forked from luck/tmp_suning_uos_patched
7e3cbc3f77
Conflicts: arch/x86/kernel/cpu/intel.c
1031 lines
24 KiB
C
1031 lines
24 KiB
C
/*
|
|
* Debug Store support
|
|
*
|
|
* This provides a low-level interface to the hardware's Debug Store
|
|
* feature that is used for branch trace store (BTS) and
|
|
* precise-event based sampling (PEBS).
|
|
*
|
|
* It manages:
|
|
* - DS and BTS hardware configuration
|
|
* - buffer overflow handling (to be done)
|
|
* - buffer access
|
|
*
|
|
* It does not do:
|
|
* - security checking (is the caller allowed to trace the task)
|
|
* - buffer allocation (memory accounting)
|
|
*
|
|
*
|
|
* Copyright (C) 2007-2008 Intel Corporation.
|
|
* Markus Metzger <markus.t.metzger@intel.com>, 2007-2008
|
|
*/
|
|
|
|
|
|
#include <asm/ds.h>
|
|
|
|
#include <linux/errno.h>
|
|
#include <linux/string.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/kernel.h>
|
|
|
|
|
|
/*
|
|
* The configuration for a particular DS hardware implementation.
|
|
*/
|
|
struct ds_configuration {
|
|
/* the name of the configuration */
|
|
const char *name;
|
|
/* the size of one pointer-typed field in the DS structure and
|
|
in the BTS and PEBS buffers in bytes;
|
|
this covers the first 8 DS fields related to buffer management. */
|
|
unsigned char sizeof_field;
|
|
/* the size of a BTS/PEBS record in bytes */
|
|
unsigned char sizeof_rec[2];
|
|
/* a series of bit-masks to control various features indexed
|
|
* by enum ds_feature */
|
|
unsigned long ctl[dsf_ctl_max];
|
|
};
|
|
static DEFINE_PER_CPU(struct ds_configuration, ds_cfg_array);
|
|
|
|
#define ds_cfg per_cpu(ds_cfg_array, smp_processor_id())
|
|
|
|
#define MAX_SIZEOF_DS (12 * 8) /* maximal size of a DS configuration */
|
|
#define MAX_SIZEOF_BTS (3 * 8) /* maximal size of a BTS record */
|
|
#define DS_ALIGNMENT (1 << 3) /* BTS and PEBS buffer alignment */
|
|
|
|
#define BTS_CONTROL \
|
|
(ds_cfg.ctl[dsf_bts] | ds_cfg.ctl[dsf_bts_kernel] | ds_cfg.ctl[dsf_bts_user] |\
|
|
ds_cfg.ctl[dsf_bts_overflow])
|
|
|
|
|
|
/*
|
|
* A BTS or PEBS tracer.
|
|
*
|
|
* This holds the configuration of the tracer and serves as a handle
|
|
* to identify tracers.
|
|
*/
|
|
struct ds_tracer {
|
|
/* the DS context (partially) owned by this tracer */
|
|
struct ds_context *context;
|
|
/* the buffer provided on ds_request() and its size in bytes */
|
|
void *buffer;
|
|
size_t size;
|
|
};
|
|
|
|
struct bts_tracer {
|
|
/* the common DS part */
|
|
struct ds_tracer ds;
|
|
/* the trace including the DS configuration */
|
|
struct bts_trace trace;
|
|
/* buffer overflow notification function */
|
|
bts_ovfl_callback_t ovfl;
|
|
};
|
|
|
|
struct pebs_tracer {
|
|
/* the common DS part */
|
|
struct ds_tracer ds;
|
|
/* the trace including the DS configuration */
|
|
struct pebs_trace trace;
|
|
/* buffer overflow notification function */
|
|
pebs_ovfl_callback_t ovfl;
|
|
};
|
|
|
|
/*
|
|
* Debug Store (DS) save area configuration (see Intel64 and IA32
|
|
* Architectures Software Developer's Manual, section 18.5)
|
|
*
|
|
* The DS configuration consists of the following fields; different
|
|
* architetures vary in the size of those fields.
|
|
* - double-word aligned base linear address of the BTS buffer
|
|
* - write pointer into the BTS buffer
|
|
* - end linear address of the BTS buffer (one byte beyond the end of
|
|
* the buffer)
|
|
* - interrupt pointer into BTS buffer
|
|
* (interrupt occurs when write pointer passes interrupt pointer)
|
|
* - double-word aligned base linear address of the PEBS buffer
|
|
* - write pointer into the PEBS buffer
|
|
* - end linear address of the PEBS buffer (one byte beyond the end of
|
|
* the buffer)
|
|
* - interrupt pointer into PEBS buffer
|
|
* (interrupt occurs when write pointer passes interrupt pointer)
|
|
* - value to which counter is reset following counter overflow
|
|
*
|
|
* Later architectures use 64bit pointers throughout, whereas earlier
|
|
* architectures use 32bit pointers in 32bit mode.
|
|
*
|
|
*
|
|
* We compute the base address for the first 8 fields based on:
|
|
* - the field size stored in the DS configuration
|
|
* - the relative field position
|
|
* - an offset giving the start of the respective region
|
|
*
|
|
* This offset is further used to index various arrays holding
|
|
* information for BTS and PEBS at the respective index.
|
|
*
|
|
* On later 32bit processors, we only access the lower 32bit of the
|
|
* 64bit pointer fields. The upper halves will be zeroed out.
|
|
*/
|
|
|
|
enum ds_field {
|
|
ds_buffer_base = 0,
|
|
ds_index,
|
|
ds_absolute_maximum,
|
|
ds_interrupt_threshold,
|
|
};
|
|
|
|
enum ds_qualifier {
|
|
ds_bts = 0,
|
|
ds_pebs
|
|
};
|
|
|
|
static inline unsigned long ds_get(const unsigned char *base,
|
|
enum ds_qualifier qual, enum ds_field field)
|
|
{
|
|
base += (ds_cfg.sizeof_field * (field + (4 * qual)));
|
|
return *(unsigned long *)base;
|
|
}
|
|
|
|
static inline void ds_set(unsigned char *base, enum ds_qualifier qual,
|
|
enum ds_field field, unsigned long value)
|
|
{
|
|
base += (ds_cfg.sizeof_field * (field + (4 * qual)));
|
|
(*(unsigned long *)base) = value;
|
|
}
|
|
|
|
|
|
/*
|
|
* Locking is done only for allocating BTS or PEBS resources.
|
|
*/
|
|
static DEFINE_SPINLOCK(ds_lock);
|
|
|
|
|
|
/*
|
|
* We either support (system-wide) per-cpu or per-thread allocation.
|
|
* We distinguish the two based on the task_struct pointer, where a
|
|
* NULL pointer indicates per-cpu allocation for the current cpu.
|
|
*
|
|
* Allocations are use-counted. As soon as resources are allocated,
|
|
* further allocations must be of the same type (per-cpu or
|
|
* per-thread). We model this by counting allocations (i.e. the number
|
|
* of tracers of a certain type) for one type negatively:
|
|
* =0 no tracers
|
|
* >0 number of per-thread tracers
|
|
* <0 number of per-cpu tracers
|
|
*
|
|
* Tracers essentially gives the number of ds contexts for a certain
|
|
* type of allocation.
|
|
*/
|
|
static atomic_t tracers = ATOMIC_INIT(0);
|
|
|
|
static inline void get_tracer(struct task_struct *task)
|
|
{
|
|
if (task)
|
|
atomic_inc(&tracers);
|
|
else
|
|
atomic_dec(&tracers);
|
|
}
|
|
|
|
static inline void put_tracer(struct task_struct *task)
|
|
{
|
|
if (task)
|
|
atomic_dec(&tracers);
|
|
else
|
|
atomic_inc(&tracers);
|
|
}
|
|
|
|
static inline int check_tracer(struct task_struct *task)
|
|
{
|
|
return task ?
|
|
(atomic_read(&tracers) >= 0) :
|
|
(atomic_read(&tracers) <= 0);
|
|
}
|
|
|
|
|
|
/*
|
|
* The DS context is either attached to a thread or to a cpu:
|
|
* - in the former case, the thread_struct contains a pointer to the
|
|
* attached context.
|
|
* - in the latter case, we use a static array of per-cpu context
|
|
* pointers.
|
|
*
|
|
* Contexts are use-counted. They are allocated on first access and
|
|
* deallocated when the last user puts the context.
|
|
*/
|
|
struct ds_context {
|
|
/* pointer to the DS configuration; goes into MSR_IA32_DS_AREA */
|
|
unsigned char ds[MAX_SIZEOF_DS];
|
|
/* the owner of the BTS and PEBS configuration, respectively */
|
|
struct bts_tracer *bts_master;
|
|
struct pebs_tracer *pebs_master;
|
|
/* use count */
|
|
unsigned long count;
|
|
/* a pointer to the context location inside the thread_struct
|
|
* or the per_cpu context array */
|
|
struct ds_context **this;
|
|
/* a pointer to the task owning this context, or NULL, if the
|
|
* context is owned by a cpu */
|
|
struct task_struct *task;
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct ds_context *, system_context_array);
|
|
|
|
#define system_context per_cpu(system_context_array, smp_processor_id())
|
|
|
|
|
|
static inline struct ds_context *ds_get_context(struct task_struct *task)
|
|
{
|
|
struct ds_context **p_context =
|
|
(task ? &task->thread.ds_ctx : &system_context);
|
|
struct ds_context *context = NULL;
|
|
struct ds_context *new_context = NULL;
|
|
unsigned long irq;
|
|
|
|
/* Chances are small that we already have a context. */
|
|
new_context = kzalloc(sizeof(*new_context), GFP_KERNEL);
|
|
if (!new_context)
|
|
return NULL;
|
|
|
|
spin_lock_irqsave(&ds_lock, irq);
|
|
|
|
context = *p_context;
|
|
if (!context) {
|
|
context = new_context;
|
|
|
|
context->this = p_context;
|
|
context->task = task;
|
|
context->count = 0;
|
|
|
|
if (task)
|
|
set_tsk_thread_flag(task, TIF_DS_AREA_MSR);
|
|
|
|
if (!task || (task == current))
|
|
wrmsrl(MSR_IA32_DS_AREA, (unsigned long)context->ds);
|
|
|
|
*p_context = context;
|
|
}
|
|
|
|
context->count++;
|
|
|
|
spin_unlock_irqrestore(&ds_lock, irq);
|
|
|
|
if (context != new_context)
|
|
kfree(new_context);
|
|
|
|
return context;
|
|
}
|
|
|
|
static inline void ds_put_context(struct ds_context *context)
|
|
{
|
|
unsigned long irq;
|
|
|
|
if (!context)
|
|
return;
|
|
|
|
spin_lock_irqsave(&ds_lock, irq);
|
|
|
|
if (--context->count) {
|
|
spin_unlock_irqrestore(&ds_lock, irq);
|
|
return;
|
|
}
|
|
|
|
*(context->this) = NULL;
|
|
|
|
if (context->task)
|
|
clear_tsk_thread_flag(context->task, TIF_DS_AREA_MSR);
|
|
|
|
if (!context->task || (context->task == current))
|
|
wrmsrl(MSR_IA32_DS_AREA, 0);
|
|
|
|
spin_unlock_irqrestore(&ds_lock, irq);
|
|
|
|
kfree(context);
|
|
}
|
|
|
|
|
|
/*
|
|
* Call the tracer's callback on a buffer overflow.
|
|
*
|
|
* context: the ds context
|
|
* qual: the buffer type
|
|
*/
|
|
static void ds_overflow(struct ds_context *context, enum ds_qualifier qual)
|
|
{
|
|
switch (qual) {
|
|
case ds_bts:
|
|
if (context->bts_master &&
|
|
context->bts_master->ovfl)
|
|
context->bts_master->ovfl(context->bts_master);
|
|
break;
|
|
case ds_pebs:
|
|
if (context->pebs_master &&
|
|
context->pebs_master->ovfl)
|
|
context->pebs_master->ovfl(context->pebs_master);
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Write raw data into the BTS or PEBS buffer.
|
|
*
|
|
* The remainder of any partially written record is zeroed out.
|
|
*
|
|
* context: the DS context
|
|
* qual: the buffer type
|
|
* record: the data to write
|
|
* size: the size of the data
|
|
*/
|
|
static int ds_write(struct ds_context *context, enum ds_qualifier qual,
|
|
const void *record, size_t size)
|
|
{
|
|
int bytes_written = 0;
|
|
|
|
if (!record)
|
|
return -EINVAL;
|
|
|
|
while (size) {
|
|
unsigned long base, index, end, write_end, int_th;
|
|
unsigned long write_size, adj_write_size;
|
|
|
|
/*
|
|
* write as much as possible without producing an
|
|
* overflow interrupt.
|
|
*
|
|
* interrupt_threshold must either be
|
|
* - bigger than absolute_maximum or
|
|
* - point to a record between buffer_base and absolute_maximum
|
|
*
|
|
* index points to a valid record.
|
|
*/
|
|
base = ds_get(context->ds, qual, ds_buffer_base);
|
|
index = ds_get(context->ds, qual, ds_index);
|
|
end = ds_get(context->ds, qual, ds_absolute_maximum);
|
|
int_th = ds_get(context->ds, qual, ds_interrupt_threshold);
|
|
|
|
write_end = min(end, int_th);
|
|
|
|
/* if we are already beyond the interrupt threshold,
|
|
* we fill the entire buffer */
|
|
if (write_end <= index)
|
|
write_end = end;
|
|
|
|
if (write_end <= index)
|
|
break;
|
|
|
|
write_size = min((unsigned long) size, write_end - index);
|
|
memcpy((void *)index, record, write_size);
|
|
|
|
record = (const char *)record + write_size;
|
|
size -= write_size;
|
|
bytes_written += write_size;
|
|
|
|
adj_write_size = write_size / ds_cfg.sizeof_rec[qual];
|
|
adj_write_size *= ds_cfg.sizeof_rec[qual];
|
|
|
|
/* zero out trailing bytes */
|
|
memset((char *)index + write_size, 0,
|
|
adj_write_size - write_size);
|
|
index += adj_write_size;
|
|
|
|
if (index >= end)
|
|
index = base;
|
|
ds_set(context->ds, qual, ds_index, index);
|
|
|
|
if (index >= int_th)
|
|
ds_overflow(context, qual);
|
|
}
|
|
|
|
return bytes_written;
|
|
}
|
|
|
|
|
|
/*
|
|
* Branch Trace Store (BTS) uses the following format. Different
|
|
* architectures vary in the size of those fields.
|
|
* - source linear address
|
|
* - destination linear address
|
|
* - flags
|
|
*
|
|
* Later architectures use 64bit pointers throughout, whereas earlier
|
|
* architectures use 32bit pointers in 32bit mode.
|
|
*
|
|
* We compute the base address for the first 8 fields based on:
|
|
* - the field size stored in the DS configuration
|
|
* - the relative field position
|
|
*
|
|
* In order to store additional information in the BTS buffer, we use
|
|
* a special source address to indicate that the record requires
|
|
* special interpretation.
|
|
*
|
|
* Netburst indicated via a bit in the flags field whether the branch
|
|
* was predicted; this is ignored.
|
|
*
|
|
* We use two levels of abstraction:
|
|
* - the raw data level defined here
|
|
* - an arch-independent level defined in ds.h
|
|
*/
|
|
|
|
enum bts_field {
|
|
bts_from,
|
|
bts_to,
|
|
bts_flags,
|
|
|
|
bts_qual = bts_from,
|
|
bts_jiffies = bts_to,
|
|
bts_pid = bts_flags,
|
|
|
|
bts_qual_mask = (bts_qual_max - 1),
|
|
bts_escape = ((unsigned long)-1 & ~bts_qual_mask)
|
|
};
|
|
|
|
static inline unsigned long bts_get(const char *base, enum bts_field field)
|
|
{
|
|
base += (ds_cfg.sizeof_field * field);
|
|
return *(unsigned long *)base;
|
|
}
|
|
|
|
static inline void bts_set(char *base, enum bts_field field, unsigned long val)
|
|
{
|
|
base += (ds_cfg.sizeof_field * field);;
|
|
(*(unsigned long *)base) = val;
|
|
}
|
|
|
|
|
|
/*
|
|
* The raw BTS data is architecture dependent.
|
|
*
|
|
* For higher-level users, we give an arch-independent view.
|
|
* - ds.h defines struct bts_struct
|
|
* - bts_read translates one raw bts record into a bts_struct
|
|
* - bts_write translates one bts_struct into the raw format and
|
|
* writes it into the top of the parameter tracer's buffer.
|
|
*
|
|
* return: bytes read/written on success; -Eerrno, otherwise
|
|
*/
|
|
static int bts_read(struct bts_tracer *tracer, const void *at,
|
|
struct bts_struct *out)
|
|
{
|
|
if (!tracer)
|
|
return -EINVAL;
|
|
|
|
if (at < tracer->trace.ds.begin)
|
|
return -EINVAL;
|
|
|
|
if (tracer->trace.ds.end < (at + tracer->trace.ds.size))
|
|
return -EINVAL;
|
|
|
|
memset(out, 0, sizeof(*out));
|
|
if ((bts_get(at, bts_qual) & ~bts_qual_mask) == bts_escape) {
|
|
out->qualifier = (bts_get(at, bts_qual) & bts_qual_mask);
|
|
out->variant.timestamp.jiffies = bts_get(at, bts_jiffies);
|
|
out->variant.timestamp.pid = bts_get(at, bts_pid);
|
|
} else {
|
|
out->qualifier = bts_branch;
|
|
out->variant.lbr.from = bts_get(at, bts_from);
|
|
out->variant.lbr.to = bts_get(at, bts_to);
|
|
|
|
if (!out->variant.lbr.from && !out->variant.lbr.to)
|
|
out->qualifier = bts_invalid;
|
|
}
|
|
|
|
return ds_cfg.sizeof_rec[ds_bts];
|
|
}
|
|
|
|
static int bts_write(struct bts_tracer *tracer, const struct bts_struct *in)
|
|
{
|
|
unsigned char raw[MAX_SIZEOF_BTS];
|
|
|
|
if (!tracer)
|
|
return -EINVAL;
|
|
|
|
if (MAX_SIZEOF_BTS < ds_cfg.sizeof_rec[ds_bts])
|
|
return -EOVERFLOW;
|
|
|
|
switch (in->qualifier) {
|
|
case bts_invalid:
|
|
bts_set(raw, bts_from, 0);
|
|
bts_set(raw, bts_to, 0);
|
|
bts_set(raw, bts_flags, 0);
|
|
break;
|
|
case bts_branch:
|
|
bts_set(raw, bts_from, in->variant.lbr.from);
|
|
bts_set(raw, bts_to, in->variant.lbr.to);
|
|
bts_set(raw, bts_flags, 0);
|
|
break;
|
|
case bts_task_arrives:
|
|
case bts_task_departs:
|
|
bts_set(raw, bts_qual, (bts_escape | in->qualifier));
|
|
bts_set(raw, bts_jiffies, in->variant.timestamp.jiffies);
|
|
bts_set(raw, bts_pid, in->variant.timestamp.pid);
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return ds_write(tracer->ds.context, ds_bts, raw,
|
|
ds_cfg.sizeof_rec[ds_bts]);
|
|
}
|
|
|
|
|
|
static void ds_write_config(struct ds_context *context,
|
|
struct ds_trace *cfg, enum ds_qualifier qual)
|
|
{
|
|
unsigned char *ds = context->ds;
|
|
|
|
ds_set(ds, qual, ds_buffer_base, (unsigned long)cfg->begin);
|
|
ds_set(ds, qual, ds_index, (unsigned long)cfg->top);
|
|
ds_set(ds, qual, ds_absolute_maximum, (unsigned long)cfg->end);
|
|
ds_set(ds, qual, ds_interrupt_threshold, (unsigned long)cfg->ith);
|
|
}
|
|
|
|
static void ds_read_config(struct ds_context *context,
|
|
struct ds_trace *cfg, enum ds_qualifier qual)
|
|
{
|
|
unsigned char *ds = context->ds;
|
|
|
|
cfg->begin = (void *)ds_get(ds, qual, ds_buffer_base);
|
|
cfg->top = (void *)ds_get(ds, qual, ds_index);
|
|
cfg->end = (void *)ds_get(ds, qual, ds_absolute_maximum);
|
|
cfg->ith = (void *)ds_get(ds, qual, ds_interrupt_threshold);
|
|
}
|
|
|
|
static void ds_init_ds_trace(struct ds_trace *trace, enum ds_qualifier qual,
|
|
void *base, size_t size, size_t ith,
|
|
unsigned int flags) {
|
|
unsigned long buffer, adj;
|
|
|
|
/* adjust the buffer address and size to meet alignment
|
|
* constraints:
|
|
* - buffer is double-word aligned
|
|
* - size is multiple of record size
|
|
*
|
|
* We checked the size at the very beginning; we have enough
|
|
* space to do the adjustment.
|
|
*/
|
|
buffer = (unsigned long)base;
|
|
|
|
adj = ALIGN(buffer, DS_ALIGNMENT) - buffer;
|
|
buffer += adj;
|
|
size -= adj;
|
|
|
|
trace->n = size / ds_cfg.sizeof_rec[qual];
|
|
trace->size = ds_cfg.sizeof_rec[qual];
|
|
|
|
size = (trace->n * trace->size);
|
|
|
|
trace->begin = (void *)buffer;
|
|
trace->top = trace->begin;
|
|
trace->end = (void *)(buffer + size);
|
|
/* The value for 'no threshold' is -1, which will set the
|
|
* threshold outside of the buffer, just like we want it.
|
|
*/
|
|
trace->ith = (void *)(buffer + size - ith);
|
|
|
|
trace->flags = flags;
|
|
}
|
|
|
|
|
|
static int ds_request(struct ds_tracer *tracer, struct ds_trace *trace,
|
|
enum ds_qualifier qual, struct task_struct *task,
|
|
void *base, size_t size, size_t th, unsigned int flags)
|
|
{
|
|
struct ds_context *context;
|
|
int error;
|
|
|
|
error = -EINVAL;
|
|
if (!base)
|
|
goto out;
|
|
|
|
/* we require some space to do alignment adjustments below */
|
|
error = -EINVAL;
|
|
if (size < (DS_ALIGNMENT + ds_cfg.sizeof_rec[qual]))
|
|
goto out;
|
|
|
|
if (th != (size_t)-1) {
|
|
th *= ds_cfg.sizeof_rec[qual];
|
|
|
|
error = -EINVAL;
|
|
if (size <= th)
|
|
goto out;
|
|
}
|
|
|
|
tracer->buffer = base;
|
|
tracer->size = size;
|
|
|
|
error = -ENOMEM;
|
|
context = ds_get_context(task);
|
|
if (!context)
|
|
goto out;
|
|
tracer->context = context;
|
|
|
|
ds_init_ds_trace(trace, qual, base, size, th, flags);
|
|
|
|
error = 0;
|
|
out:
|
|
return error;
|
|
}
|
|
|
|
struct bts_tracer *ds_request_bts(struct task_struct *task,
|
|
void *base, size_t size,
|
|
bts_ovfl_callback_t ovfl, size_t th,
|
|
unsigned int flags)
|
|
{
|
|
struct bts_tracer *tracer;
|
|
unsigned long irq;
|
|
int error;
|
|
|
|
error = -EOPNOTSUPP;
|
|
if (!ds_cfg.ctl[dsf_bts])
|
|
goto out;
|
|
|
|
/* buffer overflow notification is not yet implemented */
|
|
error = -EOPNOTSUPP;
|
|
if (ovfl)
|
|
goto out;
|
|
|
|
error = -ENOMEM;
|
|
tracer = kzalloc(sizeof(*tracer), GFP_KERNEL);
|
|
if (!tracer)
|
|
goto out;
|
|
tracer->ovfl = ovfl;
|
|
|
|
error = ds_request(&tracer->ds, &tracer->trace.ds,
|
|
ds_bts, task, base, size, th, flags);
|
|
if (error < 0)
|
|
goto out_tracer;
|
|
|
|
|
|
spin_lock_irqsave(&ds_lock, irq);
|
|
|
|
error = -EPERM;
|
|
if (!check_tracer(task))
|
|
goto out_unlock;
|
|
get_tracer(task);
|
|
|
|
error = -EPERM;
|
|
if (tracer->ds.context->bts_master)
|
|
goto out_put_tracer;
|
|
tracer->ds.context->bts_master = tracer;
|
|
|
|
spin_unlock_irqrestore(&ds_lock, irq);
|
|
|
|
|
|
tracer->trace.read = bts_read;
|
|
tracer->trace.write = bts_write;
|
|
|
|
ds_write_config(tracer->ds.context, &tracer->trace.ds, ds_bts);
|
|
ds_resume_bts(tracer);
|
|
|
|
return tracer;
|
|
|
|
out_put_tracer:
|
|
put_tracer(task);
|
|
out_unlock:
|
|
spin_unlock_irqrestore(&ds_lock, irq);
|
|
ds_put_context(tracer->ds.context);
|
|
out_tracer:
|
|
kfree(tracer);
|
|
out:
|
|
return ERR_PTR(error);
|
|
}
|
|
|
|
struct pebs_tracer *ds_request_pebs(struct task_struct *task,
|
|
void *base, size_t size,
|
|
pebs_ovfl_callback_t ovfl, size_t th,
|
|
unsigned int flags)
|
|
{
|
|
struct pebs_tracer *tracer;
|
|
unsigned long irq;
|
|
int error;
|
|
|
|
/* buffer overflow notification is not yet implemented */
|
|
error = -EOPNOTSUPP;
|
|
if (ovfl)
|
|
goto out;
|
|
|
|
error = -ENOMEM;
|
|
tracer = kzalloc(sizeof(*tracer), GFP_KERNEL);
|
|
if (!tracer)
|
|
goto out;
|
|
tracer->ovfl = ovfl;
|
|
|
|
error = ds_request(&tracer->ds, &tracer->trace.ds,
|
|
ds_pebs, task, base, size, th, flags);
|
|
if (error < 0)
|
|
goto out_tracer;
|
|
|
|
spin_lock_irqsave(&ds_lock, irq);
|
|
|
|
error = -EPERM;
|
|
if (!check_tracer(task))
|
|
goto out_unlock;
|
|
get_tracer(task);
|
|
|
|
error = -EPERM;
|
|
if (tracer->ds.context->pebs_master)
|
|
goto out_put_tracer;
|
|
tracer->ds.context->pebs_master = tracer;
|
|
|
|
spin_unlock_irqrestore(&ds_lock, irq);
|
|
|
|
ds_write_config(tracer->ds.context, &tracer->trace.ds, ds_bts);
|
|
ds_resume_pebs(tracer);
|
|
|
|
return tracer;
|
|
|
|
out_put_tracer:
|
|
put_tracer(task);
|
|
out_unlock:
|
|
spin_unlock_irqrestore(&ds_lock, irq);
|
|
ds_put_context(tracer->ds.context);
|
|
out_tracer:
|
|
kfree(tracer);
|
|
out:
|
|
return ERR_PTR(error);
|
|
}
|
|
|
|
void ds_release_bts(struct bts_tracer *tracer)
|
|
{
|
|
if (!tracer)
|
|
return;
|
|
|
|
ds_suspend_bts(tracer);
|
|
|
|
WARN_ON_ONCE(tracer->ds.context->bts_master != tracer);
|
|
tracer->ds.context->bts_master = NULL;
|
|
|
|
put_tracer(tracer->ds.context->task);
|
|
ds_put_context(tracer->ds.context);
|
|
|
|
kfree(tracer);
|
|
}
|
|
|
|
void ds_suspend_bts(struct bts_tracer *tracer)
|
|
{
|
|
struct task_struct *task;
|
|
|
|
if (!tracer)
|
|
return;
|
|
|
|
task = tracer->ds.context->task;
|
|
|
|
if (!task || (task == current))
|
|
update_debugctlmsr(get_debugctlmsr() & ~BTS_CONTROL);
|
|
|
|
if (task) {
|
|
task->thread.debugctlmsr &= ~BTS_CONTROL;
|
|
|
|
if (!task->thread.debugctlmsr)
|
|
clear_tsk_thread_flag(task, TIF_DEBUGCTLMSR);
|
|
}
|
|
}
|
|
|
|
void ds_resume_bts(struct bts_tracer *tracer)
|
|
{
|
|
struct task_struct *task;
|
|
unsigned long control;
|
|
|
|
if (!tracer)
|
|
return;
|
|
|
|
task = tracer->ds.context->task;
|
|
|
|
control = ds_cfg.ctl[dsf_bts];
|
|
if (!(tracer->trace.ds.flags & BTS_KERNEL))
|
|
control |= ds_cfg.ctl[dsf_bts_kernel];
|
|
if (!(tracer->trace.ds.flags & BTS_USER))
|
|
control |= ds_cfg.ctl[dsf_bts_user];
|
|
|
|
if (task) {
|
|
task->thread.debugctlmsr |= control;
|
|
set_tsk_thread_flag(task, TIF_DEBUGCTLMSR);
|
|
}
|
|
|
|
if (!task || (task == current))
|
|
update_debugctlmsr(get_debugctlmsr() | control);
|
|
}
|
|
|
|
void ds_release_pebs(struct pebs_tracer *tracer)
|
|
{
|
|
if (!tracer)
|
|
return;
|
|
|
|
ds_suspend_pebs(tracer);
|
|
|
|
WARN_ON_ONCE(tracer->ds.context->pebs_master != tracer);
|
|
tracer->ds.context->pebs_master = NULL;
|
|
|
|
put_tracer(tracer->ds.context->task);
|
|
ds_put_context(tracer->ds.context);
|
|
|
|
kfree(tracer);
|
|
}
|
|
|
|
void ds_suspend_pebs(struct pebs_tracer *tracer)
|
|
{
|
|
|
|
}
|
|
|
|
void ds_resume_pebs(struct pebs_tracer *tracer)
|
|
{
|
|
|
|
}
|
|
|
|
const struct bts_trace *ds_read_bts(struct bts_tracer *tracer)
|
|
{
|
|
if (!tracer)
|
|
return NULL;
|
|
|
|
ds_read_config(tracer->ds.context, &tracer->trace.ds, ds_bts);
|
|
return &tracer->trace;
|
|
}
|
|
|
|
const struct pebs_trace *ds_read_pebs(struct pebs_tracer *tracer)
|
|
{
|
|
if (!tracer)
|
|
return NULL;
|
|
|
|
ds_read_config(tracer->ds.context, &tracer->trace.ds, ds_pebs);
|
|
tracer->trace.reset_value =
|
|
*(u64 *)(tracer->ds.context->ds + (ds_cfg.sizeof_field * 8));
|
|
|
|
return &tracer->trace;
|
|
}
|
|
|
|
int ds_reset_bts(struct bts_tracer *tracer)
|
|
{
|
|
if (!tracer)
|
|
return -EINVAL;
|
|
|
|
tracer->trace.ds.top = tracer->trace.ds.begin;
|
|
|
|
ds_set(tracer->ds.context->ds, ds_bts, ds_index,
|
|
(unsigned long)tracer->trace.ds.top);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int ds_reset_pebs(struct pebs_tracer *tracer)
|
|
{
|
|
if (!tracer)
|
|
return -EINVAL;
|
|
|
|
tracer->trace.ds.top = tracer->trace.ds.begin;
|
|
|
|
ds_set(tracer->ds.context->ds, ds_bts, ds_index,
|
|
(unsigned long)tracer->trace.ds.top);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int ds_set_pebs_reset(struct pebs_tracer *tracer, u64 value)
|
|
{
|
|
if (!tracer)
|
|
return -EINVAL;
|
|
|
|
*(u64 *)(tracer->ds.context->ds + (ds_cfg.sizeof_field * 8)) = value;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct ds_configuration ds_cfg_netburst = {
|
|
.name = "netburst",
|
|
.ctl[dsf_bts] = (1 << 2) | (1 << 3),
|
|
.ctl[dsf_bts_kernel] = (1 << 5),
|
|
.ctl[dsf_bts_user] = (1 << 6),
|
|
|
|
.sizeof_field = sizeof(long),
|
|
.sizeof_rec[ds_bts] = sizeof(long) * 3,
|
|
#ifdef __i386__
|
|
.sizeof_rec[ds_pebs] = sizeof(long) * 10,
|
|
#else
|
|
.sizeof_rec[ds_pebs] = sizeof(long) * 18,
|
|
#endif
|
|
};
|
|
static const struct ds_configuration ds_cfg_pentium_m = {
|
|
.name = "pentium m",
|
|
.ctl[dsf_bts] = (1 << 6) | (1 << 7),
|
|
|
|
.sizeof_field = sizeof(long),
|
|
.sizeof_rec[ds_bts] = sizeof(long) * 3,
|
|
#ifdef __i386__
|
|
.sizeof_rec[ds_pebs] = sizeof(long) * 10,
|
|
#else
|
|
.sizeof_rec[ds_pebs] = sizeof(long) * 18,
|
|
#endif
|
|
};
|
|
static const struct ds_configuration ds_cfg_core2 = {
|
|
.name = "core 2",
|
|
.ctl[dsf_bts] = (1 << 6) | (1 << 7),
|
|
.ctl[dsf_bts_kernel] = (1 << 9),
|
|
.ctl[dsf_bts_user] = (1 << 10),
|
|
|
|
.sizeof_field = 8,
|
|
.sizeof_rec[ds_bts] = 8 * 3,
|
|
.sizeof_rec[ds_pebs] = 8 * 18,
|
|
};
|
|
|
|
static void
|
|
ds_configure(const struct ds_configuration *cfg)
|
|
{
|
|
memset(&ds_cfg, 0, sizeof(ds_cfg));
|
|
ds_cfg = *cfg;
|
|
|
|
printk(KERN_INFO "[ds] using %s configuration\n", ds_cfg.name);
|
|
|
|
if (!cpu_has_bts) {
|
|
ds_cfg.ctl[dsf_bts] = 0;
|
|
printk(KERN_INFO "[ds] bts not available\n");
|
|
}
|
|
if (!cpu_has_pebs)
|
|
printk(KERN_INFO "[ds] pebs not available\n");
|
|
|
|
WARN_ON_ONCE(MAX_SIZEOF_DS < (12 * ds_cfg.sizeof_field));
|
|
}
|
|
|
|
void __cpuinit ds_init_intel(struct cpuinfo_x86 *c)
|
|
{
|
|
switch (c->x86) {
|
|
case 0x6:
|
|
switch (c->x86_model) {
|
|
case 0 ... 0xC:
|
|
/* sorry, don't know about them */
|
|
break;
|
|
case 0xD:
|
|
case 0xE: /* Pentium M */
|
|
ds_configure(&ds_cfg_pentium_m);
|
|
break;
|
|
default: /* Core2, Atom, ... */
|
|
ds_configure(&ds_cfg_core2);
|
|
break;
|
|
}
|
|
break;
|
|
case 0xF:
|
|
switch (c->x86_model) {
|
|
case 0x0:
|
|
case 0x1:
|
|
case 0x2: /* Netburst */
|
|
ds_configure(&ds_cfg_netburst);
|
|
break;
|
|
default:
|
|
/* sorry, don't know about them */
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
/* sorry, don't know about them */
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Change the DS configuration from tracing prev to tracing next.
|
|
*/
|
|
void ds_switch_to(struct task_struct *prev, struct task_struct *next)
|
|
{
|
|
struct ds_context *prev_ctx = prev->thread.ds_ctx;
|
|
struct ds_context *next_ctx = next->thread.ds_ctx;
|
|
|
|
if (prev_ctx) {
|
|
update_debugctlmsr(0);
|
|
|
|
if (prev_ctx->bts_master &&
|
|
(prev_ctx->bts_master->trace.ds.flags & BTS_TIMESTAMPS)) {
|
|
struct bts_struct ts = {
|
|
.qualifier = bts_task_departs,
|
|
.variant.timestamp.jiffies = jiffies_64,
|
|
.variant.timestamp.pid = prev->pid
|
|
};
|
|
bts_write(prev_ctx->bts_master, &ts);
|
|
}
|
|
}
|
|
|
|
if (next_ctx) {
|
|
if (next_ctx->bts_master &&
|
|
(next_ctx->bts_master->trace.ds.flags & BTS_TIMESTAMPS)) {
|
|
struct bts_struct ts = {
|
|
.qualifier = bts_task_arrives,
|
|
.variant.timestamp.jiffies = jiffies_64,
|
|
.variant.timestamp.pid = next->pid
|
|
};
|
|
bts_write(next_ctx->bts_master, &ts);
|
|
}
|
|
|
|
wrmsrl(MSR_IA32_DS_AREA, (unsigned long)next_ctx->ds);
|
|
}
|
|
|
|
update_debugctlmsr(next->thread.debugctlmsr);
|
|
}
|
|
|
|
void ds_copy_thread(struct task_struct *tsk, struct task_struct *father)
|
|
{
|
|
clear_tsk_thread_flag(tsk, TIF_DS_AREA_MSR);
|
|
tsk->thread.ds_ctx = NULL;
|
|
}
|
|
|
|
void ds_exit_thread(struct task_struct *tsk)
|
|
{
|
|
WARN_ON(tsk->thread.ds_ctx);
|
|
}
|