kernel_optimize_test/sound/soc/codecs/wm8958-dsp2.c
Kees Cook 6da2ec5605 treewide: kmalloc() -> kmalloc_array()
The kmalloc() function has a 2-factor argument form, kmalloc_array(). This
patch replaces cases of:

        kmalloc(a * b, gfp)

with:
        kmalloc_array(a * b, gfp)

as well as handling cases of:

        kmalloc(a * b * c, gfp)

with:

        kmalloc(array3_size(a, b, c), gfp)

as it's slightly less ugly than:

        kmalloc_array(array_size(a, b), c, gfp)

This does, however, attempt to ignore constant size factors like:

        kmalloc(4 * 1024, gfp)

though any constants defined via macros get caught up in the conversion.

Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.

The tools/ directory was manually excluded, since it has its own
implementation of kmalloc().

The Coccinelle script used for this was:

// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@

(
  kmalloc(
-	(sizeof(TYPE)) * E
+	sizeof(TYPE) * E
  , ...)
|
  kmalloc(
-	(sizeof(THING)) * E
+	sizeof(THING) * E
  , ...)
)

// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@

(
  kmalloc(
-	sizeof(u8) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(__u8) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(char) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(unsigned char) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(u8) * COUNT
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(__u8) * COUNT
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(char) * COUNT
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(unsigned char) * COUNT
+	COUNT
  , ...)
)

// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@

(
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * (COUNT_ID)
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * COUNT_ID
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * (COUNT_CONST)
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * COUNT_CONST
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * (COUNT_ID)
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * COUNT_ID
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * (COUNT_CONST)
+	COUNT_CONST, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * COUNT_CONST
+	COUNT_CONST, sizeof(THING)
  , ...)
)

// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@

- kmalloc
+ kmalloc_array
  (
-	SIZE * COUNT
+	COUNT, SIZE
  , ...)

// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@

(
  kmalloc(
-	sizeof(TYPE) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(TYPE) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(TYPE) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(TYPE) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(THING) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kmalloc(
-	sizeof(THING) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kmalloc(
-	sizeof(THING) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kmalloc(
-	sizeof(THING) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
)

// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@

(
  kmalloc(
-	sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kmalloc(
-	sizeof(THING1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kmalloc(
-	sizeof(THING1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
|
  kmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
)

// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@

(
  kmalloc(
-	(COUNT) * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	(COUNT) * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	(COUNT) * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	(COUNT) * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
)

// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@

(
  kmalloc(C1 * C2 * C3, ...)
|
  kmalloc(
-	(E1) * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kmalloc(
-	(E1) * (E2) * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kmalloc(
-	(E1) * (E2) * (E3)
+	array3_size(E1, E2, E3)
  , ...)
|
  kmalloc(
-	E1 * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
)

// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@

(
  kmalloc(sizeof(THING) * C2, ...)
|
  kmalloc(sizeof(TYPE) * C2, ...)
|
  kmalloc(C1 * C2 * C3, ...)
|
  kmalloc(C1 * C2, ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * (E2)
+	E2, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * E2
+	E2, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * (E2)
+	E2, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * E2
+	E2, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	(E1) * E2
+	E1, E2
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	(E1) * (E2)
+	E1, E2
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	E1 * E2
+	E1, E2
  , ...)
)

Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 16:19:22 -07:00

1036 lines
28 KiB
C

/*
* wm8958-dsp2.c -- WM8958 DSP2 support
*
* Copyright 2011 Wolfson Microelectronics plc
*
* Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/pm.h>
#include <linux/i2c.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <sound/soc.h>
#include <sound/initval.h>
#include <sound/tlv.h>
#include <trace/events/asoc.h>
#include <linux/mfd/wm8994/core.h>
#include <linux/mfd/wm8994/registers.h>
#include <linux/mfd/wm8994/pdata.h>
#include <linux/mfd/wm8994/gpio.h>
#include "wm8994.h"
#define WM_FW_BLOCK_INFO 0xff
#define WM_FW_BLOCK_PM 0x00
#define WM_FW_BLOCK_X 0x01
#define WM_FW_BLOCK_Y 0x02
#define WM_FW_BLOCK_Z 0x03
#define WM_FW_BLOCK_I 0x06
#define WM_FW_BLOCK_A 0x08
#define WM_FW_BLOCK_C 0x0c
static int wm8958_dsp2_fw(struct snd_soc_component *component, const char *name,
const struct firmware *fw, bool check)
{
struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component);
u64 data64;
u32 data32;
const u8 *data;
char *str;
size_t block_len, len;
int ret = 0;
/* Suppress unneeded downloads */
if (wm8994->cur_fw == fw)
return 0;
if (fw->size < 32) {
dev_err(component->dev, "%s: firmware too short (%zd bytes)\n",
name, fw->size);
goto err;
}
if (memcmp(fw->data, "WMFW", 4) != 0) {
memcpy(&data32, fw->data, sizeof(data32));
data32 = be32_to_cpu(data32);
dev_err(component->dev, "%s: firmware has bad file magic %08x\n",
name, data32);
goto err;
}
memcpy(&data32, fw->data + 4, sizeof(data32));
len = be32_to_cpu(data32);
memcpy(&data32, fw->data + 8, sizeof(data32));
data32 = be32_to_cpu(data32);
if ((data32 >> 24) & 0xff) {
dev_err(component->dev, "%s: unsupported firmware version %d\n",
name, (data32 >> 24) & 0xff);
goto err;
}
if ((data32 & 0xffff) != 8958) {
dev_err(component->dev, "%s: unsupported target device %d\n",
name, data32 & 0xffff);
goto err;
}
if (((data32 >> 16) & 0xff) != 0xc) {
dev_err(component->dev, "%s: unsupported target core %d\n",
name, (data32 >> 16) & 0xff);
goto err;
}
if (check) {
memcpy(&data64, fw->data + 24, sizeof(u64));
dev_info(component->dev, "%s timestamp %llx\n",
name, be64_to_cpu(data64));
} else {
snd_soc_component_write(component, 0x102, 0x2);
snd_soc_component_write(component, 0x900, 0x2);
}
data = fw->data + len;
len = fw->size - len;
while (len) {
if (len < 12) {
dev_err(component->dev, "%s short data block of %zd\n",
name, len);
goto err;
}
memcpy(&data32, data + 4, sizeof(data32));
block_len = be32_to_cpu(data32);
if (block_len + 8 > len) {
dev_err(component->dev, "%zd byte block longer than file\n",
block_len);
goto err;
}
if (block_len == 0) {
dev_err(component->dev, "Zero length block\n");
goto err;
}
memcpy(&data32, data, sizeof(data32));
data32 = be32_to_cpu(data32);
switch ((data32 >> 24) & 0xff) {
case WM_FW_BLOCK_INFO:
/* Informational text */
if (!check)
break;
str = kzalloc(block_len + 1, GFP_KERNEL);
if (str) {
memcpy(str, data + 8, block_len);
dev_info(component->dev, "%s: %s\n", name, str);
kfree(str);
} else {
dev_err(component->dev, "Out of memory\n");
}
break;
case WM_FW_BLOCK_PM:
case WM_FW_BLOCK_X:
case WM_FW_BLOCK_Y:
case WM_FW_BLOCK_Z:
case WM_FW_BLOCK_I:
case WM_FW_BLOCK_A:
case WM_FW_BLOCK_C:
dev_dbg(component->dev, "%s: %zd bytes of %x@%x\n", name,
block_len, (data32 >> 24) & 0xff,
data32 & 0xffffff);
if (check)
break;
data32 &= 0xffffff;
wm8994_bulk_write(wm8994->wm8994,
data32 & 0xffffff,
block_len / 2,
(void *)(data + 8));
break;
default:
dev_warn(component->dev, "%s: unknown block type %d\n",
name, (data32 >> 24) & 0xff);
break;
}
/* Round up to the next 32 bit word */
block_len += block_len % 4;
data += block_len + 8;
len -= block_len + 8;
}
if (!check) {
dev_dbg(component->dev, "%s: download done\n", name);
wm8994->cur_fw = fw;
} else {
dev_info(component->dev, "%s: got firmware\n", name);
}
goto ok;
err:
ret = -EINVAL;
ok:
if (!check) {
snd_soc_component_write(component, 0x900, 0x0);
snd_soc_component_write(component, 0x102, 0x0);
}
return ret;
}
static void wm8958_dsp_start_mbc(struct snd_soc_component *component, int path)
{
struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component);
struct wm8994 *control = wm8994->wm8994;
int i;
/* If the DSP is already running then noop */
if (snd_soc_component_read32(component, WM8958_DSP2_PROGRAM) & WM8958_DSP2_ENA)
return;
/* If we have MBC firmware download it */
if (wm8994->mbc)
wm8958_dsp2_fw(component, "MBC", wm8994->mbc, false);
snd_soc_component_update_bits(component, WM8958_DSP2_PROGRAM,
WM8958_DSP2_ENA, WM8958_DSP2_ENA);
/* If we've got user supplied MBC settings use them */
if (control->pdata.num_mbc_cfgs) {
struct wm8958_mbc_cfg *cfg
= &control->pdata.mbc_cfgs[wm8994->mbc_cfg];
for (i = 0; i < ARRAY_SIZE(cfg->coeff_regs); i++)
snd_soc_component_write(component, i + WM8958_MBC_BAND_1_K_1,
cfg->coeff_regs[i]);
for (i = 0; i < ARRAY_SIZE(cfg->cutoff_regs); i++)
snd_soc_component_write(component,
i + WM8958_MBC_BAND_2_LOWER_CUTOFF_C1_1,
cfg->cutoff_regs[i]);
}
/* Run the DSP */
snd_soc_component_write(component, WM8958_DSP2_EXECCONTROL,
WM8958_DSP2_RUNR);
/* And we're off! */
snd_soc_component_update_bits(component, WM8958_DSP2_CONFIG,
WM8958_MBC_ENA |
WM8958_MBC_SEL_MASK,
path << WM8958_MBC_SEL_SHIFT |
WM8958_MBC_ENA);
}
static void wm8958_dsp_start_vss(struct snd_soc_component *component, int path)
{
struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component);
struct wm8994 *control = wm8994->wm8994;
int i, ena;
if (wm8994->mbc_vss)
wm8958_dsp2_fw(component, "MBC+VSS", wm8994->mbc_vss, false);
snd_soc_component_update_bits(component, WM8958_DSP2_PROGRAM,
WM8958_DSP2_ENA, WM8958_DSP2_ENA);
/* If we've got user supplied settings use them */
if (control->pdata.num_mbc_cfgs) {
struct wm8958_mbc_cfg *cfg
= &control->pdata.mbc_cfgs[wm8994->mbc_cfg];
for (i = 0; i < ARRAY_SIZE(cfg->combined_regs); i++)
snd_soc_component_write(component, i + 0x2800,
cfg->combined_regs[i]);
}
if (control->pdata.num_vss_cfgs) {
struct wm8958_vss_cfg *cfg
= &control->pdata.vss_cfgs[wm8994->vss_cfg];
for (i = 0; i < ARRAY_SIZE(cfg->regs); i++)
snd_soc_component_write(component, i + 0x2600, cfg->regs[i]);
}
if (control->pdata.num_vss_hpf_cfgs) {
struct wm8958_vss_hpf_cfg *cfg
= &control->pdata.vss_hpf_cfgs[wm8994->vss_hpf_cfg];
for (i = 0; i < ARRAY_SIZE(cfg->regs); i++)
snd_soc_component_write(component, i + 0x2400, cfg->regs[i]);
}
/* Run the DSP */
snd_soc_component_write(component, WM8958_DSP2_EXECCONTROL,
WM8958_DSP2_RUNR);
/* Enable the algorithms we've selected */
ena = 0;
if (wm8994->mbc_ena[path])
ena |= 0x8;
if (wm8994->hpf2_ena[path])
ena |= 0x4;
if (wm8994->hpf1_ena[path])
ena |= 0x2;
if (wm8994->vss_ena[path])
ena |= 0x1;
snd_soc_component_write(component, 0x2201, ena);
/* Switch the DSP into the data path */
snd_soc_component_update_bits(component, WM8958_DSP2_CONFIG,
WM8958_MBC_SEL_MASK | WM8958_MBC_ENA,
path << WM8958_MBC_SEL_SHIFT | WM8958_MBC_ENA);
}
static void wm8958_dsp_start_enh_eq(struct snd_soc_component *component, int path)
{
struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component);
struct wm8994 *control = wm8994->wm8994;
int i;
wm8958_dsp2_fw(component, "ENH_EQ", wm8994->enh_eq, false);
snd_soc_component_update_bits(component, WM8958_DSP2_PROGRAM,
WM8958_DSP2_ENA, WM8958_DSP2_ENA);
/* If we've got user supplied settings use them */
if (control->pdata.num_enh_eq_cfgs) {
struct wm8958_enh_eq_cfg *cfg
= &control->pdata.enh_eq_cfgs[wm8994->enh_eq_cfg];
for (i = 0; i < ARRAY_SIZE(cfg->regs); i++)
snd_soc_component_write(component, i + 0x2200,
cfg->regs[i]);
}
/* Run the DSP */
snd_soc_component_write(component, WM8958_DSP2_EXECCONTROL,
WM8958_DSP2_RUNR);
/* Switch the DSP into the data path */
snd_soc_component_update_bits(component, WM8958_DSP2_CONFIG,
WM8958_MBC_SEL_MASK | WM8958_MBC_ENA,
path << WM8958_MBC_SEL_SHIFT | WM8958_MBC_ENA);
}
static void wm8958_dsp_apply(struct snd_soc_component *component, int path, int start)
{
struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component);
int pwr_reg = snd_soc_component_read32(component, WM8994_POWER_MANAGEMENT_5);
int ena, reg, aif;
switch (path) {
case 0:
pwr_reg &= (WM8994_AIF1DAC1L_ENA | WM8994_AIF1DAC1R_ENA);
aif = 0;
break;
case 1:
pwr_reg &= (WM8994_AIF1DAC2L_ENA | WM8994_AIF1DAC2R_ENA);
aif = 0;
break;
case 2:
pwr_reg &= (WM8994_AIF2DACL_ENA | WM8994_AIF2DACR_ENA);
aif = 1;
break;
default:
WARN(1, "Invalid path %d\n", path);
return;
}
/* Do we have both an active AIF and an active algorithm? */
ena = wm8994->mbc_ena[path] || wm8994->vss_ena[path] ||
wm8994->hpf1_ena[path] || wm8994->hpf2_ena[path] ||
wm8994->enh_eq_ena[path];
if (!pwr_reg)
ena = 0;
reg = snd_soc_component_read32(component, WM8958_DSP2_PROGRAM);
dev_dbg(component->dev, "DSP path %d %d startup: %d, power: %x, DSP: %x\n",
path, wm8994->dsp_active, start, pwr_reg, reg);
if (start && ena) {
/* If the DSP is already running then noop */
if (reg & WM8958_DSP2_ENA)
return;
/* If either AIFnCLK is not yet enabled postpone */
if (!(snd_soc_component_read32(component, WM8994_AIF1_CLOCKING_1)
& WM8994_AIF1CLK_ENA_MASK) &&
!(snd_soc_component_read32(component, WM8994_AIF2_CLOCKING_1)
& WM8994_AIF2CLK_ENA_MASK))
return;
/* Switch the clock over to the appropriate AIF */
snd_soc_component_update_bits(component, WM8994_CLOCKING_1,
WM8958_DSP2CLK_SRC | WM8958_DSP2CLK_ENA,
aif << WM8958_DSP2CLK_SRC_SHIFT |
WM8958_DSP2CLK_ENA);
if (wm8994->enh_eq_ena[path])
wm8958_dsp_start_enh_eq(component, path);
else if (wm8994->vss_ena[path] || wm8994->hpf1_ena[path] ||
wm8994->hpf2_ena[path])
wm8958_dsp_start_vss(component, path);
else if (wm8994->mbc_ena[path])
wm8958_dsp_start_mbc(component, path);
wm8994->dsp_active = path;
dev_dbg(component->dev, "DSP running in path %d\n", path);
}
if (!start && wm8994->dsp_active == path) {
/* If the DSP is already stopped then noop */
if (!(reg & WM8958_DSP2_ENA))
return;
snd_soc_component_update_bits(component, WM8958_DSP2_CONFIG,
WM8958_MBC_ENA, 0);
snd_soc_component_write(component, WM8958_DSP2_EXECCONTROL,
WM8958_DSP2_STOP);
snd_soc_component_update_bits(component, WM8958_DSP2_PROGRAM,
WM8958_DSP2_ENA, 0);
snd_soc_component_update_bits(component, WM8994_CLOCKING_1,
WM8958_DSP2CLK_ENA, 0);
wm8994->dsp_active = -1;
dev_dbg(component->dev, "DSP stopped\n");
}
}
int wm8958_aif_ev(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
int i;
switch (event) {
case SND_SOC_DAPM_POST_PMU:
case SND_SOC_DAPM_PRE_PMU:
for (i = 0; i < 3; i++)
wm8958_dsp_apply(component, i, 1);
break;
case SND_SOC_DAPM_POST_PMD:
case SND_SOC_DAPM_PRE_PMD:
for (i = 0; i < 3; i++)
wm8958_dsp_apply(component, i, 0);
break;
}
return 0;
}
/* Check if DSP2 is in use on another AIF */
static int wm8958_dsp2_busy(struct wm8994_priv *wm8994, int aif)
{
int i;
for (i = 0; i < ARRAY_SIZE(wm8994->mbc_ena); i++) {
if (i == aif)
continue;
if (wm8994->mbc_ena[i] || wm8994->vss_ena[i] ||
wm8994->hpf1_ena[i] || wm8994->hpf2_ena[i])
return 1;
}
return 0;
}
static int wm8958_put_mbc_enum(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component);
struct wm8994 *control = wm8994->wm8994;
int value = ucontrol->value.enumerated.item[0];
int reg;
/* Don't allow on the fly reconfiguration */
reg = snd_soc_component_read32(component, WM8994_CLOCKING_1);
if (reg < 0 || reg & WM8958_DSP2CLK_ENA)
return -EBUSY;
if (value >= control->pdata.num_mbc_cfgs)
return -EINVAL;
wm8994->mbc_cfg = value;
return 0;
}
static int wm8958_get_mbc_enum(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component);
ucontrol->value.enumerated.item[0] = wm8994->mbc_cfg;
return 0;
}
static int wm8958_mbc_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 1;
return 0;
}
static int wm8958_mbc_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int mbc = kcontrol->private_value;
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component);
ucontrol->value.integer.value[0] = wm8994->mbc_ena[mbc];
return 0;
}
static int wm8958_mbc_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int mbc = kcontrol->private_value;
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component);
if (wm8994->mbc_ena[mbc] == ucontrol->value.integer.value[0])
return 0;
if (ucontrol->value.integer.value[0] > 1)
return -EINVAL;
if (wm8958_dsp2_busy(wm8994, mbc)) {
dev_dbg(component->dev, "DSP2 active on %d already\n", mbc);
return -EBUSY;
}
if (wm8994->enh_eq_ena[mbc])
return -EBUSY;
wm8994->mbc_ena[mbc] = ucontrol->value.integer.value[0];
wm8958_dsp_apply(component, mbc, wm8994->mbc_ena[mbc]);
return 0;
}
#define WM8958_MBC_SWITCH(xname, xval) {\
.iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), \
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,\
.info = wm8958_mbc_info, \
.get = wm8958_mbc_get, .put = wm8958_mbc_put, \
.private_value = xval }
static int wm8958_put_vss_enum(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component);
struct wm8994 *control = wm8994->wm8994;
int value = ucontrol->value.enumerated.item[0];
int reg;
/* Don't allow on the fly reconfiguration */
reg = snd_soc_component_read32(component, WM8994_CLOCKING_1);
if (reg < 0 || reg & WM8958_DSP2CLK_ENA)
return -EBUSY;
if (value >= control->pdata.num_vss_cfgs)
return -EINVAL;
wm8994->vss_cfg = value;
return 0;
}
static int wm8958_get_vss_enum(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component);
ucontrol->value.enumerated.item[0] = wm8994->vss_cfg;
return 0;
}
static int wm8958_put_vss_hpf_enum(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component);
struct wm8994 *control = wm8994->wm8994;
int value = ucontrol->value.enumerated.item[0];
int reg;
/* Don't allow on the fly reconfiguration */
reg = snd_soc_component_read32(component, WM8994_CLOCKING_1);
if (reg < 0 || reg & WM8958_DSP2CLK_ENA)
return -EBUSY;
if (value >= control->pdata.num_vss_hpf_cfgs)
return -EINVAL;
wm8994->vss_hpf_cfg = value;
return 0;
}
static int wm8958_get_vss_hpf_enum(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component);
ucontrol->value.enumerated.item[0] = wm8994->vss_hpf_cfg;
return 0;
}
static int wm8958_vss_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 1;
return 0;
}
static int wm8958_vss_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int vss = kcontrol->private_value;
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component);
ucontrol->value.integer.value[0] = wm8994->vss_ena[vss];
return 0;
}
static int wm8958_vss_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int vss = kcontrol->private_value;
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component);
if (wm8994->vss_ena[vss] == ucontrol->value.integer.value[0])
return 0;
if (ucontrol->value.integer.value[0] > 1)
return -EINVAL;
if (!wm8994->mbc_vss)
return -ENODEV;
if (wm8958_dsp2_busy(wm8994, vss)) {
dev_dbg(component->dev, "DSP2 active on %d already\n", vss);
return -EBUSY;
}
if (wm8994->enh_eq_ena[vss])
return -EBUSY;
wm8994->vss_ena[vss] = ucontrol->value.integer.value[0];
wm8958_dsp_apply(component, vss, wm8994->vss_ena[vss]);
return 0;
}
#define WM8958_VSS_SWITCH(xname, xval) {\
.iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), \
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,\
.info = wm8958_vss_info, \
.get = wm8958_vss_get, .put = wm8958_vss_put, \
.private_value = xval }
static int wm8958_hpf_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 1;
return 0;
}
static int wm8958_hpf_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int hpf = kcontrol->private_value;
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component);
if (hpf < 3)
ucontrol->value.integer.value[0] = wm8994->hpf1_ena[hpf % 3];
else
ucontrol->value.integer.value[0] = wm8994->hpf2_ena[hpf % 3];
return 0;
}
static int wm8958_hpf_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int hpf = kcontrol->private_value;
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component);
if (hpf < 3) {
if (wm8994->hpf1_ena[hpf % 3] ==
ucontrol->value.integer.value[0])
return 0;
} else {
if (wm8994->hpf2_ena[hpf % 3] ==
ucontrol->value.integer.value[0])
return 0;
}
if (ucontrol->value.integer.value[0] > 1)
return -EINVAL;
if (!wm8994->mbc_vss)
return -ENODEV;
if (wm8958_dsp2_busy(wm8994, hpf % 3)) {
dev_dbg(component->dev, "DSP2 active on %d already\n", hpf);
return -EBUSY;
}
if (wm8994->enh_eq_ena[hpf % 3])
return -EBUSY;
if (hpf < 3)
wm8994->hpf1_ena[hpf % 3] = ucontrol->value.integer.value[0];
else
wm8994->hpf2_ena[hpf % 3] = ucontrol->value.integer.value[0];
wm8958_dsp_apply(component, hpf % 3, ucontrol->value.integer.value[0]);
return 0;
}
#define WM8958_HPF_SWITCH(xname, xval) {\
.iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), \
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,\
.info = wm8958_hpf_info, \
.get = wm8958_hpf_get, .put = wm8958_hpf_put, \
.private_value = xval }
static int wm8958_put_enh_eq_enum(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component);
struct wm8994 *control = wm8994->wm8994;
int value = ucontrol->value.enumerated.item[0];
int reg;
/* Don't allow on the fly reconfiguration */
reg = snd_soc_component_read32(component, WM8994_CLOCKING_1);
if (reg < 0 || reg & WM8958_DSP2CLK_ENA)
return -EBUSY;
if (value >= control->pdata.num_enh_eq_cfgs)
return -EINVAL;
wm8994->enh_eq_cfg = value;
return 0;
}
static int wm8958_get_enh_eq_enum(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component);
ucontrol->value.enumerated.item[0] = wm8994->enh_eq_cfg;
return 0;
}
static int wm8958_enh_eq_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 1;
return 0;
}
static int wm8958_enh_eq_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int eq = kcontrol->private_value;
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component);
ucontrol->value.integer.value[0] = wm8994->enh_eq_ena[eq];
return 0;
}
static int wm8958_enh_eq_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
int eq = kcontrol->private_value;
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component);
if (wm8994->enh_eq_ena[eq] == ucontrol->value.integer.value[0])
return 0;
if (ucontrol->value.integer.value[0] > 1)
return -EINVAL;
if (!wm8994->enh_eq)
return -ENODEV;
if (wm8958_dsp2_busy(wm8994, eq)) {
dev_dbg(component->dev, "DSP2 active on %d already\n", eq);
return -EBUSY;
}
if (wm8994->mbc_ena[eq] || wm8994->vss_ena[eq] ||
wm8994->hpf1_ena[eq] || wm8994->hpf2_ena[eq])
return -EBUSY;
wm8994->enh_eq_ena[eq] = ucontrol->value.integer.value[0];
wm8958_dsp_apply(component, eq, ucontrol->value.integer.value[0]);
return 0;
}
#define WM8958_ENH_EQ_SWITCH(xname, xval) {\
.iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), \
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,\
.info = wm8958_enh_eq_info, \
.get = wm8958_enh_eq_get, .put = wm8958_enh_eq_put, \
.private_value = xval }
static const struct snd_kcontrol_new wm8958_mbc_snd_controls[] = {
WM8958_MBC_SWITCH("AIF1DAC1 MBC Switch", 0),
WM8958_MBC_SWITCH("AIF1DAC2 MBC Switch", 1),
WM8958_MBC_SWITCH("AIF2DAC MBC Switch", 2),
};
static const struct snd_kcontrol_new wm8958_vss_snd_controls[] = {
WM8958_VSS_SWITCH("AIF1DAC1 VSS Switch", 0),
WM8958_VSS_SWITCH("AIF1DAC2 VSS Switch", 1),
WM8958_VSS_SWITCH("AIF2DAC VSS Switch", 2),
WM8958_HPF_SWITCH("AIF1DAC1 HPF1 Switch", 0),
WM8958_HPF_SWITCH("AIF1DAC2 HPF1 Switch", 1),
WM8958_HPF_SWITCH("AIF2DAC HPF1 Switch", 2),
WM8958_HPF_SWITCH("AIF1DAC1 HPF2 Switch", 3),
WM8958_HPF_SWITCH("AIF1DAC2 HPF2 Switch", 4),
WM8958_HPF_SWITCH("AIF2DAC HPF2 Switch", 5),
};
static const struct snd_kcontrol_new wm8958_enh_eq_snd_controls[] = {
WM8958_ENH_EQ_SWITCH("AIF1DAC1 Enhanced EQ Switch", 0),
WM8958_ENH_EQ_SWITCH("AIF1DAC2 Enhanced EQ Switch", 1),
WM8958_ENH_EQ_SWITCH("AIF2DAC Enhanced EQ Switch", 2),
};
static void wm8958_enh_eq_loaded(const struct firmware *fw, void *context)
{
struct snd_soc_component *component = context;
struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component);
if (fw && (wm8958_dsp2_fw(component, "ENH_EQ", fw, true) == 0)) {
mutex_lock(&wm8994->fw_lock);
wm8994->enh_eq = fw;
mutex_unlock(&wm8994->fw_lock);
}
}
static void wm8958_mbc_vss_loaded(const struct firmware *fw, void *context)
{
struct snd_soc_component *component = context;
struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component);
if (fw && (wm8958_dsp2_fw(component, "MBC+VSS", fw, true) == 0)) {
mutex_lock(&wm8994->fw_lock);
wm8994->mbc_vss = fw;
mutex_unlock(&wm8994->fw_lock);
}
}
static void wm8958_mbc_loaded(const struct firmware *fw, void *context)
{
struct snd_soc_component *component = context;
struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component);
if (fw && (wm8958_dsp2_fw(component, "MBC", fw, true) == 0)) {
mutex_lock(&wm8994->fw_lock);
wm8994->mbc = fw;
mutex_unlock(&wm8994->fw_lock);
}
}
void wm8958_dsp2_init(struct snd_soc_component *component)
{
struct wm8994_priv *wm8994 = snd_soc_component_get_drvdata(component);
struct wm8994 *control = wm8994->wm8994;
struct wm8994_pdata *pdata = &control->pdata;
int ret, i;
wm8994->dsp_active = -1;
snd_soc_add_component_controls(component, wm8958_mbc_snd_controls,
ARRAY_SIZE(wm8958_mbc_snd_controls));
snd_soc_add_component_controls(component, wm8958_vss_snd_controls,
ARRAY_SIZE(wm8958_vss_snd_controls));
snd_soc_add_component_controls(component, wm8958_enh_eq_snd_controls,
ARRAY_SIZE(wm8958_enh_eq_snd_controls));
/* We don't *require* firmware and don't want to delay boot */
request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
"wm8958_mbc.wfw", component->dev, GFP_KERNEL,
component, wm8958_mbc_loaded);
request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
"wm8958_mbc_vss.wfw", component->dev, GFP_KERNEL,
component, wm8958_mbc_vss_loaded);
request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
"wm8958_enh_eq.wfw", component->dev, GFP_KERNEL,
component, wm8958_enh_eq_loaded);
if (pdata->num_mbc_cfgs) {
struct snd_kcontrol_new control[] = {
SOC_ENUM_EXT("MBC Mode", wm8994->mbc_enum,
wm8958_get_mbc_enum, wm8958_put_mbc_enum),
};
/* We need an array of texts for the enum API */
wm8994->mbc_texts = kmalloc_array(pdata->num_mbc_cfgs,
sizeof(char *),
GFP_KERNEL);
if (!wm8994->mbc_texts)
return;
for (i = 0; i < pdata->num_mbc_cfgs; i++)
wm8994->mbc_texts[i] = pdata->mbc_cfgs[i].name;
wm8994->mbc_enum.items = pdata->num_mbc_cfgs;
wm8994->mbc_enum.texts = wm8994->mbc_texts;
ret = snd_soc_add_component_controls(wm8994->hubs.component,
control, 1);
if (ret != 0)
dev_err(wm8994->hubs.component->dev,
"Failed to add MBC mode controls: %d\n", ret);
}
if (pdata->num_vss_cfgs) {
struct snd_kcontrol_new control[] = {
SOC_ENUM_EXT("VSS Mode", wm8994->vss_enum,
wm8958_get_vss_enum, wm8958_put_vss_enum),
};
/* We need an array of texts for the enum API */
wm8994->vss_texts = kmalloc_array(pdata->num_vss_cfgs,
sizeof(char *),
GFP_KERNEL);
if (!wm8994->vss_texts)
return;
for (i = 0; i < pdata->num_vss_cfgs; i++)
wm8994->vss_texts[i] = pdata->vss_cfgs[i].name;
wm8994->vss_enum.items = pdata->num_vss_cfgs;
wm8994->vss_enum.texts = wm8994->vss_texts;
ret = snd_soc_add_component_controls(wm8994->hubs.component,
control, 1);
if (ret != 0)
dev_err(wm8994->hubs.component->dev,
"Failed to add VSS mode controls: %d\n", ret);
}
if (pdata->num_vss_hpf_cfgs) {
struct snd_kcontrol_new control[] = {
SOC_ENUM_EXT("VSS HPF Mode", wm8994->vss_hpf_enum,
wm8958_get_vss_hpf_enum,
wm8958_put_vss_hpf_enum),
};
/* We need an array of texts for the enum API */
wm8994->vss_hpf_texts = kmalloc_array(pdata->num_vss_hpf_cfgs,
sizeof(char *),
GFP_KERNEL);
if (!wm8994->vss_hpf_texts)
return;
for (i = 0; i < pdata->num_vss_hpf_cfgs; i++)
wm8994->vss_hpf_texts[i] = pdata->vss_hpf_cfgs[i].name;
wm8994->vss_hpf_enum.items = pdata->num_vss_hpf_cfgs;
wm8994->vss_hpf_enum.texts = wm8994->vss_hpf_texts;
ret = snd_soc_add_component_controls(wm8994->hubs.component,
control, 1);
if (ret != 0)
dev_err(wm8994->hubs.component->dev,
"Failed to add VSS HPFmode controls: %d\n",
ret);
}
if (pdata->num_enh_eq_cfgs) {
struct snd_kcontrol_new control[] = {
SOC_ENUM_EXT("Enhanced EQ Mode", wm8994->enh_eq_enum,
wm8958_get_enh_eq_enum,
wm8958_put_enh_eq_enum),
};
/* We need an array of texts for the enum API */
wm8994->enh_eq_texts = kmalloc_array(pdata->num_enh_eq_cfgs,
sizeof(char *),
GFP_KERNEL);
if (!wm8994->enh_eq_texts)
return;
for (i = 0; i < pdata->num_enh_eq_cfgs; i++)
wm8994->enh_eq_texts[i] = pdata->enh_eq_cfgs[i].name;
wm8994->enh_eq_enum.items = pdata->num_enh_eq_cfgs;
wm8994->enh_eq_enum.texts = wm8994->enh_eq_texts;
ret = snd_soc_add_component_controls(wm8994->hubs.component,
control, 1);
if (ret != 0)
dev_err(wm8994->hubs.component->dev,
"Failed to add enhanced EQ controls: %d\n",
ret);
}
}