u8 val)
{
unsigned long flags;
spin_lock_irqsave(&pci_poke_lock, flags);
pci_poke_cpu = smp_processor_id();
pci_poke_in_progress = 1;
pci_poke_faulted = 0;
__asm__ __volatile__("membar #Sync\n\t"
"stba %0, [%1] %2\n\t"
"membar #Sync"
: /* no outputs */
: "r" (val), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
: "memory");
pci_poke_in_progress = 0;
pci_poke_cpu = -1;
spin_unlock_irqrestore(&pci_poke_lock, flags);
}
void pci_config_write16(u16 *addr, u16 val)
{
unsigned long flags;
spin_lock_irqsave(&pci_poke_lock, flags);
pci_poke_cpu = smp_processor_id();
pci_poke_in_progress = 1;
pci_poke_faulted = 0;
__asm__ __volatile__("membar #Sync\n\t"
"stha %0, [%1] %2\n\t"
"membar #Sync"
: /* no outputs */
: "r" (val), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
: "memory");
pci_poke_in_progress = 0;
pci_poke_cpu = -1;
spin_unlock_irqrestore(&pci_poke_lock, flags);
}
void pci_config_write32(u32 *addr, u32 val)
{
unsigned long flags;
spin_lock_irqsave(&pci_poke_lock, flags);
pci_poke_cpu = smp_processor_id();
pci_poke_in_progress = 1;
pci_poke_faulted = 0;
__asm__ __volatile__("membar #Sync\n\t"
"stwa %0, [%1] %2\n\t"
"membar #Sync"
: /* no outputs */
: "r" (val), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
: "memory");
pci_poke_in_progress = 0;
pci_poke_cpu = -1;
spin_unlock_irqrestore(&pci_poke_lock, flags);
}
/* Probe for all PCI controllers in the system. */
extern void sabre_init(struct device_node *, const char *);
extern void psycho_init(struct device_node *, const char *);
extern void schizo_init(struct device_node *, const char *);
extern void schizo_plus_init(struct device_node *, const char *);
extern void tomatillo_init(struct device_node *, const char *);
extern void sun4v_pci_init(struct device_node *, const char *);
extern void fire_pci_init(struct device_node *, const char *);
static struct {
char *model_name;
void (*init)(struct device_node *, const char *);
} pci_controller_table[] __initdata = {
{ "SUNW,sabre", sabre_init },
{ "pci108e,a000", sabre_init },
{ "pci108e,a001", sabre_init },
{ "SUNW,psycho", psycho_init },
{ "pci108e,8000", psycho_init },
{ "SUNW,schizo", schizo_init },
{ "pci108e,8001", schizo_init },
{ "SUNW,schizo+", schizo_plus_init },
{ "pci108e,8002", schizo_plus_init },
{ "SUNW,tomatillo", tomatillo_init },
{ "pci108e,a801", tomatillo_init },
{ "SUNW,sun4v-pci", sun4v_pci_init },
{ "pciex108e,80f0", fire_pci_init },
};
#define PCI_NUM_CONTROLLER_TYPES (sizeof(pci_controller_table) / \
sizeof(pci_controller_table[0]))
static int __init pci_controller_init(const char *model_name, int namelen, struct device_node *dp)
{
int i;
for (i = 0; i < PCI_NUM_CONTROLLER_TYPES; i++) {
if (!strncmp(model_name,
pci_controller_table[i].model_name,
namelen)) {
pci_controller_table[i].init(dp, model_name);
return 1;
}
}
return 0;
}
static int __init pci_is_controller(const char *model_name, int namelen, struct device_node *dp)
{
int i;
for (i = 0; i < PCI_NUM_CONTROLLER_TYPES; i++) {
if (!strncmp(model_name,
pci_controller_table[i].model_name,
namelen)) {
return 1;
}
}
return 0;
}
static int __init pci_controller_scan(int (*handler)(const char *, int, struct device_node *))
{
struct device_node *dp;
int count = 0;
for_each_node_by_name(dp, "pci") {
struct property *prop;
int len;
prop = of_find_property(dp, "model", &len);
if (!prop)
prop = of_find_property(dp, "compatible", &len);
if (prop) {
const char *model = prop->value;
int item_len = 0;
/* Our value may be a multi-valued string in the
* case of some compatible properties. For sanity,
* only try the first one.
*/
while (model[item_len] && len) {
len--;
item_len++;
}
if (handler(model, item_len, dp))
count++;
}
}
return count;
}
/* Is there some PCI controller in the system? */
int __init pcic_present(void)
{
return pci_controller_scan(pci_is_controller);
}
const struct pci_iommu_ops *pci_iommu_ops;
EXPORT_SYMBOL(pci_iommu_ops);
extern const struct pci_iommu_ops pci_sun4u_iommu_ops,
pci_sun4v_iommu_ops;
/* Find each controller in the system, attach and initialize
* software state structure for each and link into the
* pci_controller_root. Setup the controller enough such
* that bus scanning can be done.
*/
static void __init pci_controller_probe(void)
{
if (tlb_type == hypervisor)
pci_iommu_ops = &pci_sun4v_iommu_ops;
else
pci_iommu_ops = &pci_sun4u_iommu_ops;
printk("PCI: Probing for controllers.\n");
pci_controller_scan(pci_controller_init);
}
static unsigned long pci_parse_of_flags(u32 addr0)
{
unsigned long flags = 0;
if (addr0 & 0x02000000) {
flags = IORESOURCE_MEM | PCI_BASE_ADDRESS_SPACE_MEMORY;
flags |= (addr0 >> 22) & PCI_BASE_ADDRESS_MEM_TYPE_64;
flags |= (addr0 >> 28) & PCI_BASE_ADDRESS_MEM_TYPE_1M;
if (addr0 & 0x40000000)
flags |= IORESOURCE_PREFETCH
| PCI_BASE_ADDRESS_MEM_PREFETCH;
} else if (addr0 & 0x01000000)
flags = IORESOURCE_IO | PCI_BASE_ADDRESS_SPACE_IO;
return flags;
}
/* The of_device layer has translated all of the assigned-address properties
* into physical address resources, we only have to figure out the register
* mapping.
*/
static void pci_parse_of_addrs(struct of_device *op,
struct device_node *node,
struct pci_dev *dev)
{
struct resource *op_res;
const u32 *addrs;
int proplen;
addrs = of_get_property(node, "assigned-addresses", &proplen);
if (!addrs)
return;
printk(" parse addresses (%d bytes) @ %p\n", proplen, addrs);
op_res = &op->resource[0];
for (; proplen >= 20; proplen -= 20, addrs += 5, op_res++) {
struct resource *res;
unsigned long flags;
int i;
flags = pci_parse_of_flags(addrs[0]);
if (!flags)
continue;
i = addrs[0] & 0xff;
printk(" start: %lx, end: %lx, i: %x\n",
op_res->start, op_res->end, i);
if (PCI_BASE_ADDRESS_0 <= i && i <= PCI_BASE_ADDRESS_5) {
res = &dev->resource[(i - PCI_BASE_ADDRESS_0) >> 2];
} else if (i == dev->rom_base_reg) {
res = &dev->resource[PCI_ROM_RESOURCE];
flags |= IORESOURCE_READONLY | IORESOURCE_CACHEABLE;
} else {
printk(KERN_ERR "PCI: bad cfg reg num 0x%x\n", i);
continue;
}
res->start = op_res->start;
res->end = op_res->end;
res->flags = flags;
res->name = pci_name(dev);
}
}
struct pci_dev *of_create_pci_dev(struct pci_pbm_info *pbm,
struct device_node *node,
struct pci_bus *bus, int devfn,
int host_controller)
{
struct dev_archdata *sd;
struct pci_dev *dev;
const char *type;
u32 class;
dev = kzalloc(sizeof(struct pci_dev), GFP_KERNEL);
if (!dev)
return NULL;
sd = &dev->dev.archdata;
sd->iommu = pbm->iommu;
sd->stc = &pbm->stc;
sd->host_controller = pbm;
sd->prom_node = node;
sd->op = of_find_device_by_node(node);
sd->msi_num = 0xffffffff;
type = of_get_property(node, "device_type", NULL);
if (type == NULL)
type = "";
printk(" create device, devfn: %x, type: %s hostcontroller(%d)\n",
devfn, type, host_controller);
dev->bus = bus;
dev->sysdata = node;
dev->dev.parent = bus->bridge;
dev->dev.bus = &pci_bus_type;
dev->devfn = devfn;
dev->multifunction = 0; /* maybe a lie? */
if (host_controller) {
dev->vendor = 0x108e;
dev->device = 0x8000;
dev->subsystem_vendor = 0x0000;
dev->subsystem_device = 0x0000;
dev->cfg_size = 256;
dev->class = PCI_CLASS_BRIDGE_HOST << 8;
sprintf(pci_name(dev), "%04x:%02x:%02x.%d", pci_domain_nr(bus),
0x00, PCI_SLOT(devfn), PCI_FUNC(devfn));
} else {
dev->vendor = of_getintprop_default(node, "vendor-id", 0xffff);
dev->device = of_getintprop_default(node, "device-id", 0xffff);
dev->subsystem_vendor =
of_getintprop_default(node, "subsystem-vendor-id", 0);
dev->subsystem_device =
of_getintprop_default(node, "subsystem-id", 0);
dev->cfg_size = pci_cfg_space_size(dev);
/* We can't actually use the firmware value, we have
* to read what is in the register right now. One
* reason is that in the case of IDE interfaces the
* firmware can sample the value before the the IDE
* interface is programmed into native mode.
*/
pci_read_config_dword(dev, PCI_CLASS_REVISION, &class);
dev->class = class >> 8;
sprintf(pci_name(dev), "%04x:%02x:%02x.%d", pci_domain_nr(bus),
dev->bus->number, PCI_SLOT(devfn), PCI_FUNC(devfn));
}
printk(" class: 0x%x device name: %s\n",
dev->class, pci_name(dev));
/* I have seen IDE devices which will not respond to
* the bmdma simplex check reads if bus mastering is
* disabled.
*/
if ((dev->class >> 8) == PCI_CLASS_STORAGE_IDE)
pci_set_master(dev);
dev->current_state = 4; /* unknown power state */
dev->error_state = pci_channel_io_normal;
if (host_controller) {
dev->hdr_type = PCI_HEADER_TYPE_BRIDGE;
dev->rom_base_reg = PCI_ROM_ADDRESS1;
dev->irq = PCI_IRQ_NONE;
} else {
if (!strcmp(type, "pci") || !strcmp(type, "pciex")) {
/* a PCI-PCI bridge */
dev->hdr_type = PCI_HEADER_TYPE_BRIDGE;
dev->rom_base_reg = PCI_ROM_ADDRESS1;
} else if (!strcmp(type, "cardbus")) {
dev->hdr_type = PCI_HEADER_TYPE_CARDBUS;
} else {
dev->hdr_type = PCI_HEADER_TYPE_NORMAL;
dev->rom_base_reg = PCI_ROM_ADDRESS;
dev->irq = sd->op->irqs[0];
if (dev->irq == 0xffffffff)
dev->irq = PCI_IRQ_NONE;
}
}
pci_parse_of_addrs(sd->op, node, dev);
printk(" adding to system ...\n");
pci_device_add(dev, bus);
return dev;
}
static void __devinit apb_calc_first_last(u8 map, u32 *first_p, u32 *last_p)
{
u32 idx, first, last;
first = 8;
last = 0;
for (idx = 0; idx < 8; idx++) {
if ((map & (1 << idx)) != 0) {
if (first > idx)
first = idx;
if (last < idx)
last = idx;
}
}
*first_p = first;
*last_p = last;
}
static void __init pci_resource_adjust(struct resource *res,
struct resource *root)
{
res->start += root->start;
res->end += root->start;
}
/* Cook up fake bus resources for SUNW,simba PCI bridges which lack
* a proper 'ranges' property.
*/
static void __devinit apb_fake_ranges(struct pci_dev *dev,
struct pci_bus *bus,
struct pci_pbm_info *pbm)
{
struct resource *res;
u32 first, last;
u8 map;
pci_read_config_byte(dev, APB_IO_ADDRESS_MAP, &map);
apb_calc_first_last(map, &first, &last);
res = bus->resource[0];
res->start = (first << 21);
res->end = (last << 21) + ((1 << 21) - 1);
res->flags = IORESOURCE_IO;
pci_resource_adjust(res, &pbm->io_space);
pci_read_config_byte(dev, APB_MEM_ADDRESS_MAP, &map);
apb_calc_first_last(map, &first, &last);
res = bus->resource[1];
res->start = (first << 21);
res->end = (last << 21) + ((1 << 21) - 1);
res->flags = IORESOURCE_MEM;
pci_resource_adjust(res, &pbm->mem_space);
}
static void __devinit pci_of_scan_bus(struct pci_pbm_info *pbm,
struct device_node *node,
struct pci_bus *bus);
#define GET_64BIT(prop, i) ((((u64) (prop)[(i)]) << 32) | (prop)[(i)+1])
static void __devinit of_scan_pci_bridge(struct pci_pbm_info *pbm,
struct device_node *node,
struct pci_dev *dev)
{
struct pci_bus *bus;
const u32 *busrange, *ranges;
int len, i, simba;
struct resource *res;
unsigned int flags;
u64 size;
printk("of_scan_pci_bridge(%s)\n", node->full_name);
/* parse bus-range property */
busrange = of_get_property(node, "bus-range", &len);
if (busrange == NULL || len != 8) {
printk(KERN_DEBUG "Can't get bus-range for PCI-PCI bridge %s\n",
node->full_name);
return;
}
ranges = of_get_property(node, "ranges", &len);
simba = 0;
if (ranges == NULL) {
const char *model = of_get_property(node, "model", NULL);
if (model && !strcmp(model, "SUNW,simba")) {
simba = 1;
} else {
printk(KERN_DEBUG "Can't get ranges for PCI-PCI bridge %s\n",
node->full_name);
return;
}
}
bus = pci_add_new_bus(dev->bus, dev, busrange[0]);
if (!bus) {
printk(KERN_ERR "Failed to create pci bus for %s\n",
node->full_name);
return;
}
bus->primary = dev->bus->number;
bus->subordinate = busrange[1];
bus->bridge_ctl = 0;
/* parse ranges property, or cook one up by hand for Simba */
/* PCI #address-cells == 3 and #size-cells == 2 always */
res = &dev->resource[PCI_BRIDGE_RESOURCES];
for (i = 0; i < PCI_NUM_RESOURCES - PCI_BRIDGE_RESOURCES; ++i) {
res->flags = 0;
bus->resource[i] = res;
++res;
}
if (simba) {
apb_fake_ranges(dev, bus, pbm);
goto simba_cont;
}
i = 1;
for (; len >= 32; len -= 32, ranges += 8) {
struct resource *root;
flags = pci_parse_of_flags(ranges[0]);
size = GET_64BIT(ranges, 6);
if (flags == 0 || size == 0)
continue;
if (flags & IORESOURCE_IO) {
res = bus->resource[0];
if (res->flags) {
printk(KERN_ERR "PCI: ignoring extra I/O range"
" for bridge %s\n", node->full_name);
continue;
}
root = &pbm->io_space;
} else {
if (i >= PCI_NUM_RESOURCES - PCI_BRIDGE_RESOURCES) {
printk(KERN_ERR "PCI: too many memory ranges"
" for bridge %s\n", node->full_name);
continue;
}
res = bus->resource[i];
++i;
root = &pbm->mem_space;
}
res->start = GET_64BIT(ranges, 1);
res->end = res->start + size - 1;
res->flags = flags;
/* Another way to implement this would be to add an of_device
* layer routine that can calculate a resource for a given
* range property value in a PCI device.
*/
pci_resource_adjust(res, root);
}
simba_cont:
sprintf(bus->name, "PCI Bus %04x:%02x", pci_domain_nr(bus),
bus->number);
printk(" bus name: %s\n", bus->name);
pci_of_scan_bus(pbm, node, bus);
}
static void __devinit pci_of_scan_bus(struct pci_pbm_info *pbm,
struct device_node *node,
struct pci_bus *bus)
{
struct device_node *child;
const u32 *reg;
int reglen, devfn;
struct pci_dev *dev;
printk("PCI: scan_bus[%s] bus no %d\n",
node->full_name, bus->number);
child = NULL;
while ((child = of_get_next_child(node, child)) != NULL) {
printk(" * %s\n", child->full_name);
reg = of_get_property(child, "reg", &reglen);
if (reg == NULL || reglen < 20)
continue;
devfn = (reg[0] >> 8) & 0xff;
/* create a new pci_dev for this device */
dev = of_create_pci_dev(pbm, child, bus, devfn, 0);
if (!dev)
continue;
printk("PCI: dev header type: %x\n", dev->hdr_type);
if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE ||
dev->hdr_type == PCI_HEADER_TYPE_CARDBUS)
of_scan_pci_bridge(pbm, child, dev);
}
}
static ssize_t
show_pciobppath_attr(struct device * dev, struct device_attribute * attr, char * buf)
{
struct pci_dev *pdev;
struct device_node *dp;
pdev = to_pci_dev(dev);
dp = pdev->dev.archdata.prom_node;
return snprintf (buf, PAGE_SIZE, "%s\n", dp->full_name);
}
static DEVICE_ATTR(obppath, S_IRUSR | S_IRGRP | S_IROTH, show_pciobppath_attr, NULL);
static void __devinit pci_bus_register_of_sysfs(struct pci_bus *bus)
{
struct pci_dev *dev;
struct pci_bus *child_bus;
int err;
list_for_each_entry(dev, &bus->devices, bus_list) {
/* we don't really care if we can create this file or
* not, but we need to assign the result of the call
* or the world will fall under alien invasion and
* everybody will be frozen on a spaceship ready to be
* eaten on alpha centauri by some green and jelly
* humanoid.
*/
err = sysfs_create_file(&dev->dev.kobj, &dev_attr_obppath.attr);
}
list_for_each_entry(child_bus, &bus->children, node)
pci_bus_register_of_sysfs(child_bus);
}
int pci_host_bridge_read_pci_cfg(struct pci_bus *bus_dev,
unsigned int devfn,
int where, int size,
u32 *value)
{
static u8 fake_pci_config[] = {
0x8e, 0x10, /* Vendor: 0x108e (Sun) */
0x00, 0x80, /* Device: 0x8000 (PBM) */
0x46, 0x01, /* Command: 0x0146 (SERR, PARITY, MASTER, MEM) */
0xa0, 0x22, /* Status: 0x02a0 (DEVSEL_MED, FB2B, 66MHZ) */
0x00, 0x00, 0x00, 0x06, /* Class: 0x06000000 host bridge */
0x00, /* Cacheline: 0x00 */
0x40, /* Latency: 0x40 */
0x00, /* Header-Type: 0x00 normal */
};
*value = 0;
if (where >= 0 && where < sizeof(fake_pci_config) &&
(where + size) >= 0 &&
(where + size) < sizeof(fake_pci_config) &&
size <= sizeof(u32)) {
while (size--) {
*value <<= 8;
*value |= fake_pci_config[where + size];
}
}
return PCIBIOS_SUCCESSFUL;
}
int pci_host_bridge_write_pci_cfg(struct pci_bus *bus_dev,
unsigned int devfn,
int where, int size,
u32 value)
{
return PCIBIOS_SUCCESSFUL;
}
struct pci_bus * __devinit pci_scan_one_pbm(struct pci_pbm_info *pbm)
{
struct pci_controller_info *p = pbm->parent;
struct device_node *node = pbm->prom_node;
struct pci_dev *host_pdev;
struct pci_bus *bus;
printk("PCI: Scanning PBM %s\n", node->full_name);
/* XXX parent device? XXX */
bus = pci_create_bus(NULL, pbm->pci_first_busno, p->pci_ops, pbm);
if (!bus) {
printk(KERN_ERR "Failed to create bus for %s\n",
node->full_name);
return NULL;
}
bus->secondary = pbm->pci_first_busno;
bus->subordinate = pbm->pci_last_busno;
bus->resource[0] = &pbm->io_space;
bus->resource[1] = &pbm->mem_space;
/* Create the dummy host bridge and link it in. */
host_pdev = of_create_pci_dev(pbm, node, bus, 0x00, 1);
bus->self = host_pdev;
pci_of_scan_bus(pbm, node, bus);
pci_bus_add_devices(bus);
pci_bus_register_of_sysfs(bus);
return bus;
}
static void __init pci_scan_each_controller_bus(void)
{
struct pci_controller_info *p;
for (p = pci_controller_root; p; p = p->next)
p->scan_bus(p);
}
extern void power_init(void);
static int __init pcibios_init(void)
{
pci_controller_probe();
if (pci_controller_root == NULL)
return 0;
pci_scan_each_controller_bus();
isa_init();
ebus_init();
power_init();
return 0;
}
subsys_initcall(pcibios_init);
void __devinit pcibios_fixup_bus(struct pci_bus *pbus)
{
struct pci_pbm_info *pbm = pbus->sysdata;
/* Generic PCI bus probing sets these to point at
* &io{port,mem}_resouce which is wrong for us.
*/
pbus->resource[0] = &pbm->io_space;
pbus->resource[1] = &pbm->mem_space;
}
struct resource *pcibios_select_root(struct pci_dev *pdev, struct resource *r)
{
struct pci_pbm_info *pbm = pdev->bus->sysdata;
struct resource *root = NULL;
if (r->flags & IORESOURCE_IO)
root = &pbm->io_space;
if (r->flags & IORESOURCE_MEM)
root = &pbm->mem_space;
return root;
}
void pcibios_update_irq(struct pci_dev *pdev, int irq)
{
}
void pcibios_align_resource(void *data, struct resource *res,
resource_size_t size, resource_size_t align)
{
}
int pcibios_enable_device(struct pci_dev *dev, int mask)
{
u16 cmd, oldcmd;
int i;
pci_read_config_word(dev, PCI_COMMAND, &cmd);
oldcmd = cmd;
for (i = 0; i < PCI_NUM_RESOURCES; i++) {
struct resource *res = &dev->resource[i];
/* Only set up the requested stuff */
if (!(mask & (1<<i)))
continue;
if (res->flags & IORESOURCE_IO)
cmd |= PCI_COMMAND_IO;
if (res->flags & IORESOURCE_MEM)
cmd |= PCI_COMMAND_MEMORY;
}
if (cmd != oldcmd) {
printk(KERN_DEBUG "PCI: Enabling device: (%s), cmd %x\n",
pci_name(dev), cmd);
/* Enable the appropriate bits in the PCI command register. */
pci_write_config_word(dev, PCI_COMMAND, cmd);
}
return 0;
}
void pcibios_resource_to_bus(struct pci_dev *pdev, struct pci_bus_region *region,
struct resource *res)
{
struct pci_pbm_info *pbm = pdev->bus->sysdata;
struct resource zero_res, *root;
zero_res.start = 0;
zero_res.end = 0;
zero_res.flags = res->flags;
if (res->flags & IORESOURCE_IO)
root = &pbm->io_space;
else
root = &pbm->mem_space;
pci_resource_adjust(&zero_res, root);
region->start = res->start - zero_res.start;
region->end = res->end - zero_res.start;
}
EXPORT_SYMBOL(pcibios_resource_to_bus);
void pcibios_bus_to_resource(struct pci_dev *pdev, struct resource *res,
struct pci_bus_region *region)
{
struct pci_pbm_info *pbm = pdev->bus->sysdata;
struct resource *root;
res->start = region->start;
res->end = region->end;
if (res->flags & IORESOURCE_IO)
root = &pbm->io_space;
else
root = &pbm->mem_space;
pci_resource_adjust(res, root);
}
EXPORT_SYMBOL(pcibios_bus_to_resource);
char * __devinit pcibios_setup(char *str)
{
return str;
}
/* Platform support for /proc/bus/pci/X/Y mmap()s. */
/* If the user uses a host-bridge as the PCI device, he may use
* this to perform a raw mmap() of the I/O or MEM space behind
* that controller.
*
* This can be useful for execution of x86 PCI bios initialization code
* on a PCI card, like the xfree86 int10 stuff does.
*/
static int __pci_mmap_make_offset_bus(struct pci_dev *pdev, struct vm_area_struct *vma,
enum pci_mmap_state mmap_state)
{
struct pci_pbm_info *pbm = pdev->dev.archdata.host_controller;
struct pci_controller_info *p;
unsigned long space_size, user_offset, user_size;
p = pbm->parent;
if (mmap_state == pci_mmap_io) {
space_size = (pbm->io_space.end -
pbm->io_space.start) + 1;
} else {
space_size = (pbm->mem_space.end -
pbm->mem_space.start) + 1;
}
/* Make sure the request is in range. */
user_offset = vma->vm_pgoff << PAGE_SHIFT;
user_size = vma->vm_end - vma->vm_start;
if (user_offset >= space_size ||
(user_offset + user_size) > space_size)
return -EINVAL;
if (mmap_state == pci_mmap_io) {
vma->vm_pgoff = (pbm->io_space.start +
user_offset) >> PAGE_SHIFT;
} else {
vma->vm_pgoff = (pbm->mem_space.start +
user_offset) >> PAGE_SHIFT;
}
return 0;
}
/* Adjust vm_pgoff of VMA such that it is the physical page offset corresponding
* to the 32-bit pci bus offset for DEV requested by the user.
*
* Basically, the user finds the base address for his device which he wishes
* to mmap. They read the 32-bit value from the config space base register,
* add whatever PAGE_SIZE multiple offset they wish, and feed this into the
* offset parameter of mmap on /proc/bus/pci/XXX for that device.
*
* Returns negative error code on failure, zero on success.
*/
static int __pci_mmap_make_offset(struct pci_dev *dev, struct vm_area_struct *vma,
enum pci_mmap_state mmap_state)
{
unsigned long user_offset = vma->vm_pgoff << PAGE_SHIFT;
unsigned long user32 = user_offset & pci_memspace_mask;
unsigned long largest_base, this_base, addr32;
int i;
if ((dev->class >> 8) == PCI_CLASS_BRIDGE_HOST)
return __pci_mmap_make_offset_bus(dev, vma, mmap_state);
/* Figure out which base address this is for. */
largest_base = 0UL;
for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
struct resource *rp = &dev->resource[i];
/* Active? */
if (!rp->flags)
continue;
/* Same type? */
if (i == PCI_ROM_RESOURCE) {
if (mmap_state != pci_mmap_mem)
continue;
} else {
if ((mmap_state == pci_mmap_io &&
(rp->flags & IORESOURCE_IO) == 0) ||
(mmap_state == pci_mmap_mem &&
(rp->flags & IORESOURCE_MEM) == 0))
continue;
}
this_base = rp->start;
addr32 = (this_base & PAGE_MASK) & pci_memspace_mask;
if (mmap_state == pci_mmap_io)
addr32 &= 0xffffff;
if (addr32 <= user32 && this_base > largest_base)
largest_base = this_base;
}
if (largest_base == 0UL)
return -EINVAL;
/* Now construct the final physical address. */
if (mmap_state == pci_mmap_io)
vma->vm_pgoff = (((largest_base & ~0xffffffUL) | user32) >> PAGE_SHIFT);
else
vma->vm_pgoff = (((largest_base & ~(pci_memspace_mask)) | user32) >> PAGE_SHIFT);
return 0;
}
/* Set vm_flags of VMA, as appropriate for this architecture, for a pci device
* mapping.
*/
static void __pci_mmap_set_flags(struct pci_dev *dev, struct vm_area_struct *vma,
enum pci_mmap_state mmap_state)
{
vma->vm_flags |= (VM_IO | VM_RESERVED);
}
/* Set vm_page_prot of VMA, as appropriate for this architecture, for a pci
* device mapping.
*/
static void __pci_mmap_set_pgprot(struct pci_dev *dev, struct vm_area_struct *vma,
enum pci_mmap_state mmap_state)
{
/* Our io_remap_pfn_range takes care of this, do nothing. */
}
/* Perform the actual remap of the pages for a PCI device mapping, as appropriate
* for this architecture. The region in the process to map is described by vm_start
* and vm_end members of VMA, the base physical address is found in vm_pgoff.
* The pci device structure is provided so that architectures may make mapping
* decisions on a per-device or per-bus basis.
*
* Returns a negative error code on failure, zero on success.
*/
int pci_mmap_page_range(struct pci_dev *dev, struct vm_area_struct *vma,
enum pci_mmap_state mmap_state,
int write_combine)
{
int ret;
ret = __pci_mmap_make_offset(dev, vma, mmap_state);
if (ret < 0)
return ret;
__pci_mmap_set_flags(dev, vma, mmap_state);
__pci_mmap_set_pgprot(dev, vma, mmap_state);
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
ret = io_remap_pfn_range(vma, vma->vm_start,
vma->vm_pgoff,
vma->vm_end - vma->vm_start,
vma->vm_page_prot);
if (ret)
return ret;
return 0;
}
/* Return the domain nuber for this pci bus */
int pci_domain_nr(struct pci_bus *pbus)
{
struct pci_pbm_info *pbm = pbus->sysdata;
int ret;
if (pbm == NULL || pbm->parent == NULL) {
ret = -ENXIO;
} else {
struct pci_controller_info *p = pbm->parent;
ret = p->index;
ret = ((ret << 1) +
((pbm == &pbm->parent->pbm_B) ? 1 : 0));
}
return ret;
}
EXPORT_SYMBOL(pci_domain_nr);
#ifdef CONFIG_PCI_MSI
int arch_setup_msi_irq(struct pci_dev *pdev, struct msi_desc *desc)
{
struct pci_pbm_info *pbm = pdev->dev.archdata.host_controller;
struct pci_controller_info *p = pbm->parent;
int virt_irq, err;
if (!pbm->msi_num || !p->setup_msi_irq)
return -EINVAL;
err = p->setup_msi_irq(&virt_irq, pdev, desc);
if (err)
return err;
return 0;
}
void arch_teardown_msi_irq(unsigned int virt_irq)
{
struct msi_desc *entry = get_irq_msi(virt_irq);
struct pci_dev *pdev = entry->dev;
struct pci_pbm_info *pbm = pdev->dev.archdata.host_controller;
struct pci_controller_info *p = pbm->parent;
if (!pbm->msi_num || !p->setup_msi_irq)
return;
return p->teardown_msi_irq(virt_irq, pdev);
}
#endif /* !(CONFIG_PCI_MSI) */
struct device_node *pci_device_to_OF_node(struct pci_dev *pdev)
{
return pdev->dev.archdata.prom_node;
}
EXPORT_SYMBOL(pci_device_to_OF_node);
#endif /* !(CONFIG_PCI) */